# Applying Axial Symmetries to Historical Silk Fabrics: SILKNOW’s Virtual Loom

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Symmetry and Silk Fabrics

## 3. The Consideration of Symmetry in SILKNOW’s Virtual Loom

## 4. Results

- One part of the object is missing: broken areas; the object is not entirely pictured; only one part was produced (technical drawings).
- The object is partially bent, so there is a hidden part.
- There are wrinkles.
- There is an artifact (e.g., labels) occluding part of the object.
- Parts of the object are dirty or scratched.
- Light on the object is not uniform: some areas are too bright or too dark; there are shadows; etc.
- Some parts of the image are blurred/unfocused.

## 5. Discussion

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Avital, T. Symmetry: The connectivity principle of art. Symmetry Cult. Sci.
**1996**, 7, 27–50. [Google Scholar] - Brezine, C. Creating Symmetry on the Loom; University of Washington Press: Washington, DC, USA, 2004. [Google Scholar]
- Legino, R.; Forrest, D. Symmetrical motif design in Malaysian batik sarong patterns. In International Colloquium of Art and Design Education Research (i-CADER 2014); Hassan, O.H., Abidin, S.Z., Legino, R., Anwar, R., Kamaruzaman, M.F., Eds.; Springer Science and Business Media: Singapore, 2015; pp. 695–701. [Google Scholar]
- Portalés, C.; Sevilla, J.; Pérez, M.; León, A. A Proposal to Model Ancient Silk Weaving Techniques and Extracting Information from Digital Imagery-Ongoing Results of the SILKNOW Project. In International Conference on Computational Science; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Portalés, C.; Alonso-Monasterio, P.; Viñals, M.J. 3D virtual reconstruction and visualisation of the archaeological site Castellet de Bernabé (Llíria, Spain). Virtual Archaeol. Rev.
**2017**, 8, 75–82. [Google Scholar] [CrossRef][Green Version] - Rua, H.; Alvito, P. Living the past: 3D models, virtual reality and game engines as tools for supporting archaeology and the reconstruction of cultural heritage—The case-study of the Roman villa of Casal de Freiria. J. Archaeol. Sci.
**2011**, 38, 3296–3308. [Google Scholar] [CrossRef] - Granero-Montagud, L.; Portalés, C.; Pastor-Carbonell, B.; Ribes-Gómez, E.; Gutiérrez-Lucas, A.; Tornari, V.; Papadakis, V.; Groves, R.M.; Sirmacek, B.; Bonazza, A.; et al. Deterioration Estimation of Paintings by Means of Combined 3D and Hyperspectral Data Analysis. In Proceedings of the SPIE Optical Metrology 2013, Munich, Germany, 13–16 May 2013; Volume 8790, p. 879008. [Google Scholar]
- Chow, S.-K.; Chan, K.-L. Reconstruction of photorealistic 3D model of ceramic artefacts for interactive virtual exhibition. J. Cult. Herit.
**2009**, 10, 161–173. [Google Scholar] [CrossRef] - Arbace, L.; Sonnino, E.; Callieri, M.; Dellepiane, M.; Fabbri, M.; Iaccarino Idelson, A.; Scopigno, R. Innovative uses of 3D digital technologies to assist the restoration of a fragmented terracotta statue. J. Cult. Herit.
**2013**, 14, 332–345. [Google Scholar] [CrossRef] - Guidi, G.; Beraldin, J.-A.; Atzeni, C. High-accuracy 3D modeling of cultural heritage: The digitizing of Donatello’s Maddalena. IEEE Trans. Image Process.
**2004**, 13, 370–380. [Google Scholar] [CrossRef] [PubMed] - Gimeno, J.; Portalés, C.; Coma, I.; Fernández, M.; Martínez, B. Combining Traditional and Indirect Augmented Reality for Indoor Crowded Environments. A Case Study on the Casa Batlló Museum. Comput. Graph.
**2017**, 69, 92–103. [Google Scholar] [CrossRef] - Martínez, B.; Casas, S.; Vidal-González, M.; Vera, L.; García-Pereira, I. TinajAR: An Edutainment Augmented Reality Mirror for the Dissemination and Reinterpretation of Cultural Heritage. Multimodal Technol. Interact.
**2018**, 2, 33. [Google Scholar] [CrossRef][Green Version] - Etzmuss, O.; Keckeisen, M.; Strasser, W. A fast finite element solution for cloth modelling. In Proceedings of the 11th Pacific Conference on Computer Graphics and Applications, Canmore, AB, Canada, 8–10 October 2003; pp. 244–251. [Google Scholar]
- Jiang, Y.; Chen, X. Geometric and algebraic algorithms for modelling yarn in woven fabrics. J. Text. Inst.
**2005**, 96, 237–245. [Google Scholar] [CrossRef] - Cirio, G.; Lopez-Moreno, J.; Otaduy, M.A. Efficient Simulation of Knitted Cloth Using Persistent Contacts. In Proceedings of the 14th ACM SIGGRAPH/Eurographics Symposium on Computer Animation, Los Angeles, CA, USA, 7–9 August 2015; ACM: New York, NY, USA, 2015; pp. 55–61. [Google Scholar]
- Kaldor, J.M.; James, D.L.; Marschner, S. Simulating Knitted Cloth at the Yarn Level. In Proceedings of the ACM SIGGRAPH 2008 Papers, Los Angeles, CA, USA, 11–15 August 2008; ACM: New York, NY, USA, 2008; pp. 65:1–65:9. [Google Scholar]
- Wu, K.; Yuksel, C. Real-time Fiber-level Cloth Rendering. In Proceedings of the 21st ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games; ACM: York, NY, USA, 2017; pp. 5:1–5:8. [Google Scholar]
- Lomov, S.V. WiseTex Software Suite. Available online: https://www.mtm.kuleuven.be/Onderzoek/Composites/software/wisetex (accessed on 23 November 2019).
- Lomov, S.V. Modelling the Geometry of Textile Composite Reinforcements: WiseTex; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- TexGen. Available online: http://texgen.sourceforge.net/index.php/Main_Page (accessed on 23 November 2019).
- Pointcarré Textile Software. Available online: https://www.pointcarre.com/ (accessed on 4 December 2019).
- STOLL M1 Plus. Available online: https://www.stoll.com/en/software/m1plusr/ (accessed on 4 December 2019).
- iWeaveIt. Available online: http://www.weaveit.com/iWeaveIt.aspx (accessed on 4 December 2019).
- McBurney, S. On constructing a virtual loom. In Proceedings of the Conference of Bridges: Mathematics, Music, Art, Architecture, Culture, Banff, AB, Canada, 26–30 July 2009; pp. 287–292. [Google Scholar]
- Eglash, R. Re-thinking symmetry in ethno-mathematics. Symmetry Cult. Sci.
**2003**, 12, 159–166. [Google Scholar] - Gang, Z.; Bingbing, D.; Wenjuan, Z.; Yali, Y.; Hui, Z. Design and implementation of interactive system for Tujia brocade virtual weaving based on kinect. In Proceedings of the 2017 23rd International Conference on Automation and Computing (ICAC), Huddersfield, UK, 7–8 September 2017; pp. 1–5. [Google Scholar]
- Portalés, C.; Sebastián, J.; Alba, E.; Sevilla, J.; Gaitán, M.; Ruiz, P.; Fernández, M. Interactive tools for the preservation, dissemination and study of silk heritage—An introduction to the silknow project. Multimodal Technol. Interact.
**2018**, 2, 28. [Google Scholar] [CrossRef][Green Version] - Adam, J. (Ed.) The Republic of Plato; Cambridge University Press: Cambridge, UK, 1902. [Google Scholar]
- Arnzen, R. (Ed.) On Aristotle’s” Metaphysics”: An annotated translation of the so-called” Epitome”; Walter de Gruyter: Berlin, Germany, 2010; Volume 5. [Google Scholar]
- López, G. Belleza y simetría: Una historia de preferencia cultural. In Congreso Forma y Simetría: Arte y Ciencia; Congreso de Buenos Aires: Buenos Aires, Argentina, 2007; pp. 318–321. [Google Scholar]
- Darvas, G. Symmetry: Cultural-Historical and Ontological Aspects of Science-Arts Relations; The Natural and Man-Made World in an Interdisciplinary Approach; Springer Science & Business Media: Basel, Switzerland, 2007. [Google Scholar]
- Rohde, G.M. Simetria: Rigor e Imaginação; EDIPUCRS: Porta Alegre, Brazil, 1997. [Google Scholar]
- Giora, H.; Goldstein, B.R. From Summetria to Symmetry: The Making of a Revolutionary Scientific Concept; Springer Science & Business Media: Berlin, Germany, 2008. [Google Scholar]
- Monge, G. Geometría Descriptiva, Lecciones Dadas en las Escuelas Normales en el Año Tercero de la República; Imprenta Real: Madrid, Spain, 1803. [Google Scholar]
- Calvo López, J. Gaspard Monge, la estética de la Ilustración y la enseñanza de la Geometría Descriptiva. Rev. De Expresión Gráfica En La Edif.
**2006**, 4, 85–92. [Google Scholar] [CrossRef][Green Version] - Alegre Cremades, A. La enseñanza de las artes. In La Academia de Santa Bárbara y la Real de las Tres Nobles Artes de San Carlos, Cien años de Enseñanza de Arte; Universitat Politècnica de Valencia: Valencia, Spain, 2004; pp. 75–78. [Google Scholar]
- Gombrich, E.H. The Sense of Order: A Study in the Psychology of Decorative Art, 2nd ed; Phaidon: Oxford, UK, 1984. [Google Scholar]
- Fernaeus, Y.; Jonsson, M.; Tholander, J. Revisiting the jacquard loom: Threads of history and current patterns in HCI. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems; Association for Computing Machinery: New York, NY, USA, 2012; pp. 1593–1602. [Google Scholar]
- Sergeev, A.; Sergeev, M.; Vostrikov, A.; Kurtyanik, D. Portraits of Orthogonal Matrices as a Base for Discrete Textile Ornament Patterns. In Intelligent Decision Technologies 2019; Czarnowski, I., Howlett, R., Jain, L., Eds.; Springer: Singapore, 2019; pp. 135–143. [Google Scholar]
- Lekka, L.; Dascalopoulos, S. Motifs and Symmetry Characteristics of the Ornamentation on Traditional Greek Woven Textiles from the Area of the Aegean. Fibres Text. East. Eur.
**2008**, 16, 74–78. [Google Scholar] - Hann, M.A. The fundamentals of pattern structure: Part I: Woods revisited. J. Text. Inst.
**2003**, 94, 53–65. [Google Scholar] [CrossRef] - Kraft, K. Textile patterns and their epistemological functions. Textile
**2004**, 2, 274–289. [Google Scholar] [CrossRef] - Brainerd, G.W. Symmetry in primitive conventional design. Am. Antiq.
**1942**, 8, 164–166. [Google Scholar] [CrossRef] - Alba, E.; Gaitán, M.; León, A.; Sebastián, J. Spanish Religious Textiles from the 18th and 19th centuries: The Garín case. Eur. J. Sci. Theol.
**2020**, 16, 187–197. [Google Scholar] - McLean, A.; Harlizius-Klück, E.; Jefferies, J. Introduction: Weaving Codes, Coding Weaves. Textile
**2017**, 15, 118–123. [Google Scholar] [CrossRef][Green Version] - Gaitán, M.; Alba, E.; León, A.; Pérez, M.; Sevilla, J.; Portalés, C. Towards the Preservation and Dissemination of Historical Silk Weaving Techniques in the Digital Era. Heritage
**2019**, 2, 1892–1911. [Google Scholar] [CrossRef][Green Version] - Available online: https://github.com/silknow/virtual-loom (accessed on 1 April 2020).
- Available online: https://silknow.eu/virtualLoom/ (accessed on 1 April 2020).
- Virtual Loom, Tutorial. Available online: https://www.youtube.com/watch?v=oaZqM3-Wli8 (accessed on 4 April 2020).
- Zhou, P.; Shui, W.; Qu, L.; Gao, F.; Wu, Z. Case study: Missing data computation and 3D printing application in symmetrical artifact restoration. In Proceedings of the Symposium on VR Culture and Heritage, Zhuhai, China, 3–4 December 2016; Volume 2, pp. 63–66. [Google Scholar]
- Ivan, S. Analysis of partial axial symmetry on 3d surfaces and its application in the restoration of cultural heritage objects. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017. [Google Scholar]
- Valiente, J.M.; Albert, F.; Carretero, C.; Gomis, J.M. Structural description of textile and tile pattern designs using image processing. In Proceedings of the 17th International Conference on Pattern Recognition, Cambridge, UK, 23–26 August 2004; ICPR: Cambridge, UK, 2004; Volume 1, pp. 498–503. [Google Scholar]
- Washburn, D.K. Analysis of Pattern Structure by Geometric Symmetries. In Textile Society of America Symposium Proceedings; Textile Society of America: Minneapolis, MN, USA, 1998; pp. 40–44. [Google Scholar]
- Moxey, J. Textile design: A holistic perspective. J. Text. Inst.
**1992**, 90, 176–181. [Google Scholar] [CrossRef]

**Figure 1.**The Virtual Loom at Garin 1820, an artisanal factory that weaves with Jacquard looms from the 19th century.

**Figure 2.**Basic workflow of the Virtual Loom: input data, design subtraction and 3D representation. The images depicted correspond to a fabric with the weaving technique espolín with damassé ground.

**Figure 3.**Results after mirroring an image with the word “Symmetry”, where: (

**a**) mirrored (left-right) image by reordering the four points; (

**b**) mirrored (up-down) image by reordering the four points; (

**c**) symmetry in the vertical axis, aspect ratio changed (with respect to the original image); (

**d**) symmetry in the horizontal axis, aspect ratio changed; (

**e**) Symmetry in the vertical and horizontal axis; (

**f**) symmetry in the vertical and horizontal axis; only an area of the original image has been considered (defined by the four points); (

**g**) symmetry in the horizontal axis, after rotating the original image; aspect ratio changed; h) symmetry in the vertical axis, after reordering the four points defining the considered area.

**Figure 4.**Types of defects (A to G) found in Garín’s dataset, for those images (technical drawings or fabrics) that have at least one symmetrical axis (vertical; vertical and horizontal). Samples might have more than one defect.

**Figure 5.**Subtracting the design of a fabric with defect A (only part of the object was pictured), where: (

**a**) Original image and result after applying the symmetry functionality; (

**b**) Reconstructed design; (

**c**) 3D model.

**Figure 6.**Subtracting the design of a technical drawing with defect A (only half of the object was produced), where: (

**a**) Original image and result after applying the symmetry functionality; (

**b**) Reconstructed design; (

**c**) 3D model.

**Figure 7.**Subtracting the design of a fabric with defect A (broken area), where: (

**a**) Original image and result after applying the symmetry functionality; (

**b**) Reconstructed design; (

**c**) 3D model.

**Figure 8.**Subtracting the design of a fabric with defects A, C, D and F, where: (

**a**) Original image and result after applying the symmetry functionality; (

**b**) Reconstructed design; (

**c**) 3D model.

**Figure 9.**Subtracting the design of a fabric with defects C and D, where: (

**a**) Original image and result after applying the symmetry functionality; (

**b**) Reconstructed design; (

**c**) 3D model.

**Figure 10.**An example for creating new designs in the Virtual Loom, given an input image. The area within the four points (left image), holds most of the central motive.

**Figure 11.**An example of creating new designs in the Virtual Loom, given an input image. The area within the four points (left image), holds only part of the central motive.

**Figure 12.**An example of creating new designs in the Virtual Loom, given an input image. The area within the four points (left image), holds only part of the central motive, and the four points do not form a convex hull.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Gaitán, M.; Portalés, C.; Sevilla, J.; Alba, E. Applying Axial Symmetries to Historical Silk Fabrics: SILKNOW’s Virtual Loom. *Symmetry* **2020**, *12*, 742.
https://doi.org/10.3390/sym12050742

**AMA Style**

Gaitán M, Portalés C, Sevilla J, Alba E. Applying Axial Symmetries to Historical Silk Fabrics: SILKNOW’s Virtual Loom. *Symmetry*. 2020; 12(5):742.
https://doi.org/10.3390/sym12050742

**Chicago/Turabian Style**

Gaitán, Mar, Cristina Portalés, Javier Sevilla, and Ester Alba. 2020. "Applying Axial Symmetries to Historical Silk Fabrics: SILKNOW’s Virtual Loom" *Symmetry* 12, no. 5: 742.
https://doi.org/10.3390/sym12050742