Iteration Process for Fixed Point Problems and Zeros of Maximal Monotone Operators
Abstract
:1. Introduction
2. Preliminaries
- 1.
- Nonexpansive if .
- 2.
- Contraction if there exists a constant such that .
- 3.
- α-averaged if there exists a constant and a nonexpansive mapping V such that .
- 4.
- β-inverse strongly monotone (for short, β-ism) if there exists such that .
- 5.
- Firmly nonexpansive if .
3. Main Results
- 1.
- , ;
- 2.
- ;
- 3.
- , for all ;
- 4.
- for all sufficiently large for some .
4. Applications
4.1. Application to a General System of Variational Inequalities
4.2. Convex Feasibility Problem
- (i)
- ;
- (ii)
- , for all .
4.3. Zeros of Ism and Maximal Monotone
- (i)
- , ;
- (ii)
- ;
- (iii)
- .
- (i)
- , ;
- (ii)
- ;
- (iii)
- for all sufficiently large for some .
4.4. Split Common Null Point Problem
- (i)
- , ;
- (ii)
- .
- 1.
- 2.
- If we take and in Theorem 6, we obtain the result of Byrne et al. ([48] Theorem 4.5).
4.5. Split Feasibility Problem
- (i)
- , ;
- (ii)
- .
- 1.
- 2.
- Theorem 7 also improves the result in ([53] Theorem 1).
4.6. Split Monotone Variational Inclusion Problem and Fixed Point Problem for Strictly Pseudocontractive Maps
- (i)
- , ;
- (ii)
- .
4.7. Split Variational Inequality Problem (SVIP)
5. Concluding Remarks
Author Contributions
Funding
Conflicts of Interest
References
- Chugh, R.; Malik, P.; Kumar, V. On a new faster implicit fixed point iterative scheme in convex metric spaces. J. Funct. Spaces 2015, 2015. [Google Scholar] [CrossRef]
- Khan, A.R.; Kumar, V.; Narwal, S.; Chugh, R. Random iterative algorithms and almost sure stability in Banach spaces. Filomat 2017, 31, 3611–3626. [Google Scholar]
- Kumar, V.; Hussain, N.; Malik, P.; Chugh, R. Jungck-type implicit iterative algorithms with numerical examples. Filomat 2017, 31, 2303–2320. [Google Scholar]
- Yao, Y.; Agarwal, R.P.; Postolache, M.; Liou, Y.C. Algorithms with strong convergence for the split common solution of the feasibility problem and fixed point problem. Fixed Point Theory Appl. 2014, 2014, 183. [Google Scholar] [Green Version]
- Yao, Y.; Leng, L.; Postolache, M.; Zheng, X. Mann-type iteration method for solving the split common fixed point problem. J. Nonlinear Convex Anal. 2017, 18, 875–882. [Google Scholar]
- Yao, Y.; Liou, Y.C.; Postolache, M. Self-adaptive algorithms for the split problem of the demicontractive operators. Optimization 2018, 67, 1309–1319. [Google Scholar]
- Dadashi, V.; Postolache, M. Forward-backward splitting algorithm for fixed point problems and zeros of the sum of monotone operators. Arab. J. Math. 2019, 1–11. [Google Scholar] [CrossRef]
- Yao, Y.; Postolache, M.; Yao, J.C. An iterative algorithm for solving generalized variational inequalities and fixed points problems. Mathematics 2019, 7, 61. [Google Scholar]
- Yao, Y.; Postolache, M.; Zhu, Z. Gradient methods with selection technique for the multiple-sets split feasibility problem. Optimization 2019. [Google Scholar] [CrossRef]
- Yao, Y.; Noor, M.A.; Liou, Y.C.; Kang, S.M. Iterative algorithms for generalized variational inequalities. Abstr. Appl. Anal. 2012, 1–10. [Google Scholar]
- Rockafellar, R.T. Monotone operators and proximal point algorithm. SIAM J. Control Optim. 1976, 14, 887–897. [Google Scholar]
- Güler, O. On the convergence of the proximal point algorithm for convex minimization. SIAM J. Control Optim. 1991, 29, 403–419. [Google Scholar]
- Kamimura, S.; Takahashi, W. Approximating solutions of maximal monotone operators in Hilbert spaces. J. Approx. Theory 2000, 106, 226–240. [Google Scholar]
- Iiduka, H.; Takahashi, W. Strong convergence theorems for nonexpansive nonself-mappings and inverse-strongly-monotone mappings. J. Convex Anal. 2004, 11, 69–79. [Google Scholar]
- Lehdili, N.; Moudafi, A. Combining the proximal algorithm and Tikhonov regularization. Optimization 1996, 37, 239–252. [Google Scholar]
- Censor, Y.; Gibali, A.; Reich, S. Algorithms for the split variational inequality problem. Numer. Algorithms 2012, 59, 301–323. [Google Scholar]
- Censor, Y.; Gibali, A.; Reich, S. A von Neumann alternating method for finding common solutions to variational inequalities. Nonlinear Anal. 2012, 75, 4596–4603. [Google Scholar] [Green Version]
- Censor, Y.; Gibali, A.; Reich, S.; Sabach, S. Common solutions to variational inequalities. Set-Valued Var. Anal. 2012, 20, 229–247. [Google Scholar] [CrossRef]
- Blatt, D.; Hero III, A.O. Energy based sensor network source localization via projection onto convex sets (POCS). IEEE Trans. Signal Process. 2006, 54, 3614–3619. [Google Scholar] [CrossRef]
- Censor, Y.; Altschuler, M.D.; Powlis, W.D. On the use of Cimmino’s simultaneous projections method for computing a solution of the inverse problem in radiation therapy treatment planning. Inverse Probl. 1988, 4, 607–623. [Google Scholar]
- Herman, G.T. Fundamentals of Computerized Tomography: Image Reconstruction from Projections, 2nd ed.; Springer: London, UK, 2009. [Google Scholar]
- Combettes, P.L. The convex feasibility problem in image recovery. Adv. Imaging Electron Phys. 1996, 95, 155–270. [Google Scholar]
- Censor, Y.; Elfving, T. A multiprojection algorithm using bregman projections in a product space. Numer. Algorithms 1994, 8, 221–239. [Google Scholar]
- Bauschke, H.H.; Combettes, P.L. Convex Analysis and Monotone Operator Theory in Hilbert Spaces; Springer: New York, NY, USA, 2011. [Google Scholar]
- Aoyama, K.; Kimura, Y.; Takahashi, W.; Toyoda, M. On a strongly nonexpansive sequence in Hilbert spaces. J. Nonlinear Convex Anal. 2007, 8, 471–489. [Google Scholar]
- Bruck, R.E.; Reich, S. Nonexpansive projections and resolvents of accretive operators in Banach spaces. Houston J. Math. 1977, 3, 459–470. [Google Scholar]
- Xu, H.K. Iterative algorithms for nonlinear operators. J. Lond. Math. Soc. 2002, 66, 240–256. [Google Scholar]
- Byrne, C. A unified treatment of some iterative algorithms in signal processing and image reconstruction. Inverse Probl. 2004, 20, 103–120. [Google Scholar]
- Huang, Y.Y.; Hong, C.C. A unified iterative treatment for solutions of problems of split feasibility and equilibrium in Hilbert spaces. Abstr. Appl. Anal. 2013, 613928. [Google Scholar]
- Goebel, K.; Kirk, W.A. Topics in Metric Fixed Point Theory; Cambridge University Press: London, UK, 1990. [Google Scholar]
- Barbu, V. Nonlinear Semigroups and Differential Equations in Banach space; Noordhoff: Groningen, The Netherlands, 1976. [Google Scholar]
- Mainge, P.-E. Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization. Set-Valued Anal. 2008, 16, 899–912. [Google Scholar] [CrossRef]
- Shang, Y. Resilient consensus of switched multi-agent systems. Syst. Control Lett. 2018, 122, 12–18. [Google Scholar]
- Ceng, L.C.; Wang, C.; Yao, J.C. Strong convergence theorems by a relaxed extragradient method for a general system of variational inequalities. Math. Methods Oper. Res. 2008, 67, 375–390. [Google Scholar]
- Bauschke, H.H.; Borwein, J.M. On the convergence of von Neumann’s alternating projection algorithm. Set-Valued Anal. 1993, 1, 185–212. [Google Scholar] [CrossRef]
- Borwein, J.M.; Li, G.; Yao, L. Analysis of the convergence rate for the cyclic projection algorithm applied to basic semi-algebraic convex sets. SIAM J. Optim. 2014, 24, 498–527. [Google Scholar]
- Gubin, L.G.; Polyak, B.T.; Raik, E.V. The method of projections for finding the common point of convex sets. USSR Comput. Math. Math. Phys. 1967, 7, 1–24. [Google Scholar]
- Douglas, J.; Rachford, H.H. On the numerical solution of the heat conduction problem in 2 and 3 space variables. Trans. Am. Math. Soc. 1956, 82, 421–439. [Google Scholar]
- Eckstein, J.; Bertsekas, D.P. On the Douglas–Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 1992, 55, 293–318. [Google Scholar]
- Lions, P.L.; Mercier, B. Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 1979, 16, 964–979. [Google Scholar]
- Aragón Artacho, F.J.; Censor, Y.; Gibali, A. The cyclic Douglas-Rachford algorithm with-sets-Douglas- Rachford operators. Optim. Method Softw. 2018. [Google Scholar] [CrossRef]
- Bauschke, H.H.; Noll, D.; Phan, H.M. Linear and strong convergence of algorithms involving averaged nonexpansive operators. J. Math. Anal. Appl. 2015, 421, 1–20. [Google Scholar] [Green Version]
- Borwein, J.M.; Tam, M.K. A cyclic Douglas–Rachford iteration scheme. J. Optim. Theory Appl. 2014, 160, 1–29. [Google Scholar]
- Aragón Artacho, F.J.; Borwein, J.M.; Tam, M.K. Recent results on Douglas-Rachford methods for combinatorial optimization problems. J. Optim. Theory Appl. 2014, 163, 1–30. [Google Scholar]
- Cegielski, A. Iterative Methods for Fixed Point Problems in Hilbert Spaces; Lecture Notes in Mathematics; Springer: Heidelberg, Germany, 2012; Volume 2057. [Google Scholar]
- Tian, M.; Jiang, B.N. Weak convergence theorem for zero points of inverse strongly monotone mapping and fixed points of nonexpansive mapping in Hilbert space. Optimization 2017, 66, 1689–1698. [Google Scholar]
- Bauschke, H.H.; Combettes, P.L.; Reich, S. The asymptotic behavior of the composition of two resolvents. Nonlinear Anal. 2005, 60, 283–301. [Google Scholar]
- Byrne, C.; Censor, Y.; Gibali, A.; Reich, S. The split common null point problem. J. Nonlinear Convex Anal. 2012, 13, 759–775. [Google Scholar]
- Thong, D.V. Viscosity approximation methods for solving fixed point problems and split common fixed point problems. J. Fixed Point Theory Appl. 2017, 19, 1481–1499. [Google Scholar]
- Byrne, C. Iterative oblique projection onto convex sets and the split feasibility problem. Inverse Probl. 2002, 18, 441–453. [Google Scholar]
- Rockafellar, R.T. Characterization of the sub differentials of convex functions, Pac. J. Math. 1966, 17, 497–510. [Google Scholar]
- Xu, H.K. A variable Krasnosel’skii-Mann algorithm and the multiple-set split feasibility problem. Inverse Probl. 2006, 22, 2021–2034. [Google Scholar]
- Deepho, J.; Kumam, P. A viscosity approximation method for the split feasibility problem. Trans. Engng. Tech. 2015, 69–77. [Google Scholar] [CrossRef]
- Moudafi, A. Split monotone variational inclusions. J. Optim. Theory Appl. 2011, 150, 275–283. [Google Scholar]
- Shehu, Y.; Ogbuisi, F.U. An iterative method for solving split monotone variational inclusion and fixed point problems. RACSAM. 2016, 110, 503–518. [Google Scholar]
- Takahashi, W.; Xu, H.K.; Yao, J.C. Iterative methods for generalized split feasibility problems in Hilbert spaces. Set-Valued Var. Anal. 2015, 23, 205–221. [Google Scholar] [CrossRef]
- Kraikaew, R.; Saejung, S. On split common fixed point problems. J. Math. Anal. Appl. 2014, 415, 513–524. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nandal, A.; Chugh, R.; Postolache, M. Iteration Process for Fixed Point Problems and Zeros of Maximal Monotone Operators. Symmetry 2019, 11, 655. https://doi.org/10.3390/sym11050655
Nandal A, Chugh R, Postolache M. Iteration Process for Fixed Point Problems and Zeros of Maximal Monotone Operators. Symmetry. 2019; 11(5):655. https://doi.org/10.3390/sym11050655
Chicago/Turabian StyleNandal, Ashish, Renu Chugh, and Mihai Postolache. 2019. "Iteration Process for Fixed Point Problems and Zeros of Maximal Monotone Operators" Symmetry 11, no. 5: 655. https://doi.org/10.3390/sym11050655
APA StyleNandal, A., Chugh, R., & Postolache, M. (2019). Iteration Process for Fixed Point Problems and Zeros of Maximal Monotone Operators. Symmetry, 11(5), 655. https://doi.org/10.3390/sym11050655