Effect of Cobalt Catalyst Confinement in Carbon Nanotubes Support on Fischer-Tropsch Synthesis Performance
Abstract
:1. Introduction
2. Experimental
2.1. Catalyst Characterization
- O2-uptake = μmol/g·cat of O2 calculated from TPO spectra of the catalyst.
- Atomic weight = MW of the metal
- % Metal = weight percentage of the metal in the catalyst.
- NA = Avogadro’s number
- MW = atomic weight of the metal.
2.2. Catalytic Activity Measurements
3. Results and Discussion
3.1. Textural Properties of the Catalysts
3.2. Raman Spectroscopy
3.3. Fourier-Transform Infrared Spectroscopy (FTIR)
3.4. XRD Analysis
3.5. Morphology of the Catalysts
3.6. TPR-TPO-TPD Analysis
3.7. Activity and Product Selectivity for FTS
3.8. Stability of FTS Catalysts
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dry, M.E. Fischer-Tropsch reactions and the environment. Appl. Catal. A Gen. 1999, 189, 185–190. [Google Scholar] [CrossRef]
- Esconjauregui, S.; Whelan, C.M.; Maex, K.J.C. The reasons why metals catalyze the nucleation and growth of carbon nanotubes and other carbon nanomorphologies. Carbon 2009, 47, 659–669. [Google Scholar] [CrossRef]
- Takeuchi, K.; Matsuzaki, T.; Hanaoka, T.-A.; Arakawa, H.; Sugi, Y.; Wei, K. Alcohol synthesis from syngas over cobalt catalysts prepared from CO2 (CO) 8. J. Mol. Catal. 1989, 55, 361–370. [Google Scholar] [CrossRef]
- Yang, G.; Tsubaki, N.; Shamoto, J.; Yoneyama, Y.; Zhang, Y. Confinement effect and synergistic function of H-ZSM-5/Cu-ZnO-Al2O3 capsule catalyst for one-step controlled synthesis. J. Am. Chem. Soc. 2010, 132, 8129–8136. [Google Scholar] [CrossRef] [PubMed]
- Iglesia, E.; Reyes, S.C.; Madon, R.J. Transport-enhanced α-olefin readsorption pathways in Ru-catalyzed hydrocarbon synthesis. J. Catal. 1991, 129, 238–256. [Google Scholar] [CrossRef]
- Khodakov, A.Y. Fischer-Tropsch synthesis: Relations between structure of cobalt catalysts and their catalytic performance. Catal. Today 2009, 144, 251–257. [Google Scholar] [CrossRef]
- Furimsky, E.; Massoth, F.E. Hydrodenitrogenation of Petroleum. Catal. Rev. 2005, 47, 297–489. [Google Scholar] [CrossRef]
- Storsæter, S.; Borg, Ø.; Blekkan, E.A.; Tøtdal, B.; Holmen, A. Fischer-Tropsch synthesis over Re-promoted Co supported on Al2O3, SiO2 and TiO2: Effect of water. Catal. Today 2005, 100, 343–347. [Google Scholar] [CrossRef]
- Davis, B.H. Fischer-Tropsch synthesis: Comparison of performances of iron and cobalt catalysts. Ind. Eng. Chem. Res. 2007, 46, 8938–8945. [Google Scholar] [CrossRef]
- Tavasoli, A.; Mortazavi, Y.; Khodadadi, A.A.; Mousavian, M.A.; Sadagiani, K.; Karimi, A. Effects of different loadings of Ru and Re on physico-chemical properties and performance of 15% Co/Al2O3 FTS catalysts. Iran. J. Chem. 2005, 24, 9–17. [Google Scholar]
- Iglesia, E. Design, synthesis, and use of cobalt-based Fischer-Tropsch synthesis catalysts. Appl. Catal. A Gen. 1997, 161, 59–78. [Google Scholar] [CrossRef]
- Khodakov, A.Y.; Chu, W.; Fongarland, P. Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels. Chem. Rev. 2007, 107, 1692–1744. [Google Scholar] [CrossRef] [PubMed]
- Van Berge, P.J.; van de Loosdrecht, J.; Barradas, S.; van der Kraan, A. Oxidation of cobalt based Fischer–Tropsch catalysts as a deactivation mechanism. Catal. Today 2000, 58, 321–334. [Google Scholar] [CrossRef]
- Jacobs, G.; Das, T.K.; Zhang, Y.; Li, J.; Racoillet, G.; Davis, B.H. Fischer-Tropsch synthesis: Support, loading, and promoter effects on the reducibility of cobalt catalysts. Appl. Catal. A Gen. 2002, 233, 263–281. [Google Scholar] [CrossRef]
- Den Breejen, J.P.; Radstake, P.B.; Bezemer, G.L.; Bitter, J.H.; Frøseth, V.; Holmen, A.; Jong, K.D. On the origin of the cobalt particle size effects in Fischer-Tropsch catalysis. J. Am. Chem. Soc. 2009, 131, 7197–7203. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Li, Y. Ga2O3 and GaN semiconductor hollow spheres. Angew. Chem. Int. Ed. 2004, 43, 3827–3831. [Google Scholar] [CrossRef] [PubMed]
- Xing, C.; Yang, G.; Wang, D.; Zeng, C.; Jin, Y.; Yang, R.; Suehiro, Y.; Tsubaki, N. Controllable encapsulation of cobalt clusters inside carbon nanotubes as effective catalysts for Fischer-Tropsch synthesis. Catal. Today 2013, 215, 24–28. [Google Scholar] [CrossRef]
- Bitter, J.H.; de Jong, K.P. Preparation of carbon-supported metal catalysts. In Carbon Materials for Catalysis; John Wiley & Sons: Hoboken, NJ, USA, 2009; pp. 157–176. [Google Scholar]
- Yahya, N. Carbon and Oxide Nanostructures; Springer: Berlin, Germany, 2010. [Google Scholar]
- Zhang, D.; Fu, H.; Shi, L.; Fang, J.; Li, Q. Carbon nanotube assisted synthesis of CeO2 nanotubes. J. Solid State Chem. 2007, 180, 654–660. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.; Jiang, D.; Katsnelson, M.; Grigorieva, I.; Dubonos, S.; Firsov, A.A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zolfaghari, Z.; Tavasoli, A.; Tabyar, S.; Pour, A.N. Enhancement of bimetallic Fe-Mn/CNTs nano catalyst activity and product selectivity using microemulsion technique. J. Energy Chem. 2014, 23, 57–65. [Google Scholar] [CrossRef]
- Tavasoli, A.; Taghavi, S. Performance enhancement of bimetallic Co-Ru/CNTs nano catalysts using microemulsion technique. J. Energy Chem. 2013, 22, 747–754. [Google Scholar] [CrossRef]
- Tavasoli, A.; Trépanier, M.; Abbaslou, R.M.M.; Dalai, A.K.; Abatzoglou, N. Fischer-Tropsch synthesis on mono-and bimetallic Co and Fe catalysts supported on carbon nanotubes. Fuel Process. Technol. 2009, 90, 1486–1494. [Google Scholar] [CrossRef]
- Dresselhaus, M.S.; Dresselhaus, G.; Saito, R.; Jorio, A. Raman spectroscopy of carbon nanotubes. Phys. Rep. 2005, 409, 47–99. [Google Scholar] [CrossRef]
- Dresselhaus, M.S.; Jorio, A.; Hofmann, M.; Dresselhaus, G.; Saito, R. Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett. 2010, 10, 751–758. [Google Scholar] [CrossRef] [PubMed]
- Trépanier, M.; Tavasoli, A.; Dalai, A.K.; Abatzoglou, N. Fischer-Tropsch synthesis over carbon nanotubes supported cobalt catalysts in a fixed bed reactor: Influence of acid treatment. Fuel Process. Technol. 2009, 90, 367–374. [Google Scholar] [CrossRef]
- Abbaslou, R.M.M.; Tavassoli, A.; Soltan, J.; Dalai, A.K. Iron catalysts supported on carbon nanotubes for Fischer–Tropsch synthesis: Effect of catalytic site position. Appl. Catal. A Gen. 2009, 367, 47–52. [Google Scholar] [CrossRef]
- Van Steen, E.; Prinsloo, F.F. Comparison of preparation methods for carbon nanotubes supported iron Fischer-Tropsch catalysts. Catal. Today 2002, 71, 327–334. [Google Scholar] [CrossRef]
- Chen, W.; Fan, Z.; Pan, X.; Bao, X. Effect of confinement in carbon nanotubes on the activity of Fischer–Tropsch iron catalyst. J. Am. Chem. Soc. 2008, 130, 9414–9419. [Google Scholar] [CrossRef] [PubMed]
- Behler, K.; Osswald, S.; Ye, H.; Dimovski, S.; Gogotsi, Y. Effect of thermal treatment on the structure of multi-walled carbon nanotubes. J. Nanopart. Res. 2006, 8, 615–625. [Google Scholar] [CrossRef]
- Chizari, K.; Janowska, I.; Houllé, M.; Florea, I.; Ersen, O.; Romero, T.; Bernhardt, P.; Ledoux, M.J.; Pham-Huu, C. Tuning of nitrogen-doped carbon nanotubes as catalyst support for liquid-phase reaction. Appl. Catal. A Gen. 2010, 380, 72–80. [Google Scholar] [CrossRef]
- Eschemann, T.O.; Lamme, W.S.; Manchester, R.L.; Parmentier, T.E.; Cognigni, A.; Rønning, M.; de Jong, K.P. Effect of support surface treatment on the synthesis, structure, and performance of Co/CNT Fischer-Tropsch catalysts. J. Catal. 2015, 328, 130–138. [Google Scholar] [CrossRef]
- Tavasoli, A.; Trépanier, M.; Dalai, A.K.; Abatzoglou, N. Effects of confinement in carbon nanotubes on the activity, selectivity, and lifetime of Fischer-Tropsch Co/carbon nanotube catalysts. J. Chem. Eng. Data 2010, 55, 2757–2763. [Google Scholar] [CrossRef]
- Trépanier, M.; Tavasoli, A.; Dalai, A.K.; Abatzoglou, N. Co, Ru and K loadings effects on the activity and selectivity of carbon nanotubes supported cobalt catalyst in Fischer-Tropsch synthesis. Appl. Catal. A Gen. 2009, 353, 193–202. [Google Scholar] [CrossRef]
- Schwarz, J. The adsorption/impregnation of catalytic precursors on pure and composite oxides. Catal. Today 1992, 15, 395–405. [Google Scholar] [CrossRef]
- Bezemer, G.L.; Bitter, J.H.; Kuipers, H.P.; Oosterbeek, H.; Holewijn, J.E.; Xu, X.; Kapteijn, F.; van Dillen, A.J.; de Jong, K.P. Cobalt particle size effects in the Fischer-Tropsch reaction studied with carbon nanofiber supported catalysts. J. Am. Chem. Soc. 2006, 128, 3956–3964. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.T.; Serp, P. Confinement of metal nanoparticles in carbon nanotubes. ChemCatChem 2013, 5, 3595–3603. [Google Scholar] [CrossRef]
- Wang, D.; Yang, G.P.; Ma, Q.; Wu, M.; Tan, Y.; Yoneyama, Y.; Tsubaki, N. Confinement effect of carbon nanotubes: Copper nanoparticles filled carbon nanotubes for hydrogenation of methyl acetate. ACS Catal. 2012, 2, 1958–1966. [Google Scholar] [CrossRef]
- Pan, X.; Bao, X. The effects of confinement inside carbon nanotubes on catalysis. Acc. Chem. Res. 2011, 44, 553–562. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Pan, X.; Guo, S.; Ren, P.; Bao, X. Toward fundamentals of confined catalysis in carbon nanotubes. J. Am. Chem. Soc. 2014, 137, 477–482. [Google Scholar] [CrossRef] [PubMed]
Sample ID | BET Surface Area (m2·g−1) | Total Pore Volume (cm3·g−1) | VMicro (cm3/g) | VMeso (cm3/g) |
---|---|---|---|---|
as-received CNTs | 138.2 | 1.58 | 0.08 | 1.50 |
CNTs.A | 223.2 | 0.88 | 0.12 | 0.76 |
CNTs.A.600 | 250.6 | 0.81 | 0.15 | 0.65 |
CNTs.A.700 | 256.7 | 0.72 | 0.16 | 0.56 |
CNTs.A.800 | 259.3 | 0.63 | 0.18 | 0.45 |
CNTs.A.900 | 266.4 | 0.54 | 0.19 | 0.35 |
Co/CNTs.A | 198.5 | 0.55 | 0.06 | 0.49 |
Co/CNTs.A.600 | 207.8 | 0.50 | 0.05 | 0.45 |
Co/CNTs.A.700 | 209.8 | 0.48 | 0.04 | 0.44 |
Co/CNTs.A.800 | 214.6 | 0.45 | 0.03 | 0.42 |
Co/CNTs.A.900 | 221.4 | 0.41 | 0.02 | 0.39 |
Samples | ID | IG | ID/IG |
---|---|---|---|
as-received CNTs | 1358.99 | 1593.20 | 0.853 |
CNTs.A | 1389.49 | 1591.63 | 0.873 |
CNTs.A.600 | 1431.91 | 1596.34 | 0.897 |
CNTs.A.700 | 1462.99 | 1588.49 | 0.921 |
CNTs.A.800 | 1494.17 | 1596.34 | 0.936 |
CNTs.A.900 | 1497.72 | 1591.63 | 0.941 |
Sample | Inner Particles (%) | Outer Particles (%) | Average Particle Size a (nm) | Average Particle Size b dCo3O4 (nm) |
---|---|---|---|---|
Co/CNTs.A | 10 | 90 | 5.1 | 5 ± 0.2 |
Co/CNTs.A.600 | 31 | 69 | 4.2 | 4 ± 0.2 |
Co/CNTs.A.700 | 43 | 57 | 5.3 | 5 ± 0.2 |
Co/CNTs.A.800 | 62 | 38 | 6.1 | 6 ± 0.2 |
Co/CNTs.A.900 | 70 | 30 | 7.2 | 7 ± 0.2 |
Catalysts | Reduction (%) | Dispersion (%) | No. of Active Sites (×1020) |
---|---|---|---|
Co/CNTs.A | 38.4 | 8.7 | 3.8 |
Co/CNTs.A.600 | 48.8 | 20.9 | 4.5 |
Co/CNTs.A.700 | 55.2 | 24.5 | 4.9 |
Co/CNTs.A.800 | 63.8 | 26.4 | 5.4 |
Co/CNTs.A.900 | 68.1 | 29.1 | 5.8 |
Catalyst | CO Conversion | CH4 | C2–C4 | C5+ |
---|---|---|---|---|
Co/CNTs.A | 16.4 | 18.6 | 12.3 | 18.9 |
Co/CNTs.A.600 | 28.3 | 15.2 | 11.5 | 33.2 |
Co/CNTs.A.700 | 37.5 | 12.7 | 10.7 | 38.8 |
Co/CNTs.A.800 | 50.9 | 11.3 | 8.4 | 54.6 |
Co/CNTs.A.900 | 58.7 | 9.5 | 6.8 | 59.1 |
Reaction T (°C) | CO Conversion (%) | Product Selectivity (%) | |||
---|---|---|---|---|---|
CH4 | C2–C4 | CO2 | C5+ | ||
220 | 25.3 | 7.6 | 4.4 | 1.6 | 57.7 |
240 | 58.7 | 9.5 | 5.6 | 10.4 | 59.1 |
260 | 70.1 | 10.1 | 7.1 | 13.2 | 47.6 |
280 | 75.4 | 10.8 | 8.2 | 14.6 | 41.2 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akbarzadeh, O.; Mohd Zabidi, N.A.; Abdul Wahab, Y.; Hamizi, N.A.; Chowdhury, Z.Z.; Merican Aljunid Merican, Z.; Ab Rahman, M.; Akhter, S.; Rasouli, E.; Johan, M.R. Effect of Cobalt Catalyst Confinement in Carbon Nanotubes Support on Fischer-Tropsch Synthesis Performance. Symmetry 2018, 10, 572. https://doi.org/10.3390/sym10110572
Akbarzadeh O, Mohd Zabidi NA, Abdul Wahab Y, Hamizi NA, Chowdhury ZZ, Merican Aljunid Merican Z, Ab Rahman M, Akhter S, Rasouli E, Johan MR. Effect of Cobalt Catalyst Confinement in Carbon Nanotubes Support on Fischer-Tropsch Synthesis Performance. Symmetry. 2018; 10(11):572. https://doi.org/10.3390/sym10110572
Chicago/Turabian StyleAkbarzadeh, Omid, Noor Asmawati Mohd Zabidi, Yasmin Abdul Wahab, Nor Aliya Hamizi, Zaira Zaman Chowdhury, Zulkifli Merican Aljunid Merican, Marlinda Ab Rahman, Shamima Akhter, Elisa Rasouli, and Mohd Rafie Johan. 2018. "Effect of Cobalt Catalyst Confinement in Carbon Nanotubes Support on Fischer-Tropsch Synthesis Performance" Symmetry 10, no. 11: 572. https://doi.org/10.3390/sym10110572