Optimal Structural Design of a Magnetic Circuit for Vibration Harvesters Applicable in MEMS
Abstract
1. Introduction
2. Designing the MG
3. Modeling the MG
4. Selecting the MG Core Design
5. Critical Parameters of the MG Design
- mechanical dynamics;
- electromagnetic field; and,
- electronic systems (power management blocks).
6. Microstructures
7. Comparing MG Concepts, Designs, and Structures
8. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Stratton, J.A. Theory of Electromagnetic Field; Czech Version; SNTL: Praha, Czech Republic, 1961. [Google Scholar]
- Szabo, Z.; Fiala, P.; Dohnal, P. Magnetic circuit modifications in resonant vibration harvesters. Mech. Syst. Signal Process. 2018, 99, 832–845. [Google Scholar] [CrossRef]
- Fiala, P. Vibration Generator Conception; Research Report in Czech; DTEEE, Brno University of Technology: Brno, Czech Republic, 2003; p. 95. [Google Scholar]
- Jirků, T.; Fiala, P.; Kluge, M. Magnetic resonant harvesters and power management circuit for magnetic resonant harvesters. Microsyst. Technol. 2010, 16, 677–690. [Google Scholar] [CrossRef]
- Fiala, P.; Jirků, T. Analysis and Design of a Minigenerator, Progress in Electromagnetics 2008. In Proceedings of the PIERS 2014 in Guangzhou, Guangzhou, China, 25–28 August 2014; pp. 749–753, ISSN 1559-9450. [Google Scholar]
- Madinei, H.; Khodaparast, H.H.; Adhikari, S.; Friswell, M. Design of MEMS piezoelectric harvesters with electrostatically adjustable resonance frequency. Mech. Syst. Signal Process. 2016, 81, 360–374. [Google Scholar] [CrossRef]
- Scapolan, M.; Tehrani, M.G.; Bonisoli, E. Energy harvesting using parametric resonant system due to time-varying damping. Mech. Syst. Signal Process. 2016, 79, 149–165. [Google Scholar] [CrossRef]
- Gatti, G.; Brennan, M.; Tehrani, M.; Thompson, D. Harvesting energy from the vibration of a passing train using a single-degree-of-freedom oscillator. Mech. Syst. Signal Process. 2016, 66, 785–792. [Google Scholar] [CrossRef]
- Davino, D.; Krejčí, P.; Pimenov, A.; Rachinskii, D.; Visone, C. Analysis of an operator-differential model for magnetostrictive energy harvesting. Commun. Nonlinear Sci. Numer. Simul. 2016, 39, 504–519. [Google Scholar] [CrossRef]
- Saravanan, S.; Dubey, R. Optical absorption enhancement in 40 nm ultrathin film silicon solar cells assisted by photonic and plasmonic modes. Opt. Commun. 2016, 377, 65–69. [Google Scholar] [CrossRef]
- Kulkarni, S.; Koukharenko, E.; Torah, R.; Tudor, J.; Beeby, S.; O’Donnell, T.; Roy, S.; Beeby, S. Design, fabrication and test of integrated micro-scale vibration-based electromagnetic generator. Sens. Actuators A Phys. 2008, 145, 336–342. [Google Scholar] [CrossRef]
- Beeby, S.P.; Torah, R.N.; Torah, M.J.; O’Donnell, T.; Saha, C.R.; Roy, S. A microelectromagnetic generator for vibration energy harvesting. J. Micromech. Microeng. 2007, 17, 1257–1265. [Google Scholar] [CrossRef]
- Zhu, D.; Roberts, S.; Tudor, M.J.; Beeby, S.P. Design and experimental characterization of a tunable vibration-based electromagnetic micro-generator. Sens. Actuators A Phys. 2010, 158, 284–293. [Google Scholar] [CrossRef]
- Elvin, N.G.; Elvin, A.A. An experimentally validated electromagnetic energy harvester. J. Sound Vib. 2011, 330, 2314–2324. [Google Scholar] [CrossRef]
- Wang, P.-H.; Dai, X.-H.; Fang, D.-M.; Zhao, X.-L. Design, fabrication and performance of a new vibration-based electromagnetic micro power generator. Microelectron. J. 2007, 38, 1175–1180. [Google Scholar] [CrossRef]
- Yang, J.; Yu, Q.; Zhao, J.; Zhao, N.; Wen, Y.; Li, P.; Qiu, J. Design and optimization of a bi-axial vibration-driven electromagnetic generator. J. Appl. Phys. 2014, 116, 114506. [Google Scholar] [CrossRef]
- Lee, B.-C.; Rahman, A.; Hyun, S.-H.; Chung, G.-S. Low frequency driven electromagnetic energy harvester for self-powered system. Smart Mater. Struct. 2012, 21, 125024. [Google Scholar] [CrossRef]
- Siddique, A.R.M.; Mahmud, S.; Van Heyst, B. A comprehensive review on vibration based micro power generators using electromagnetic and piezoelectric transducer mechanisms. Energy Convers. Manag. 2015, 106, 728–747. [Google Scholar] [CrossRef]
- Quinn, J.B.; Waldmann, T.; Richter, K.; Kasper, M.; Wohlfahrt-Mehrens, M. Energy Density of Cylindrical Li-Ion Cells: A Comparison of Commercial 18650 to the 21700 Cells. J. Electrochem. Soc. 2018, 165, A3284–A3291. [Google Scholar] [CrossRef]
- Liu, C.; Yu, Z.; Neff, D.; Zhamu, A.; Jang, B.Z. Graphene-Based Supercapacitor with an Ultrahigh Energy Density. Nano Lett. 2010, 10, 4863–4868. [Google Scholar] [CrossRef] [PubMed]
- Zhu, D.; Tudor, M.J.; Beeby, S.P. Strategies for increasing the operating frequency range of vibration energy harvesters. J. Meas. Sci. Technol. 2010, 21, 22001. [Google Scholar] [CrossRef]
- El-Hami, M.; Glynne-Jones, P.; White, N.; Hill, M.; Beeby, S.; James, E.; Brown, A.; Ross, J. Design and fabrication of a new vibration-based electromechanical power generator. Sens. Actuators A Phys. 2001, 92, 335–342. [Google Scholar] [CrossRef]
- ANSYS Users Manual, (1991–2019). USA. Available online: www.ansys.com (accessed on 1 July 2018).
- Fiala, P.; Hadas, Z.; Singule, Z.; Ondrusek, C.; Szabo, Z. A Vibrational Generator for Electric Energy Producing, (in CZ Vibrační Generator pro Výrobu Elektrické Energie). Patent No. 305591-CZ, 12 September 2006. [Google Scholar]
- Fiala, P. Fotovoltaický Element Zahrnující Rezonátor (A Photovoltaic Element with an Included Resonator). Patent No. 303866, 27 January 2011. [Google Scholar]
- Fiala, P.; Szabo, Z.; Marcon, P.; Roubal, Z. Mini-and Microgenerators Applicable in the MEMS Technology, Smart Sensors, Actuators, and MEMS VIII. Proc. SPIE 2017, 10246, 1–8. [Google Scholar] [CrossRef]
Reference | Permanent Magnet Type | Generator Body Size x, y, z [m] | Resonant Frequency fr [Hz] | Amplitude Mech. Part A [m] | Output Power Pout [W] | Output Voltage Uout [V] | Load Resistance R [Ω] | Acceleration G, g = 9.81 [m/s] | Effective Power Density [W/m3] |
---|---|---|---|---|---|---|---|---|---|
Beeby et al. [12], 2007 | − | 375 mm3 | 52 | − | 2 × 10−6 | 0.428 RMS | 4000 | 0.06 g | ≈6 |
Zhu et al. [13], 2010 | FeNdB | 2000 mm3 | 67.6–98 | 0.6 × 10−3 | 61.6–156.6 × 10−6 | − | − | 0.06 g | ≈30–80 |
Kulkarni et al. [11], 2008 | FeNdB | 3375 mm3 | 60–9840 | 1.5 × 10−3 | 0.6 × 10−6 | 0.025 | 52,700 | 0.398–4 g | ≈0.2 |
Wang et al. [15], 2007 | FeNdB | 256 mm3 | 121.25 | 0.738 × 10−3 | - | 0.06 | - | 1.5 g | - |
Lee et al. [17], 2012 | FeNdB | 1.4 × 10−4 m3 | 16 | − | 1.52 × 10−3 | 4.8 | 5460 | 0.2 g | ≈10 |
Yang et al., [16], 2014. | − | 50,000 mm3 | 22–25 | 13.4 × 10−3 | 0.7–2.0 | 110 | 0.6 g | ≈270 | |
Elvin et al., [14], 2011 | − | 15,000 mm3 | 112 | − | 4 × 10−6 | 0.007 | 986 | - | ≈0.26 |
MG I [2], 2006 | FeNdB | 90, 40, 30 mm | 20–35 | 50 × 10−6–400 × 10−6 | 70 × 10−3 | 4–60 (300) p-p | 7500 | 0.15–0.4 g | ≈650 |
MG II [2], 2006 | FeNdB | 50, 27, 25 mm | 17–25 | 50 × 10−6–400 × 10−6 | 19.5 × 10−3 | 6−15 | 5000 | 0.1–0.7 g | ≈60 |
MG III | FeNdB | 50, 25, 25 mm | 21–31.5 | 50 × 10−6–400 × 10-6 | 5.0 × 10−3 | 1.0–2.5 | 600 | 0.05–0.4 g | ≈15 |
MG IV | FeNdB | 50, 35, 25 mm | 21–31.5 | 50 × 10−6–400 × 10−6 | 8.0 × 10−3 | 1.0–2.5 | 1200 | 0.05–0.4 g | ≈18 |
*Lith. battery [19], 2018 | ≈40 × 106 | ||||||||
*supercap [20], 2010 | ≈3–5 | ||||||||
*fuel | ≈4 × 109 | ||||||||
*U235 | ≈9 × 1016 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szabó, Z.; Fiala, P.; Zukal, J.; Dědková, J.; Dohnal, P. Optimal Structural Design of a Magnetic Circuit for Vibration Harvesters Applicable in MEMS. Symmetry 2020, 12, 110. https://doi.org/10.3390/sym12010110
Szabó Z, Fiala P, Zukal J, Dědková J, Dohnal P. Optimal Structural Design of a Magnetic Circuit for Vibration Harvesters Applicable in MEMS. Symmetry. 2020; 12(1):110. https://doi.org/10.3390/sym12010110
Chicago/Turabian StyleSzabó, Zoltán, Pavel Fiala, Jiří Zukal, Jamila Dědková, and Přemysl Dohnal. 2020. "Optimal Structural Design of a Magnetic Circuit for Vibration Harvesters Applicable in MEMS" Symmetry 12, no. 1: 110. https://doi.org/10.3390/sym12010110
APA StyleSzabó, Z., Fiala, P., Zukal, J., Dědková, J., & Dohnal, P. (2020). Optimal Structural Design of a Magnetic Circuit for Vibration Harvesters Applicable in MEMS. Symmetry, 12(1), 110. https://doi.org/10.3390/sym12010110