CQ-Type Algorithm for Reckoning Best Proximity Points of EP-Operators
Abstract
:1. Introduction
2. Preliminaries
3. Best Proximity Point Problem for (EP)-Mappings
4. Strong Convergence via a CQ-Type Algorithm
- a)
- there exists a sequence such that and ,
- b)
- T satisfies the condition (E) on C,
- c)
- has the Opial property,
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kirk, W.A. A fixed point theorem for mappings which do not increase distances. Am. Math. Mon. 1965, 72, 1004–1006. [Google Scholar] [CrossRef] [Green Version]
- Browder, F.E. Nonexpansive nonlinear operators in a Banach space. Proc. Natl. Acad. Sci. USA 1965, 54, 1041–1044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Göhde, D. Zum Prinzip der kontraktiven Abbildung. Math. Nachr. 1965, 30, 251–258. [Google Scholar] [CrossRef]
- Suzuki, T. Fixed point theorems and convergence theorems for some generalized nonexpansive mappings. J. Math. Anal. Appl. 2008, 340, 1088–1095. [Google Scholar] [CrossRef] [Green Version]
- García-Falset, J.; Llorens-Fuster, E.; Suzuki, T. Fixed point theory for a class of generalized nonexpansive mappings. J. Math. Anal. Appl. 2011, 375, 185–195. [Google Scholar] [CrossRef] [Green Version]
- Mann, W.R. Mean value methods in iteration. Proc. Am. Math. Soc. 1953, 4, 506–510. [Google Scholar] [CrossRef]
- Ishikawa, S. Fixed points by a new iteration method. Proc. Am. Math. Soc. 1974, 44, 147–150. [Google Scholar] [CrossRef]
- Noor, M.A. New approximation schemes for general variational inequalities. J. Math. Anal. Appl. 2000, 251, 217–229. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, R.P.; O’Regan, D.; Sahu, D.R. Iterative construction of fixed points of nearly asymptotically nonexpansive mappings in Banach spaces. Fixed Point Theory Appl. 2010, 8, 457935. [Google Scholar]
- Abbas, M.; Nazir, T. A new faster iteration process applied to constrained minimization and feasibility problems. Mat. Vesn. 2014, 66, 223–234. [Google Scholar]
- Sintunavarat, W.; Pitea, A. On a new iteration scheme for numerical reckoning fixed points of Berinde mappings with convergence analysis. J. Nonlinear Sci. Appl. 2016, 9, 2553–2562. [Google Scholar] [CrossRef] [Green Version]
- Thakur, B.S.; Thakur, D.; Postolache, M. A new iterative scheme for numerical reckoning fixed points of Suzuki’s generalized nonexpansive mappings. Appl. Math. Comput. 2016, 275, 147–155. [Google Scholar] [CrossRef]
- Thakur, B.S.; Thakur, D.; Postolache, M. A new iteration scheme for approximating fixed points of nonexpansive mappings. Filomat 2016, 30, 2711–2720. [Google Scholar] [CrossRef] [Green Version]
- Thakur, D.; Thakur, B.S.; Postolache, M. New iteration scheme for numerical reckoning fixed points of nonexpansive mappings. J. Inequal. Appl. 2014, 2014, 328. [Google Scholar] [CrossRef] [Green Version]
- Fan, K. Extensions of two fixed point theorems of F.E. Browder. Math. Z. 1969, 122, 234–240. [Google Scholar] [CrossRef]
- Reich, S. Approximate selections, best approximations, fixed points and invariant sets. J. Math. Anal. Appl. 1978, 62, 104–113. [Google Scholar] [CrossRef] [Green Version]
- Seghal, V.M.; Singh, S.P. A generalization of multifunctions of Fans best approximation theorem. Proc. Am. Math. Soc. 1988, 102, 534–537. [Google Scholar]
- Naraghirad, E. Bregman best proximity points for Bregman asymptotic cyclic contraction mappings in Banach spaces. J. Nonlinear Var. Anal. 2019, 3, 27–44. [Google Scholar]
- Gabeleh, M. Best proximity point theorem via proximal non-self mappings. J. Optim. Theory Appl. 2015, 164, 565–576. [Google Scholar] [CrossRef]
- Nakajo, K.; Takahashi, W. Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups. J. Math. Anal. Appl. 2003, 279, 372–379. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, W. Weak and strong convergence theorems for families of nonlinear and nonself mappings in Hilbert spaces. J. Nonlinear Var. Anal. 2017, 1, 1–23. [Google Scholar]
- Jacob, G.K.; Postolache, M.; Marudai, M.; Raja, V. Norm convergence iterations for best proximity points of non-self non-expansive mappings. UPB Sci. Bull. Seri. A 2017, 79, 49–56. [Google Scholar]
- Sankar Raj, V. A best proximity point theorem for weakly contractive non-self mappings. Nonlinear Anal. 2011, 74, 4804–4808. [Google Scholar] [CrossRef]
- Goebel, K.; Kirk, W.A. Topics in Metric Fixed Point Theory; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Edelstein, M. The construction of an asymptotic center with a fixed-point property. Bull. Am. Math. Soc. 1972, 78, 206–208. [Google Scholar] [CrossRef] [Green Version]
- Schu, J. Weak and strong convergence to fixed points of asymptotically nonexpansive mppings. Bull. Aust. Math. Soc. 1991, 43, 153–159. [Google Scholar] [CrossRef] [Green Version]
- Shatanawi, W.; Pitea, A. Best proximity point and best proximity coupled point in a complete metric space with (P)-property. Filomat 2015, 29, 63–74. [Google Scholar] [CrossRef]
- Martinez-Yanes, C.; Xu, H.K. Strong convergence of the CQ method for fixed point iteration processes. Nonlinear Anal. 2006, 64, 2400–2411. [Google Scholar] [CrossRef]
- Opial, Z. Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bull. Am. Math. Soc. 1967, 73, 591–597. [Google Scholar] [CrossRef] [Green Version]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Houmani, H.; Turcanu, T. CQ-Type Algorithm for Reckoning Best Proximity Points of EP-Operators. Symmetry 2020, 12, 4. https://doi.org/10.3390/sym12010004
Houmani H, Turcanu T. CQ-Type Algorithm for Reckoning Best Proximity Points of EP-Operators. Symmetry. 2020; 12(1):4. https://doi.org/10.3390/sym12010004
Chicago/Turabian StyleHoumani, Hassan, and Teodor Turcanu. 2020. "CQ-Type Algorithm for Reckoning Best Proximity Points of EP-Operators" Symmetry 12, no. 1: 4. https://doi.org/10.3390/sym12010004