# Supersymmetry of Relativistic Hamiltonians for Arbitrary Spin

^{1}

^{2}

## Abstract

**:**

## 1. Introduction

## 2. Relativistic Hamiltonians for Arbitrary Spin

## 3. Supersymmetric Relativistic Hamiltonians for Arbitrary Spin

## 4. Examples

#### 4.1. The Klein–Gordon Hamiltonian with Magnetic Field

#### 4.2. The Dirac Hamiltonian with Magnetic Field

#### 4.3. The Spin-1 Hamiltonian with Magnetic Field

## 5. The Resolvent of Supersymmetric Relativistic Arbitrary-Spin Hamiltonians

#### 5.1. The Resolvent of the Klein–Gordon Hamiltonian with Magnetic Field

#### 5.2. The Resolvent of the Dirac Particle in a Magnetic Field

#### 5.3. The Resolvent of a Vector Boson in a Magnetic Field

## 6. Summary and Outlook

## Funding

## Acknowledgments

## Conflicts of Interest

## Appendix A. Some Useful Relations for the Spin-One Case

## References

- Klein, O. Quantentheorie und fünfdimensionale Relativitätstheorie. Z. Phys.
**1926**, 37, 895–906. [Google Scholar] [CrossRef] - Gordon, W. Der Comptoneffekt nach der Schrödingerschen Theorie. Z. Phys.
**1926**, 40, 117–133. [Google Scholar] [CrossRef] - Dirac, P.A.M. The Quantum Theory of the Electron. Proc. R. Soc. A
**1928**, 117, 610–624. [Google Scholar] - Dirac, P.A.M. The Quantum Theory of the Electron Part II. Proc. R. Soc. A
**1928**, 118, 351–361. [Google Scholar] - Proca, A. Sur la théorie ondulatoire des électrons positifs et négatifs. J. Phys. Radium
**1936**, 7, 347–353. [Google Scholar] [CrossRef] - Dirac, P.A.M. Relativistic Wave Equations. Proc. R. Soc. A
**1936**, 155, 447–459. [Google Scholar] - Fierz, M. Über die relativistische Theorie kräftefreier Teilchen mit beliebigem Spin. Helv. Phys. Acta
**1939**, 12, 3–37. [Google Scholar] - Fierz, M.; Pauli, W. On Relativistic Wave Equations for Particles of Arbitrary Spin in an Electromagnetic Field. Proc. R. Soc. A
**1939**, 173, 211–232. [Google Scholar] - Bhabha, H.J. Relativistic wave equations for the elementary particles. Rev. Mod. Phys.
**1945**, 17, 200–216. [Google Scholar] [CrossRef] - Bargmann, V.; Wigner, E.P. Group Theoretical Discussion of Relativistic Wave Equations. Proc. Natl. Acad. Sci. USA
**1948**, 34, 211–223. [Google Scholar] [CrossRef] [Green Version] - Foldy, L.L.; Wouthuysen, S.A. On the Dirac Theory of Spin 1/2 Particles and Its Non-Relativistic Limit. Phys. Rev.
**1950**, 78, 29–36. [Google Scholar] [CrossRef] - Foldy, L.L. Synthesis of Covariant Particle Equations. Phys. Rev.
**1956**, 102, 568–581. [Google Scholar] [CrossRef] - Feshbach, H.; Villars, F. Elementary Relativistic Wave Mechanics of Spin 0 and Spin 1/2 Particles. Rev. Mod. Phys.
**1958**, 30, 24–45. [Google Scholar] [CrossRef] - Duffin, R.J. On The Characteristic Matrices of Covariant Systems. Phys. Rev.
**1938**, 54, 1114. [Google Scholar] [CrossRef] - Kemmer, N. The particle aspect of meson theory. Proc. R. Soc. A
**1939**, 173, 91–116. [Google Scholar] - Yukawa, H.; Sakata, S.; Taketani, M. On the Interaction of Elementary Particles. III. Proc. Phys.-Math. Soc. Jpn.
**1938**, 20, 319–340. [Google Scholar] [CrossRef] [Green Version] - Sakata, S.; Taketani, M. On the Wave Equation of Meson. Proc. Phys.-Math. Soc. Jpn.
**1940**, 22, 757–770. [Google Scholar] - Corben, H.C.; Schwinger, J. The Electromagnetic Properties of Mesotrons. Phys. Rev.
**1940**, 58, 953–968. [Google Scholar] [CrossRef] - Schrödinger, E. The wave equation for spin 1 in Hamiltonian form. Proc. R. Soc. A
**1955**, 229, 39–43. [Google Scholar] - Silenko, A. Exact form of the exponential Foldy-Wouthuysen transformation operator for an arbitrary-spin particle. Phys. Rev. A
**2016**, 94, 032104. [Google Scholar] [CrossRef] [Green Version] - Simulik, V.M. Relativistic Equations for arbitray Spin, especially for the Spin s = 2. Ukr. J. Phys.
**2019**, 64, 1064–1068. [Google Scholar] [CrossRef] - Nicolai, H. Supersymmetry and spin systems. J. Phys. A
**1976**, 9, 1497–1506. [Google Scholar] [CrossRef] [Green Version] - Witten, E. Dynamical breaking of supersymmetry. Nucl. Phys. B
**1981**, 188, 513–554. [Google Scholar] [CrossRef] - Cooper, F.; Khare, A.; Sukhatme, U. Supersymmetry and quantum mechanics. Phys. Rep.
**1995**, 251, 267–385. [Google Scholar] [CrossRef] [Green Version] - Junker, G. Supersymmetric Methods in Quantum and Statistical Physics, 1st ed.; Springer: Berlin, Germany, 1996. [Google Scholar]
- Jackiw, R. Fractional charge and zero modes for planar systems in a magnetic field. Phys. Rev. D
**1984**, 29, 2375–2377. [Google Scholar] [CrossRef] - Ui, H. Supersymmetric quantum mechanics and fermion in a gauge field of (1 + 2) dimensions. Prog. Theor. Phys.
**1984**, 72, 192–193. [Google Scholar] [CrossRef] - Sarma, S.D.; Adam, S.; Hwang, E.H.; Rossi, E. Electronic transport in two-dimensional graphene. Rev. Mod. Phys.
**2011**, 83, 407–470. [Google Scholar] [CrossRef] [Green Version] - Thaller, B. The Dirac Equation; Springer: Berlin, Germany, 1992. [Google Scholar]
- Znoil, M. Relativistic supersymmetric quantum mechanics based on Klein-Gordon equation. J. Phys. A
**2004**, 37, 9557. [Google Scholar] [CrossRef] [Green Version] - Junker, G. Supersymmetric Methods in Quantum, Statistical and Solid State Physics, Enlarged and Revised Edition; IOP Publishing: Bristol, UK, 2019. [Google Scholar]
- Junker, G.; Inomata, A. Path integral and spectral representations for supersymmetric Dirac-Hamiltonians. J. Math. Phys.
**2018**, 59, 052301. [Google Scholar] [CrossRef] [Green Version] - Witten, E. Constraints on supersymmetry breaking. Nucl. Phys. B
**1982**, 202, 253–316. [Google Scholar] [CrossRef] - Fock, V. Bemerkung zur Quantelung des harmonischen Oszillators im Magnetfeld. Z. Phys.
**1928**, 47, 446–448. [Google Scholar] [CrossRef] - Landau, L. Diamagnetismus der Metalle. Z. Phys.
**1930**, 64, 629–637. [Google Scholar] [CrossRef] - Aharonov, Y.; Casher, A. Ground state of a spin-12 charged particle in a two-dimensional magnetic field. Phys. Rev. A
**1978**, 19, 2461–2462. [Google Scholar] [CrossRef] - Rabi, I.I. Das freie Elektron im homogenen Magnetfeld nach der Diracschen Theorie. Z. Phys.
**1928**, 49, 507–511. [Google Scholar] [CrossRef] - Young, J.A.; Bludman, S.A. Electromagnetic Properties of a Charged Vector Meson. Phys. Rev.
**1963**, 131, 2326–2334. [Google Scholar] [CrossRef] [Green Version] - Krase, L.D.; Lu, P.; Good, R.H., Jr. Stationary States of a Spin-1 Particle in a Constant Magnetic Field. Phys. Rev. D
**1971**, 3, 1275–12798. [Google Scholar] [CrossRef] - Tsai, W.-Y.; Yildiz, A. Motion of Charged Particles in a Homogeneous Magnetic Field. Phys. Rev. D
**1971**, 4, 3643–3648. [Google Scholar] [CrossRef] - Goldman, T.; Tsai, W.-Y. Motion of Charged Particles in a Homogeneous Magnetic Field II. Phys. Rev. D
**1971**, 4, 3648–3651. [Google Scholar] [CrossRef] - Daicic, J.; Frankel, N.E. Relativistic spin-1 bosons in a magnetic field. J. Phys. A Math. Gen.
**1993**, 26, 1397–1408. [Google Scholar] [CrossRef] - Silenko, A.J. High precision description and new properties of a spin-1 particle in a magnetic field. Phys. Rev. D
**2014**, 89, 121701. [Google Scholar] [CrossRef] [Green Version] - Junker, G. Supersymmetric quantum mechanics requires g = 2 for vector bosons. Eur. Phys. Lett.
**2020**, 130, 30003. [Google Scholar] [CrossRef] - Weaver, D.L. Application of a single-particle-theory calculation of g − 2 to spin one. Phys. Rev. D
**1976**, 14, 2824–2825. [Google Scholar] [CrossRef] - Guertin, R.F. Relativistic Hamiltonian Equations for Any Spin. Ann. Phys.
**1974**, 88, 504–553. [Google Scholar] [CrossRef]

© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Junker, G.
Supersymmetry of Relativistic Hamiltonians for Arbitrary Spin. *Symmetry* **2020**, *12*, 1590.
https://doi.org/10.3390/sym12101590

**AMA Style**

Junker G.
Supersymmetry of Relativistic Hamiltonians for Arbitrary Spin. *Symmetry*. 2020; 12(10):1590.
https://doi.org/10.3390/sym12101590

**Chicago/Turabian Style**

Junker, Georg.
2020. "Supersymmetry of Relativistic Hamiltonians for Arbitrary Spin" *Symmetry* 12, no. 10: 1590.
https://doi.org/10.3390/sym12101590