Composite and Background Fields in Non-Abelian Gauge Models
Abstract
:1. Introduction
2. Generating Functionals and Their Properties
2.1. Effective Action and Gauge Dependence
2.2. Background Field Interpretation
3. Volovich–Katanaev Model
Composite Field Introduction
4. Gribov–Zwanziger Model
4.1. Formal Background Introduction
4.2. Modified Background Introduction and Effective Action
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cornwall, J.M.; Jackiw, R.; Tomboulis, E. Effective Action for Composite Operatorps. Phys. Rev. D 1974, 10, 2428–2445. [Google Scholar] [CrossRef]
- Haymaker, R.W. Variational Methods for Composite Operators. Rivista Nuovo Cim. 1991, 14, 1–89. [Google Scholar] [CrossRef]
- DeWitt, B.S. Quantum Theory of Gravity. II. The Manifestly Covariant Theory. Phys. Rev. 1967, 162, 1195–1239. [Google Scholar] [CrossRef]
- Aref’eva, I.Y.; Faddeev, L.D.; Slavnov, A.A. Generating Functional for the S Matrix in Gauge Theories. Theor. Math. Phys. 1975, 21, 1165–1172, (in Russian: Teor. Mat. Fiz. 1974, 21, 311–321). [Google Scholar] [CrossRef]
- Abbott, L.F. The Background Field Method beyond One Loop. Nucl. Phys. B 1981, 185, 189–203. [Google Scholar] [CrossRef] [Green Version]
- Nambu, Y.; Jona-Lasinio, G. Dynamical Model of Elementary Particles Based on an Analogy with Superconductivity. Phys. Rev. 1961, 122, 345–358. [Google Scholar] [CrossRef] [Green Version]
- Gross, D.; Neveu, A. Dynamical Symmetry Breaking in Asymptotically Free Field Theories. Phys. Rev. D 1974, 10, 3235–3253. [Google Scholar] [CrossRef]
- Hawking, S.W.; Moss, I.G. Fluctuations in the Inflationary Universe. Nucl. Phys. B 1983, 224, 180–192. [Google Scholar] [CrossRef]
- Casalbuoni, R.; DeCurtis, S.; Dominici, D.; Gatto, R. Composite Operator Calculation of Chiral Symmetry Breaking in Color Gauge Theory. Phys. Lett. B 1984, 140, 357–362. [Google Scholar] [CrossRef]
- Bardeen, W.; Hill, C.; Lindner, M. Minimal Dynamical Symmetry Breaking of the Standard Model. Phys. Rev. D 1990, 41, 1647–1660. [Google Scholar] [CrossRef] [Green Version]
- Grigorian, R.P.; Tyutin, I.V. Renormalization Group Equation for Composite Fields. Sov. J. Nucl. Phys. 1977, 26, 593, (in Russian: Yad. Fiz. 1977, 26, 1121–1129). [Google Scholar]
- Gusynin, V.P.; Miransky, V.A. Nonperturbative Scale Anomaly and Composite Operators in Gauge Field Theories. Phys. Lett. B 1987, 198, 362–366. [Google Scholar] [CrossRef]
- Seiberg, N. The Power of Duality–Exact Results in 4D SUSY Field Theory. Int. J. Mod. Phys. A 2001, 16, 4365–4376. [Google Scholar] [CrossRef] [Green Version]
- Shifman, M.; Stepanyantz, K. Exact Adler Function in Supersymmetric QCD. Phys. Rev. Lett. 2015, 114, 051601. [Google Scholar] [CrossRef]
- Shifman, M.; Stepanyantz, K.V. Derivation of the Exact Expression for the D Function in N = 1 SQCD. Phys. Rev. D 2015, 91, 105008. [Google Scholar] [CrossRef] [Green Version]
- Capri, M.A.L.; van Egmond, D.M.; Guimarães, M.S.; Holanda, O.; Sorella, S.P.; Terin, R.C.; Toledo, H.C. Renormalizability of N = 1 Super Yang–Mills Theory in Landau Gauge with a Stueckelberg-like Field. Eur. Phys. J. C 2018, 78, 797. [Google Scholar] [CrossRef]
- Wetterich, C. Average Action and the Renormalization Group Equations. Nucl. Phys. B 1991, 352, 529–584. [Google Scholar] [CrossRef]
- Reuter, M.; Wetterich, C. Average Action for the Higgs Model with Abelian Gauge Symmetry. Nucl. Phys. B 1993, 391, 147–175. [Google Scholar] [CrossRef]
- Reuter, M.; Wetterich, C. Effective Average Action for Gauge Theories and Exact Evolution Equations. Nucl. Phys. B 1994, 417, 181–214. [Google Scholar] [CrossRef]
- Lavrov, P.; Shapiro, I. On the Functional Renormalization Group Approach for Yang–Mills Fields. J. High Energy Phys. 2013, 1306, 086. [Google Scholar] [CrossRef] [Green Version]
- Barra, V.F.; Lavrov, P.M.; dos Reis, E.A.; de Paula Netto, T.; Shapiro, I.L. Functional Renormalization Group Approach and Gauge Dependence in Gravity Theories. Phys. Rev. D 2020, 101, 065001. [Google Scholar] [CrossRef] [Green Version]
- Gribov, V.N. Quantization of Nonabelian Gauge Theories. Nucl. Phys. B 1978, 139, 1–19. [Google Scholar] [CrossRef]
- Zwanziger, D. Action from the Gribov Horizon. Nucl. Phys. B 1989, 321, 591–604. [Google Scholar] [CrossRef]
- Zwanziger, D. Local and Renormalizable Action from the Gribov Horizon. Nucl. Phys. B 1989, 323, 513–544. [Google Scholar] [CrossRef]
- Lavrov, P.; Lechtenfeld, O.; Reshetnyak, A. Is Soft Breaking of BRST Symmetry consistent? J. High Energy Phys. 2011, 2011, 43. [Google Scholar] [CrossRef] [Green Version]
- Reshetnyak, A. On Gauge Independence for Gauge Models with Soft Breaking of BRST Symmetry. Int. J. Mod. Phys. A 2014, 29, 1450184. [Google Scholar] [CrossRef] [Green Version]
- Lavrov, P.; Radchenko, O.; Reshetnyak, A. Soft Breaking of BRST Symmetry and Gauge Dependence. Mod. Phys. Lett. A 2012, 27, 1250067. [Google Scholar] [CrossRef] [Green Version]
- Lavrov, P.; Lechtenfeld, O. Gribov Horizon beyond the Landau Gauge. Phys. Lett. B 2013, 725, 386–388. [Google Scholar] [CrossRef] [Green Version]
- Capri, M.A.L.; Fiorentini, D.; Guimaraes, M.S.; Mintz, B.W.; Palhares, L.F.; Sorella, S.P. A Local and Renormalizable Framework for the Gauge-invariant Operator in Euclidean Yang–Mills Theories in Linear Covariant Gauges. Phys. Rev. D 2016, 94, 065009. [Google Scholar] [CrossRef] [Green Version]
- Capri, M.A.L.; Sorella, S.P.; Terin, R.C. Study of a Gauge Invariant Local Composite Fermionic Field. Ann. Phys. 2020, 414, 168077. [Google Scholar] [CrossRef] [Green Version]
- Canfora, F.E.; Hidalgo, D.; Pais, P. The Gribov Problem in Presence of Background Field for SU(2) Yang–Mills theory. Phys. Lett. B 2016, 763, 94–101. [Google Scholar] [CrossRef]
- Abbott, L.F. Introduction to the Background Field Method. Acta Phys. Polon. B 1982, 13, 33–50. [Google Scholar]
- Weinberg, S. The Quantum Theory of Fields. Vol. II Modern Applications; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- ’t Hooft, G. An Algorithm for the Poles at Dimension four in the Dimensional Regularization Procedure. Nucl. Phys. B 1973, 62, 444–460. [Google Scholar] [CrossRef] [Green Version]
- Kluberg-Stern, H.; Zuber, J.B. Renormalization of non-Abelian Gauge Theories in a Background-field Gauge. I. Green’s Functions. Phys. Rev. D 1975, 12, 482–488. [Google Scholar] [CrossRef]
- Grisaru, M.T.; van Nieuwenhuizen, P.; Wu, C.C. Background-field Method versus Normal Field Theory in Explicit Examples: One Loop Divergences in S Matrix and Green’s Functions for Yang–Mills and Gravitational Fields. Phys. Rev. D 1975, 12, 3203–3213. [Google Scholar] [CrossRef]
- Capper, D.M.; MacLean, A. The Background Field Method at Two Loops: A General Gauge Yang–Mills Calculation. Nucl. Phys. B 1982, 203, 413–422. [Google Scholar] [CrossRef]
- Ichinose, S.; Omote, M. Renormalization Using the Background-field Method. Nucl. Phys. B 1982, 203, 221–267. [Google Scholar] [CrossRef]
- Goroff, M.H.; Sagnotti, A. The Ultraviolet Behavior of Einstein Gravity. Nucl. Phys. B 1986, 266, 709–736. [Google Scholar] [CrossRef]
- van de Ven, A.E.M. Two-loop Quantum Gravity. Nucl. Phys. B 1992, 378, 309–366. [Google Scholar] [CrossRef]
- Grassi, P.A. Algebraic Renormalization of Yang–Mills Theory with Background Field Method. Nucl. Phys. B 1996, 462, 524–550. [Google Scholar] [CrossRef] [Green Version]
- Becchi, C.; Collina, R. Further Comments on the Background Field Method and Gauge Invariant Effective Actions. Nucl. Phys. B 1999, 562, 412–430. [Google Scholar] [CrossRef] [Green Version]
- Ferrari, R.; Picariello, M.; Quadri, A. Algebraic Aspects of the Background Field Method. Ann. Phys. 2001, 294, 165–181. [Google Scholar] [CrossRef] [Green Version]
- Binosi, D.; Quadri, A. The Background Field Method as a Canonical Transformation. Phys. Rev. D 2012, 85, 121702. [Google Scholar] [CrossRef] [Green Version]
- Barvinsky, A.O.; Blas, D.; Herrero-Valea, M.; Sibiryakov, S.M.; Steinwachs, C.F. Renormalization of Gauge Theories in the Background-field Approach. J. High Energy Phys. 2018, 1807, 035. [Google Scholar] [CrossRef] [Green Version]
- Frenkel, J.; Taylor, J.C. Background Gauge Renormalization and BRST Identities. Ann. Phys. 2018, 389, 234–238. [Google Scholar] [CrossRef] [Green Version]
- Batalin, I.A.; Lavrov, P.M.; Tyutin, I.V. Multiplicative Renormalization of Yang–Mills Theories in the Background-field Formalism. Eur. Phys. J. C 2018, 78, 570. [Google Scholar] [CrossRef]
- Brandt, F.T.; Frenkel, J.; McKeon, D.G.C. Renormalization of Six-dimensional Yang–Mills Theory in a Background Gauge Field. Phys. Rev. D 2019, 99, 025003. [Google Scholar] [CrossRef] [Green Version]
- Faddeev, L.D.; Popov, V.N. Feynman Diagrams for the Yang–Mills Field. Phys. Lett. B 1967, 25, 29–30. [Google Scholar] [CrossRef]
- Katanaev, M.O.; Volovich, I.V. Two-dimensional Gravity with Dynamical Torsion and Strings. Ann. Phys. 1990, 197, 1–32. [Google Scholar] [CrossRef] [Green Version]
- Jackiw, R. Lower Dimensional Gravity. Nucl. Phys. B 1985, 252, 343–356. [Google Scholar] [CrossRef]
- Teitelboim, C. Gravitation and Hamiltonian Structure in Two Space-Time Dimensions. Phys. Lett. B 1983, 126, 41–45. [Google Scholar] [CrossRef]
- Banks, T.; Susskind, L. Canonical Quantization of 1+1 Dimensional Gravity. Int. J. Theor. Phys. 1984, 23, 475–496. [Google Scholar] [CrossRef]
- Lichtzier, I.M.; Odintsov, S.D. Two-dimensional Quantum Gravity with Generalized Action and Compact Boson. Mod. Phys. Lett. A 1991, 6, 1953–1960. [Google Scholar] [CrossRef]
- Sanchez, N. Semiclassical Quantum Gravity and Liouville Theory: A Complete Solution to the Back Reaction Problem in Two-dimensions. Nucl. Phys. B 1986, 266, 487–508. [Google Scholar] [CrossRef]
- Brown, J.D.; Henneaux, M.; Teitelboim, C. Black Holes in Two Space-time Dimensions. Phys. Rev. D 1986, 33, 319–323. [Google Scholar] [CrossRef] [Green Version]
- Balbinot, R.; Floreanini, R. Semiclassical Two-dimensional Gravity and Liouville Equation. Phys. Lett. B 1985, 151, 401–404. [Google Scholar] [CrossRef]
- Floreanini, R. On the Quantization of the Liouville Theory. Annals Phys. 1986, 167, 317–327. [Google Scholar] [CrossRef]
- Fukuyama, T.; Kamimura, K. Gauge Theory of Two-dimensional Gravity. Phys. Lett. B 1985, 160, 259–262. [Google Scholar] [CrossRef]
- Martellini, M. Some Remarks on the Liouville Approach to Two-dimensional Quantum Gravity. Ann. Phys. 1986, 167, 437–453. [Google Scholar] [CrossRef]
- Marnelius, R. Canonical Quantization of Polyakov’s String in Arbitrary Dimensions. Nucl. Phys. B 1983, 211, 14–28. [Google Scholar] [CrossRef]
- Brink, L.; Di Vecchia, P.; Howe, P. A Locally Supersymmetric and Reparametrization Invariant Action for the Spinning String. Phys. Lett. B 1976, 65, 471–474. [Google Scholar] [CrossRef]
- Deser, S.; Zumino, B. A Complete Action for the Spinning String. Phys. Lett. B 1976, 65, 369–373. [Google Scholar] [CrossRef] [Green Version]
- Green, M.B.; Schwarz, J.D.; Witten, E. Superstring Theory; Cambridge University Press: London, UK, 1987. [Google Scholar]
- Van Nieuwenhuizen, P. The Actions of the N = 1 and N = 2 Spinning Strings as Conformal Supergravities. Int. J. Mod. Phys. A 1986, 1, 155–191. [Google Scholar] [CrossRef]
- Katanaev, M.O. Conformal Invariance, Extremals, and Geodesics in Two-dimensional Gravity with Torsion. J. Math. Phys. 1991, 32, 2483–2496. [Google Scholar] [CrossRef]
- Katanaev, M.O. All Universal Coverings of Two-dimensional Gravity with Torsion. J. Math. Phys. 1993, 34, 700–736. [Google Scholar] [CrossRef]
- Kummer, W.; Schwarz, D.J. General Analytic Solution of R2 Gravity with Dynamical Torsion in Two Dimensions. Phys. Rev. D 1992, 45, 3628–3635. [Google Scholar] [CrossRef]
- Solodukhin, S.N. Cosmological Solutions in 2D Poincaré Gravity. Int. J. Mod. Phys. D 1994, 3, 269–272. [Google Scholar] [CrossRef] [Green Version]
- Strobl, T. All Symmetries of Non-Einsteinian Gravity in d = 2. Int. J. Mod. Phys. A 1993, 8, 1383–1397. [Google Scholar] [CrossRef] [Green Version]
- Schaller, P.; Strobl, T. Canonical Quantization of Non-Einsteinian Gravity and the Problem of Time. Class. Quant. Grav. 1994, 11, 331–346. [Google Scholar] [CrossRef] [Green Version]
- Haider, F.; Kummer, W. Quantum Functional Integration of Non-Einsteinian Gravity in d = 2. Int. J. Mod. Phys. A 1994, 9, 207–220. [Google Scholar] [CrossRef]
- Kummer, W.; Schwarz, D.J. Renormalization of R2 Gravity with Dynamical Torsion in d = 2. Nucl. Phys. B 1992, 382, 171–186. [Google Scholar] [CrossRef]
- Ikeda, N.; Izawa, K. Quantum Gravity with Dynamical Torsion in Two Dimensions. Prog. Theor. Phys. 1993, 89, 223–230. [Google Scholar] [CrossRef]
- Lavrov, P.M.; Moshin, P.Y. Quantization of Two-dimensional Gravity with Dynamical Torsion. Class. Quant. Grav. 1999, 16, 2247–2258. [Google Scholar] [CrossRef]
- Katanaev, M.O.; Volovich, I.V. String Model with Dynamical Geometry and Torsion. Phys. Lett. B 1986, 175, 413–416. [Google Scholar] [CrossRef] [Green Version]
- Reshetnyak, A. On Composite Fields Approach to Gribov Copies Elimination in Yang–Mills Theories. Phys. Part. Nucl. Lett. 2014, 11, 964–967. [Google Scholar] [CrossRef] [Green Version]
- Joglekar, S.D.; Mandal, B.P. Finite Field Dependent BRS Transformations. Phys. Rev. D 1995, 51, 1919–1927. [Google Scholar] [CrossRef]
- Upadhyay, S.; Mandal, B.P. Field Dependent Nilpotent Symmetry for Gauge Theories. Eur. Phys. J. C 2012, 72, 2065. [Google Scholar] [CrossRef] [Green Version]
- Upadhyay, S.; Mandal, B.P.; Reshetnyak, A.A. Comments on Interactions in the SUSY Models. Eur. Phys. J. C 2016, 6, 391. [Google Scholar] [CrossRef] [Green Version]
- Lavrov, P.; Lechtenfeld, O. Field-dependent BRST Transformations in Yang–Mills Theory. Phys. Lett. B 2013, 725, 382–385. [Google Scholar] [CrossRef]
- Moshin, P.Y.; Reshetnyak, A.A. Field-dependent BRST-antiBRST transformations in Yang–Mills and Gribov–Zwanziger theories. Nucl. Phys. B 2014, 888, 92–128. [Google Scholar] [CrossRef] [Green Version]
- Moshin, P.Y.; Reshetnyak, A.A. Finite BRST-antiBRST Transformations in Lagrangian Formalism. Phys. Lett. B 2014, 739, 110–116. [Google Scholar] [CrossRef] [Green Version]
- Moshin, P.Y.; Reshetnyak, A.A. Field-dependent BRST-antiBRST Lagrangian Transformations. Int. J. Mod. Phys. A 2015, 30, 1550021. [Google Scholar] [CrossRef] [Green Version]
- Sobreiro, R.F.; Sorella, S.P. A Study of the Gribov Copies in Linear Covariant Gauges in Euclidean Yang–Mills Theories. J. High Energy Phys. 2005, 2005, 54. [Google Scholar] [CrossRef] [Green Version]
- Capri, M.A.L.; Dudal, D.; Fiorentini, D.; Guimaraes, M.S.; Justo, I.F.; Pereira, A.D.; Mintz, B.W.; Palhares, L.F.; Sobreiro, R.F.; Sorella, S.P. An Exact Nilpotent Nonperturbative BRST Symmetry for the Gribov–Zwanziger Action in the Linear Covariant Gauge. Phys. Rev. D 2015, 92, 045039. [Google Scholar] [CrossRef] [Green Version]
- Capri, M.A.L.; Dudal, D.; Fiorentini, D.; Guimaraes, M.S.; Justo, I.F.; Pereira, A.D.; Mintz, B.W.; Palhares, L.F.; Sobreiro, R.F.; Sorella, S.P. A Local and BRST-invariant Yang–Mills Theory within the Gribov Horizon. Phys. Rev. D 2016, 94, 025035. [Google Scholar] [CrossRef] [Green Version]
- Moshin, P.Y.; Reshetnyak, A.A. Finite Field-Dependent BRST-antiBRST Transformations: Jacobians and Application to the Standard Model. Int. J. Mod. Phys. A 2016, 31, 1650111. [Google Scholar] [CrossRef]
- Moshin, P.Y.; Reshetnyak, A.A. On the Finite BRST Transformations: The Jacobians and the Standard Model with the Gauge-invariant Gribov Horizon. Russ. Phys. J. 2016, 59, 1921–1929. [Google Scholar] [CrossRef] [Green Version]
- DeWitt, B.S. Dynamical Theory of Groups and Fields; Gordon and Breach: New York, NY, USA, 1965. [Google Scholar]
- Becchi, C.; Rouet, A.; Stora, R. The Abelian Higgs–Kibble, Unitarity of the S-operator. Phys. Lett. B 1974, 52, 344–346. [Google Scholar] [CrossRef]
- Becchi, C.; Rouet, A.; Stora, R. Renormalization of Gauge Theories. Ann. Phys. (N.Y.) 1976, 98, 287–321. [Google Scholar] [CrossRef] [Green Version]
- Tyutin, I.V. Gauge Invariance in Field Theory and Statistical Physics in Operator Formalism; Lebedev Physical Institute: Moscow, Russia, 1975. [Google Scholar]
- Lavrov, P.M.; Odintsov, S.D. The Gauge Dependence of the Effective Action of Composite Fields in General Gauge Theories. Int. J. Mod. Phys. A 1989, 4, 5205–5212. [Google Scholar] [CrossRef]
- Lavrov, P.M.; Odintsov, S.D.; Reshetnyak, A.A. Effective Action of Composite Fields for General Gauge Theories in BLT-Covariant Formalism. J. Math. Phys. 1997, 38, 3466–3477. [Google Scholar] [CrossRef] [Green Version]
- Lavrov, P.M.; Odintsov, S.D.; Reshetnyak, A.A. Gauge Dependence in General Gauge Theories with Composite Fields in the Sp(2) Covariant Quantization Method. Phys. At. Nuclei. 1997, 60, 1020. [Google Scholar] [CrossRef] [Green Version]
- Kondo, K.-I. The Nilpotent “BRST” Symmetry for the Gribov–Zwanziger Theory; Report Number: CHIBA-EP-176; Chiba University: Chiba, Japan, 2009. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moshin, P.Y.; Reshetnyak, A.A. Composite and Background Fields in Non-Abelian Gauge Models. Symmetry 2020, 12, 1985. https://doi.org/10.3390/sym12121985
Moshin PY, Reshetnyak AA. Composite and Background Fields in Non-Abelian Gauge Models. Symmetry. 2020; 12(12):1985. https://doi.org/10.3390/sym12121985
Chicago/Turabian StyleMoshin, Pavel Yu., and Alexander A. Reshetnyak. 2020. "Composite and Background Fields in Non-Abelian Gauge Models" Symmetry 12, no. 12: 1985. https://doi.org/10.3390/sym12121985