Harnack Inequality and No-Arbitrage Analysis
Abstract
:1. Introduction
2. Preliminaries
3. Harnack Inequality and No-Arbitrage Analysis
3.1. Harnack Inequality
- Q1.
- (), where , the integers satisfy .
- Q2.
- .
3.2. No-Arbitrage Analysis
3.3. Example
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kawabi, H. The Parabolic Harnack Inequality for the Time Dependent Ginzburg-Landau Type SPDE and its Application. Potential Anal. 2005, 22, 61–84. [Google Scholar] [CrossRef]
- Arnaudon, M.; Thalmaier, A.; Wang, F. Harnack inequality and heat kernel estimates on manifolds with curvature unbounded below. Bull. Sci. Math. 2006, 130, 223–233. [Google Scholar] [CrossRef]
- Carciola, A. Harnack inequality and no-arbitrage bounds for self-financing portfolios. Bol. Soc. Esp. Mat. Apl. 2009, 49, 15–27. [Google Scholar]
- Wang, F. Harnack Inequality and Applications for Stochastic Generalized Porous Media Equations. Ann. Probab. 2007, 35, 1333–1350. [Google Scholar] [CrossRef]
- Bass, R.F.; Levin, D.A. Harnack inequalities for jump processes. Potential Anal. 2002, 17, 375–388. [Google Scholar] [CrossRef]
- Harrison, J.M.; Pliska, S.R. Martingales and stochastic integrals in the theory of continuous trading. Stoch. Process. Their Appl. 1981, 11, 215–260. [Google Scholar] [CrossRef]
- Cox, J.C.; Ross, S.A. The valuation of options for alternative stochastic processes. J. Financ. Econ. 1976, 3, 145–166. [Google Scholar] [CrossRef] [Green Version]
- Deng, X.; Li, Z.; Wang, S.; Yang, H. Necessary and Sufficient Conditions for Weak No-Arbitrage in Securities Markets with Frictions. Ann. Oper. Res. 2005, 133, 265–276. [Google Scholar] [CrossRef]
- Sandhu, R.; Georgiou, T.; Tannenbaum, A. Market Fragility, Systemic Risk, and Ricci Curvature. arXiv, 2015; arXiv:1505.05182. [Google Scholar]
- Brody, D.C.; Hughston, L.P. Interest Rates and Information Geometry. R. Soc. 2011, 457, 1343–1363. [Google Scholar] [CrossRef]
- Young, K. Foreign exchange market as a lattice gauge theory. Am. J. Phys. 1999, 67, 862–868. [Google Scholar] [CrossRef]
- Ilinski, K. Physics of Finance: Gauge Modelling in Non-Equilibrium Pricing; Wiley: Hoboken, NJ, USA, 2001. [Google Scholar]
- Farinelli, S. Geometric Arbitrage Theory and Market Dynamics. J. Geom. Mech. 2015, 7, 431–471. [Google Scholar] [CrossRef]
- Choi, Y.H. Curvature Arbitrage. Ph.D. Thesis, University of Iowa, Iowa City, IA, USA, 2007. [Google Scholar]
- Moser, J. A Harnack inequality for parabolic differential equations. Commun. Pure Appl. Math. 1964, 17, 101–134. [Google Scholar] [CrossRef]
- Huang, G.; Huang, Z.; Li, H. Gradient estimates and differential Harnack inequalities for a nonlinear parabolic equation on Riemannian manifolds. Ann. Glob. Anal. Geom. 2013, 43, 209–232. [Google Scholar] [CrossRef]
- Cao, X. Harnack estimate for the endangered species equation. Proc. Am. Math. Soc. 2015, 143, 4537–4545. [Google Scholar] [CrossRef]
- Garofalo, N.; Lanconelli, E. Level sets of the fundamental solution and Harnack inequality for degenerate equations of Kolmogorov type. Trans. Am. Math. Soc. 1990, 321, 775–792. [Google Scholar] [CrossRef]
- Barucci, E.; Fontana, C. Financial Markets Theory; Springer: Berlin, Germany, 2017. [Google Scholar]
- Delbaen, F.; Schachermayer, W. The Mathematics of Arbitrage; Springer: Berlin, Germany, 2006. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, W.; Zhou, F.; Zhao, P. Harnack Inequality and No-Arbitrage Analysis. Symmetry 2018, 10, 517. https://doi.org/10.3390/sym10100517
Tang W, Zhou F, Zhao P. Harnack Inequality and No-Arbitrage Analysis. Symmetry. 2018; 10(10):517. https://doi.org/10.3390/sym10100517
Chicago/Turabian StyleTang, Wanxiao, Fanchao Zhou, and Peibiao Zhao. 2018. "Harnack Inequality and No-Arbitrage Analysis" Symmetry 10, no. 10: 517. https://doi.org/10.3390/sym10100517