Optimal and Nonoptimal Gronwall Lemmas
Abstract
:1. Introduction
- (i)
- if for all , then and ;
- (ii)
- if and , then, for all subsequences of , we have that and .
- (i)
- is an L-space;
- (ii)
- is a partially ordered set;
- (iii)
- if and for each then .
- (i)
- A is a Picard operator;
- (ii)
- A is an increasing operator.
- (i)
- A and B are Picard operators;
- (ii)
- A is an increasing operator;
- (iii)
- .
2. Optimal Gronwall Lemmas
2.1. Optimal Riccati Type Inequality
- (i)
- (ii)
- and
- (iii)
- , where are such that:
- (a)
- there exists a unique solution of the equation (Riccati type equation):
- (b)
- if satisfies the inequality
2.2. Optimal Bihari Type Inequality
3. Nonoptimal Gronwall Lemmas
- (i)
- (ii)
- v is increasing.
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fréchet, M. Les Espaces Abstraits; Gauthier-Villars: Paris, France, 1928. [Google Scholar]
- Petrusel, A.; Rus, I.A. Fixed point theorems in ordered L-spaces. Proc. Am. Math. Soc. 2009, 134, 411–418. [Google Scholar] [CrossRef] [Green Version]
- Rus, I.A. Picard operators and applications. Sci. Math. Jpn. 2003, 58, 191–219. [Google Scholar]
- Craciun, C.; Lungu, N. Abstract and concrete Gronwall lemmas. Fixed Point Theory 2009, 10, 221–228. [Google Scholar]
- Rus, I.A. Weakly Picard operators and applications. Semin. Fixed Point Therory 2001, 2, 48–51. [Google Scholar]
- Rus, I.A. Gronwall Lemma Approach to the Hyers-Ulam-Rassias Stability of an Integral Equation. In Nonlinear Analysis and Variational Problems; Springer: New York, NY, USA, 2010; Volume 35, pp. 147–152. [Google Scholar]
- Lungu, N.; Rus, I.A. Gronwall inequalities via Picard operators. An. Stiint. Univ. Al. I. Cuza Iasi. Sect. I Mat. 2012, LVIII, 269–278. [Google Scholar] [CrossRef]
- Rus, I.A. Gronwall Lemmas: Ten open problems. Sci. Math. Jpn. 2009, 70, 221–228. [Google Scholar]
- Lungu, N.; Ciplea, S.A. Optimal Gronwall lemmas. Fixed Point Theory 2017, 18, 293–304. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Falset, J.; Reich, S. Integral solutions to a class of nonlocal evolution equations. Commun. Contemp. Math. 2010, 12, 1031–1053. [Google Scholar] [CrossRef]
- Lakshmikantham, V.; Leela, S.; Martynyuk, A.A. Stability Analysis of Nonlinear Systems; Marcel Dekker, Inc.: New York, NY, USA, 1989; Volume 125. [Google Scholar]
- Lungu, N. On some Volterra integral inequalities. Fixed Point Theory 2007, 8, 39–45. [Google Scholar]
- Mitrinovič, D.S.; Pečarič, J.E.; Fink, A.M. Inequalities Involving Functions and Their Integrals and Derivatives; Kluwer: Dordrecht, The Netherlands, 1991. [Google Scholar]
- Pachpatte, B.G. Inequalities for Differential and Integral Equations; Academic Press: New York, NY, USA; London, UK, 1998. [Google Scholar]
- Martynyuk, A.A.; Lakshmikantham, V.; Leela, S. Stability of Motion: Method of Integral Inequalities; Nauk Dumka: Kiev, Ukraine, 1989. [Google Scholar]
- Bainov, D.; Simeonov, P. Integral Inequalities and Applications; Kluwer Academic Publishers Group: Dordrecht, The Netherlands, 1992. [Google Scholar]
- Lungu, N. On some Gronwall-Bihari-type inequalities. Lib. Math. 2000, 20, 67–70. [Google Scholar]
- Lungu, N. On some Gronwall-Bihari-Wendorff-type inequalities. Semin. Fixed Point Therory 2002, 3, 249–254. [Google Scholar]
- Lungu, N.; Craciun, C. Pseudo-parabolic inequalities. Carpathian J. Math. 2011, 27, 201–207. [Google Scholar]
- Lungu, N.; Popa, D. On some differential inequalities. Semin. Fixed Point Therory 2002, 3, 323–327. [Google Scholar]
- Lungu, N.; Rus, I.A. On a functional Volterra-Fredholm integral equation, via Picard operators. J. Math. Ineq. 2009, 41, 519–527. [Google Scholar] [CrossRef] [Green Version]
- Rus, I.A. The theory of a metrical fixed point theorem: Theoretical and applicative relevance. Fixed Point Theory 2008, 9, 541–559. [Google Scholar]
- Rus, I.A. Abstract Gronwall lemmas and applications. Carpathian J. Math. 2004, 20, 125–134. [Google Scholar]
- Rus, I.A. Generalized Contractions and Applications; Cluj University Press: Cluj-Napoca, Romania, 2011. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marian, D.; Ciplea, S.A.; Lungu, N. Optimal and Nonoptimal Gronwall Lemmas. Symmetry 2020, 12, 1728. https://doi.org/10.3390/sym12101728
Marian D, Ciplea SA, Lungu N. Optimal and Nonoptimal Gronwall Lemmas. Symmetry. 2020; 12(10):1728. https://doi.org/10.3390/sym12101728
Chicago/Turabian StyleMarian, Daniela, Sorina Anamaria Ciplea, and Nicolaie Lungu. 2020. "Optimal and Nonoptimal Gronwall Lemmas" Symmetry 12, no. 10: 1728. https://doi.org/10.3390/sym12101728