Introduction to Non-Standard Neutrosophic Topology
Abstract
:1. Introduction to Non-Standard Analysis
1.1. Non-Standard Analysis’s First Extension
1.2. Non-Standard Analysis’s Second Extension
1.3. The Best Notations for Monads and Binads
1.4. Non-Standard Neutrosophic Inequalities
1.5. Neutrosophic Infimum and Neutrosophic Supremum
1.5.1. Neutrosophic Infimum
1.5.2. Neutrosophic Supremum
1.5.3. Property
1.6. Non-Standard Real MoBiNad Set
1.7. Remark
1.8. Non-Standard Real Open Monad Unit Interval
2. General Monad Neutrosophic Set
2.1. Non-Standard Neutrosophic Set
2.2. Non-Standard Fuzzy t-Norm and Fuzzy t-Conorm
2.3. Aggregation Operators on Non-Standard Neutrosophic Set
(infN (T1, T2), supN (I1, I2), supN (F1, F2))
(supN (T1, T2), infN (I1, I2), infN (F1, F2))
- (i)
- 0N and 1N are in τ.
- (ii)
- The intersection of the elements of any finite subcollection of τ is in τ.
- (iii)
- The union of the elements of any subcollection of τ is in τ.
3. Development of Neutrosophic Topologies
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Insall, M.; Weisstein, E.W. Nonstandard Analysis. From MathWorld—A Wolfram Web Resource. Available online: http://mathworld.wolfram.com/NonstandardAnalysis.html (accessed on 10 May 2019).
- Robinson, A. Non-Standard Analysis; Princeton University Press: Princeton, NJ, USA, 1996. [Google Scholar]
- Smarandache, F. A Unifying Field in Logics: Neutrosophic Logic Neutrosophy, Neutrosophic Set, Neutrosophic Probability and Statistics. 1998. Available online: http://fs.unm.edu/eBook-Neutrosophics6.pdf (accessed on 21 April 2019).
- Smarandache, F. Extended Nonstandard Neutrosophic Logic., Set, and Probability Based on Extended Nonstandard Analysis; 31 pages, arXiv; Cornell University: Ithaca, NY, USA, 11 March 2019. [Google Scholar]
- Smarandache, F. Extended Nonstandard Neutrosophic Logic, Set, and Probability Based on Extended Nonstandard Analysis. arXiv 2019, arXiv:1903.04558. [Google Scholar]
- AL-Nafee, A.B.; Al-Hamido, R.K.; Smarandache, F. Separation Axioms in Neutrosophic Crisp Topological Spaces. Neutrosophic Sets Syst. 2019, 25, 25–32. [Google Scholar] [CrossRef]
- Al-Omeri, W. Neutrosophic crisp Sets via Neutrosophic crisp Topological Spaces. Neutrosophic Sets Syst. 2016, 13, 96–104. [Google Scholar] [CrossRef]
- Salama, A.A.; Smarandache, F.; ALblowi, S.A. New Neutrosophic Crisp Topological Concepts. Neutrosophic Sets Syst. 2014, 4, 50–54. [Google Scholar] [CrossRef]
- Salama, A.A.; Smarandache, F.; Kroumov, V. Neutrosophic Crisp Sets & Neutrosophic Crisp Topological Spaces. Neutrosophic Sets Syst. 2014, 2, 25–30. [Google Scholar] [CrossRef]
- Salama, A.A.; Hanafy, I.M.; Elghawalby, H.; Dabash, M.S. Neutrosophic Crisp α-Topological Spaces. Neutrosophic Sets Syst. 2016, 12, 92–96. [Google Scholar] [CrossRef]
- Akram, M.; Gulzar, H.; Smarandache, F. Neutrosophic Soft Topological K-Algebras. Neutrosophic Sets Syst. 2019, 25, 104–124. [Google Scholar] [CrossRef]
- Mukherjee, A.; Datta, M.; Smarandache, F. Interval Valued Neutrosophic Soft Topological Spaces. Neutrosophic Sets Syst. 2014, 6, 18–27. [Google Scholar] [CrossRef]
- Bera, T.; Mahapatra, N.K. On Neutrosophic Soft Topological Space. Neutrosophic Sets Syst. 2018, 19, 3–15. [Google Scholar] [CrossRef]
- Parimala, M.; Karthika, M.; Jafari, S.; Smarandache, F.; Udhayakumar, R. Neutrosophic Nano ideal topological structure. Neutrosophic Sets Syst. 2019, 24, 70–76. [Google Scholar] [CrossRef]
- Cruz, R.A.; Irudayam, F.N. Neutrosophic Soft Cubic Set in Topological Spaces. Neutrosophic Sets Syst. 2018, 23, 23–44. [Google Scholar] [CrossRef]
- Mohammed, F.M.; Matar, S.F. Fuzzy Neutrosophic Alpha m-Closed Sets in Fuzzy Neutrosophic Topological Spaces. Neutrosophic Sets Syst. 2018, 21, 56–65. [Google Scholar] [CrossRef]
- Hamido, R.K.; Gharibah, T. Neutrosophic Crisp Bi-Topological Spaces. Neutrosophic Sets Syst. 2018, 21, 66–73. [Google Scholar] [CrossRef]
- Devi, R.N.; Dhavaseelan, R.; Jafari, S. On Separation Axioms in an Ordered Neutrosophic Bitopological Space. Neutrosophic Sets Syst. 2017, 18, 27–36. [Google Scholar] [CrossRef]
- Iswarya, P.; Bageerathi, K. A Study on Neutrosophic Frontier and Neutrosophic Semi-frontier in Neutrosophic Topological Spaces. Neutrosophic Sets Syst. 2017, 16, 6–15. [Google Scholar] [CrossRef]
- Arokiarani, I.; Dhavaseelan, R.; Jafari, S.; Parimala, M. On Some New Notions and Functions in Neutrosophic Topological Spaces. Neutrosophic Sets Syst. 2017, 16, 16–19. [Google Scholar] [CrossRef]
- Salama, A.A.; El Ghawalby, H.; Ali, S.F. Topological Manifold Space via Neutrosophic Crisp Set Theory. Neutrosophic Sets Syst. 2017, 15, 18–21. [Google Scholar] [CrossRef]
- Mukherjee, A.; Datta, M.; Sarkar, S. Restricted Interval Valued Neutrosophic Sets and Restricted Interval Valued Neutrosophic Topological Spaces. Neutrosophic Sets Syst. 2016, 12, 45–53. [Google Scholar] [CrossRef]
- El-Gayyar, M.K. Smooth Neutrosophic Topological Spaces. Neutrosophic Sets Syst. 2016, 12, 65–72. [Google Scholar] [CrossRef]
- Santhi, R.; Udhayarani, N. Nω –Closed Sets in Neutrosophic Topological Spaces. Neutrosophic Sets Syst. 2016, 12, 114–117. [Google Scholar] [CrossRef]
- Thao, N.X.; Smarandache, F. Standard neutrosophic rough set and its topologies properties. Neutrosophic Sets Syst. 2016, 14, 65–70. [Google Scholar] [CrossRef]
- Sweety, C.A.C.; Arockiarani, I. Topological structures of fuzzy neutrosophic rough sets. Neutrosophic Sets Syst. 2015, 9, 50–57. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al Shumrani, M.A.; Smarandache, F. Introduction to Non-Standard Neutrosophic Topology. Symmetry 2019, 11, 706. https://doi.org/10.3390/sym11050706
Al Shumrani MA, Smarandache F. Introduction to Non-Standard Neutrosophic Topology. Symmetry. 2019; 11(5):706. https://doi.org/10.3390/sym11050706
Chicago/Turabian StyleAl Shumrani, Mohammed A., and Florentin Smarandache. 2019. "Introduction to Non-Standard Neutrosophic Topology" Symmetry 11, no. 5: 706. https://doi.org/10.3390/sym11050706