Acceptance Sampling Plans for Finite and Infinite Lot Size under Power Lindley Distribution
Abstract
:1. Introduction
2. The Power Lindley Distribution
3. Acceptance Sampling Plans
- (1)
- Step 1. Draw the first sample of size from a lot and put them on test until time .
- (2)
- Step 2. Accept the lot if there are or smaller number of failures. Reject the lot and terminate the test as soon as more than failures are observed. If the number of failures is between and , then draw the second sample of size from the lot and put them on test until time .
- (3)
- Step 3. Accept the lot if the total number of failures from the first and second samples is not greater than . Otherwise, terminate the test and reject the lot.
4. Single Acceptance Sampling Plans
4.1. Acceptance Sampling Plans for Infinite Lot Size
4.2. Acceptance Sampling Plans for Finite Lot Size
4.3. Operating Characteristic Curves
5. Double Acceptance Sampling Plans
6. Conclusions and Recommendations
Author Contributions
Acknowledgments
Conflicts of Interest
Appendix A
p | ||||||||
---|---|---|---|---|---|---|---|---|
2 | 3 | 4 | 5 | |||||
1.5 | 1.5 | 0.5 | 0.75 | 0.01 | (61,13) | (32,5) | (24,3) | (20,2) |
0.05 | (40,9) | (23,4) | (18,2) | (16,2) | ||||
0.10 | (34,8) | (17,3) | (13,2) | (13,2) | ||||
0.25 | (23,6) | (10,2) | (7,1) | (7,1) | ||||
0.95 | 0.01 | (31,12) | (17,5) | (13,3) | (10,2) | |||
0.05 | (22,9) | (12,4) | (8,2) | (8,2) | ||||
0.10 | (19,8) | (9,3) | (7,2) | (5,1) | ||||
0.25 | (11,5) | (8,3) | (6,1) | (4,1) | ||||
1.0 | 0.75 | 0.01 | (27,14) | (13,5) | (9,3) | (8,2) | ||
0.05 | (17,9) | (9,4) | (6,3) | (6,2) | ||||
0.10 | (16,9) | (7,3) | (6,2) | (6,2) | ||||
0.25 | (10,6) | (6,3) | (5,2) | (3,1) | ||||
0.95 | 0.01 | (21,16) | (8,5) | (6,3) | (6,3) | |||
0.05 | (14,11) | (6,4) | (5,3) | (4,2) | ||||
0.10 | (14,11) | (6,3) | (5,2) | (2,1) | ||||
0.25 | (11,9) | (4,3) | (3,1) | (2,1) | ||||
2.5 | 2.0 | 0.5 | 0.75 | 0.01 | (58,8) | (33,3) | (27,2) | (21,1) |
0.05 | (40,6) | (21,2) | (15,1) | (15,1) | ||||
0.10 | (31,5) | (18,2) | (13,1) | (13,1) | ||||
0.25 | (18,3) | (9,1) | (9,1) | (9,1) | ||||
0.95 | 0.01 | (27,7) | (17,3) | (14,2) | (11,1) | |||
0.05 | (18,5) | (11,2) | (8,1) | (8,1) | ||||
0.10 | (17,5) | (9,2) | (7,1) | (7,1) | ||||
0.25 | (12,4) | (5,1) | (5,1) | (5,1) | ||||
1.0 | 0.75 | 0.01 | (18,8) | (9,3) | (8,2) | (6,1) | ||
0.05 | (13,6) | (6,2) | (6,2) | (5,1) | ||||
0.10 | (10,5) | (6,2) | (4,1) | (4,1) | ||||
0.25 | (7,4) | (3,1) | (3,1) | (3,1) | ||||
0.95 | 0.01 | (13,9) | (6,3) | (5,2) | (3,1) | |||
0.05 | (11,8) | (5,3) | (4,2) | (3,1) | ||||
0.10 | (8,6) | (5,3) | (2,1) | (2,1) | ||||
0.25 | (5,4) | (3,2) | (2,1) | (2,1) | ||||
1.5 | 2.5 | 0.75 | 0.75 | 0.01 | (25,7) | (15,3) | (13,2) | (10,1) |
0.05 | (19,6) | (10,2) | (7,1) | (7,1) | ||||
0.10 | (15,5) | (9,2) | (6,1) | (6,1) | ||||
0.25 | (9,3) | (7,2) | (5,1) | (5,1) | ||||
0.95 | 0.01 | (16,8) | (8,3) | (7,2) | (5,1) | |||
0.05 | (11,6) | (7,3) | (4,1) | (4,1) | ||||
0.10 | (9,5) | (5,2) | (4,1) | (4,1) | ||||
0.25 | (7,4) | (4,2) | (3,1) | (3,1) | ||||
1.0 | 0.75 | 0.01 | (18,8) | (9,3) | (8,2) | (6,1) | ||
0.05 | (13,6) | (6,2) | (6,2) | (5,1) | ||||
0.10 | (10,5) | (6,2) | (4,1) | (4,1) | ||||
0.25 | (7,1) | (3,1) | (3,1) | (3,1) | ||||
0.95 | 0.01 | (13,9) | (6,3) | (5,2) | (3,1) | |||
0.05 | (11,8) | (5,3) | (4,2) | (3,1) | ||||
0.10 | (8,6) | (5,3) | (2,1) | (2,1) | ||||
0.25 | (5,4) | (3,2) | (2,1) | (2,1) |
p | ||||||||
---|---|---|---|---|---|---|---|---|
2 | 3 | 4 | 5 | |||||
1.5 | 1.5 | 0.5 | 0.75 | 0.01 | (81,19) | (43,8) | (32,5) | (28,4) |
0.05 | (60,15) | (30,6) | (23,4) | (19,3) | ||||
0.10 | (46,12) | (24,5) | (17,3) | (17,3) | ||||
0.25 | (35,10) | (17,4) | (13,3) | (10,2) | ||||
0.95 | 0.01 | (45,19) | (21,7) | (17,5) | (15,4) | |||
0.05 | (31,14) | (16,6) | (12,4) | (10,3) | ||||
0.10 | (26,12) | (13,5) | (9,3) | (9,3) | ||||
0.25 | (18,9) | (9,4) | (8,2) | (6,1) | ||||
1.0 | 0.75 | 0.01 | (35,19) | (16,7) | (13,5) | (9,3) | ||
0.05 | (26,15) | (13,6) | (9,4) | (8,3) | ||||
0.10 | (22,13) | (10,5) | (7,3) | (7,3) | ||||
0.25 | (16,10) | (7,4) | (6,3) | (5,2) | ||||
0.95 | 0.01 | (26,21) | (13,9) | (8,5) | (7,4) | |||
0.05 | (23,19) | (11,8) | (6,4) | (5,3) | ||||
0.10 | (19,16) | (8,6) | (6,4) | (5,3) | ||||
0.25 | (15,13) | (5,4) | (4,3) | (3,2) | ||||
2.5 | 2.0 | 0.5 | 0.75 | 0.01 | (71,11) | (43,5) | (33,3) | (27,2) |
0.05 | (53,9) | (30,4) | (21,2) | (21,2) | ||||
0.10 | (44,8) | (22,3) | (18,2) | (18,2) | ||||
0.25 | (30,6) | (13,2) | (13,2) | (9,1) | ||||
0.95 | 0.01 | (37,11) | (19,4) | (17,3) | (14,2) | |||
0.05 | (28,9) | (16,4) | (11,2) | (11,2) | ||||
0.10 | (24,8) | (12,3) | (9,2) | (9,2) | ||||
0.25 | (16,6) | (10,3) | (7,2) | (5,1) | ||||
1.0 | 0.75 | 0.01 | (22,11) | (13,5) | (9,3) | (8,2) | ||
0.05 | (17,9) | (9,4) | (6,2) | (6,2) | ||||
0.10 | (15,8) | (7,3) | (6,2) | (6,2) | ||||
0.25 | (10,6) | (6,3) | (5,2) | (3,1) | ||||
0.95 | 0.01 | (17,13) | (8,5) | (6,3) | (5,2) | |||
0.05 | (14,11) | (6,4) | (5,3) | (4,2) | ||||
0.10 | (14,11) | (6,4) | (5,3) | (4,2) | ||||
0.25 | (11,9) | (4,3) | (3,2) | (3,2) | ||||
1.5 | 2.5 | 0.75 | 0.75 | 0.01 | (30,7) | (18,3) | (15,2) | (12,1) |
0.05 | (22,6) | (12,2) | (12,2) | (9,1) | ||||
0.10 | (18,5) | (10,2) | (7,1) | (7,1) | ||||
0.25 | (13,4) | (8,2) | (5,1) | (5,1) | ||||
0.95 | 0.01 | (16,7) | (10,3) | (8,2) | (6,1) | |||
0.05 | (11,5) | (6,2) | (6,2) | (5,1) | ||||
0.10 | (10,5) | (6,2) | (4,1) | (4,1) | ||||
0.25 | (8,4) | (5,2) | (3,1) | (3,1) | ||||
1.0 | 0.75 | 0.01 | (16,7) | (9,3) | (8,2) | (6,1) | ||
0.05 | (13,6) | (6,2) | (6,2) | (5,1) | ||||
0.10 | (10,5) | (6,2) | (4,1) | (4,1) | ||||
0.25 | (7,4) | (5,2) | (3,1) | (3,1) | ||||
0.95 | 0.01 | (12,8) | (6,3) | (5,2) | (3,1) | |||
0.05 | (10,7) | (5,3) | (4,2) | (3,1) | ||||
0.10 | (8,6) | (5,3) | (2,1) | (2,1) | ||||
0.25 | (5,4) | (3,2) | (2,1) | (2,1) |
p | ||||||||
---|---|---|---|---|---|---|---|---|
2 | 3 | 4 | 5 | |||||
1.5 | 1.5 | 0.5 | 0.75 | 0.01 | (39,8) | (26,4) | (19,2) | (19,2) |
0.05 | (31,7) | (18,3) | (15,2) | (15,2) | ||||
0.10 | (26,6) | (16,3) | (13,2) | (9,1) | ||||
0.25 | (16,4) | (10,2) | (7,1) | (7,1) | ||||
0.95 | 0.01 | (26,10) | (14,4) | (12,3) | (10,2) | |||
0.05 | (20,8) | (10,3) | (8,2) | (8,2) | ||||
0.10 | (17,7) | (9,3) | (7,2) | (5,1) | ||||
0.25 | (11,5) | (6,2) | (4,1) | (4,1) | ||||
1.0 | 0.75 | 0.01 | (20,10) | (11,4) | (9,3) | (8,2) | ||
0.05 | (15,8) | (9,4) | (6,2) | (4,1) | ||||
0.10 | (13,7) | (7,3) | (5,2) | (4,1) | ||||
0.25 | (10,6) | (6,3) | (5,2) | (3,1) | ||||
0.95 | 0.01 | (17,13) | (8,5) | (6,3) | (6,3) | |||
0.05 | (14,11) | (6,4) | (5,3) | (4,2) | ||||
0.10 | (10,8) | (6,4) | (5,3) | (2,1) | ||||
0.25 | (10,8) | (4,3) | (3,2) | (2,1) | ||||
2.5 | 2.0 | 0.5 | 0.75 | 0.01 | (38,5) | (24,2) | (19,1) | (19,1) |
0.05 | (28,4) | (19,2) | (15,1) | (15,1) | ||||
0.10 | (25,4) | (17,2) | (12,1) | (12,1) | ||||
0.25 | (17,3) | (9,1) | (9,1) | (5,1) | ||||
0.95 | 0.01 | (23,6) | (13,2) | (10,1) | (10,1) | |||
0.05 | (15,4) | (10,2) | (8,2) | (8,2) | ||||
0.10 | (14,4) | (9,2) | (7,2) | (7,2) | ||||
0.25 | (9,3) | (5,1) | (5,1) | (5,1) | ||||
1.0 | 0.75 | 0.01 | (16,7) | (9,3) | (8,2) | (6,1) | ||
0.05 | (11,5) | (6,2) | (4,1) | (4,1) | ||||
0.10 | (10,5) | (5,2) | (4,1) | (4,1) | ||||
0.25 | (7,4) | (3,1) | (3,1) | (2,1) | ||||
0.95 | 0.01 | (10,7) | (6,3) | (5,2) | (3,1) | |||
0.05 | (8,6) | (5,3) | (4,2) | (3,1) | ||||
0.10 | (8,6) | (5,3) | (2,1) | (2,1) | ||||
0.25 | (5,4) | (3,2) | (2,1) | (2,1) | ||||
1.5 | 2.5 | 0.75 | 0.75 | 0.01 | (20,4) | (14,2) | (11,1) | (11,1) |
0.05 | (14,3) | (8,1) | (8,1) | (5,1) | ||||
0.10 | (12,3) | (7,1) | (7,1) | (4,1) | ||||
0.25 | (8,2) | (5,1) | (5,1) | (3,1) | ||||
0.95 | 0.01 | (11,4) | (8,2) | (6,1) | (6,1) | |||
0.05 | (8,3) | (5,1) | (5,1) | (5,1) | ||||
0.10 | (7,3) | (4,1) | (4,1) | (2,1) | ||||
0.25 | (5,2) | (3,1) | (3,1) | (2,1) | ||||
1.0 | 0.75 | 0.01 | (11,4) | (8,2) | (6,1) | (6,1) | ||
0.05 | (8,3) | (4,1) | (4,1) | (4,1) | ||||
0.10 | (7,3) | (4,1) | (4,1) | (2,1) | ||||
0.25 | (6,3) | (3,1) | (2,1) | (2,1) | ||||
0.95 | 0.01 | (8,5) | (5,2) | (3,1) | (3,1) | |||
0.05 | (6,4) | (4,2) | (3,1) | (3,1) | ||||
0.10 | (6,4) | (2,1) | (2,1) | (2,1) | ||||
0.25 | (3,2) | (2,1) | (2,1) | (2,1) |
p | ||||||||
---|---|---|---|---|---|---|---|---|
2 | 3 | 4 | 5 | |||||
1.5 | 1.5 | 0.5 | 0.75 | 0.01 | (48,10) | (31,5) | (24,3) | (20,2) |
0.05 | (36,8) | (22,4) | (15,2) | (15,2) | ||||
0.10 | (30,7) | (17,3) | (13,2) | (10,1) | ||||
0.25 | (19,5) | (10,2) | (7,1) | (7,1) | ||||
0.95 | 0.01 | (31,12) | (17,5) | (13,3) | (10,2) | |||
0.05 | (22,9) | (12,4) | (8,2) | (8,2) | ||||
0.10 | (19,8) | (9,3) | (7,2) | (5,1) | ||||
0.25 | (11,5) | (6,2) | (6,2) | (4,1) | ||||
1.0 | 0.75 | 0.01 | (24,12) | (13,5) | (9,3) | (8,2) | ||
0.05 | (17,9) | (9,4) | (6,2) | (6,2) | ||||
0.10 | (15,8) | (7,3) | (6,2) | (6,2) | ||||
0.25 | (10,6) | (6,3) | (5,2) | (3,1) | ||||
0.95 | 0.01 | (18,14) | (8,5) | (6,3) | (6,3) | |||
0.05 | (14,11) | (6,4) | (5,3) | (4,2) | ||||
0.10 | (11,9) | (6,4) | (5,3) | (2,1) | ||||
0.25 | (11,9) | (4,3) | (3,2) | (2,1) | ||||
2.5 | 2.0 | 0.5 | 0.75 | 0.01 | (46,6) | (31,3) | (26,2) | (21,1) |
0.05 | (34,5) | (20,2) | (15,1) | (15,1) | ||||
0.10 | (26,4) | (17,2) | (13,1) | (13,1) | ||||
0.25 | (17,3) | (9,1) | (9,1) | (9,1) | ||||
0.95 | 0.01 | (27,7) | (16,3) | (13,2) | (10,1) | |||
0.05 | (18,5) | (11,2) | (8,1) | (8,1) | ||||
0.10 | (14,4) | (9,2) | (7,1) | (7,1) | ||||
0.25 | (12,4) | (5,1) | (5,1) | (5,1) | ||||
1.0 | 0.75 | 0.01 | (16,7) | (9,3) | (8,2) | (6,1) | ||
0.05 | (13,6) | (6,2) | (4,1) | (4,1) | ||||
0.10 | (10,5) | (6,2) | (4,1) | (4,1) | ||||
0.25 | (7,4) | (3,1) | (3,1) | (2,1) | ||||
0.95 | 0.01 | (13,9) | (6,3) | (5,2) | (3,1) | |||
0.05 | (11,8) | (5,3) | (4,2) | (3,1) | ||||
0.10 | (8,6) | (5,3) | (2,1) | (2,1) | ||||
0.25 | (5,4) | (3,2) | (2,1) | (2,1) | ||||
1.5 | 2.5 | 0.75 | 0.75 | 0.01 | (20,4) | (15,2) | (11,1) | (11,1) |
0.05 | (14,3) | (8,1) | (8,1) | (5,1) | ||||
0.10 | (13,3) | (7,1) | (7,1) | (4,1) | ||||
0.25 | (8,2) | (5,1) | (3,1) | (3,1) | ||||
0.95 | 0.01 | (11,4) | (8,2) | (6,2) | (6,1) | |||
0.05 | (8,3) | (5,1) | (5,1) | (5,1) | ||||
0.10 | (7,3) | (4,1) | (4,1) | (2,1) | ||||
0.25 | (5,2) | (3,1) | (3,1) | (2,1) | ||||
1.0 | 0.75 | 0.01 | (11,4) | (8,2) | (6,1) | (6,1) | ||
0.05 | (9,4) | (4,1) | (4,1) | (4,1) | ||||
0.10 | (7,3) | (4,1) | (4,1) | (2,1) | ||||
0.25 | (6,3) | (3,1) | (2,1) | (2,1) | ||||
0.95 | 0.01 | (8,5) | (5,2) | (3,1) | (3,1) | |||
0.05 | (6,4) | (4,2) | (3,1) | (3,1) | ||||
0.10 | (6,2) | (2,1) | (2,1) | (2,1) | ||||
0.25 | (3,2) | (2,1) | (2,1) | (2,1) |
p | ||||||||
---|---|---|---|---|---|---|---|---|
2 | 3 | 4 | 5 | |||||
1.5 | 1.5 | 0.5 | 0.75 | 0.01 | (56,12) | (32,5) | (24,3) | (20,2) |
0.05 | (40,9) | (23,4) | (15,2) | (15,2) | ||||
0.10 | (30,7) | (17,3) | (13,2) | (10,1) | ||||
0.25 | (23,6) | (10,2) | (7,1) | (7,1) | ||||
0.95 | 0.01 | (31,12) | (17,5) | (13,3) | (10,2) | |||
0.05 | (22,9) | (12,4) | (8,2) | (8,2) | ||||
0.10 | (19,8) | (9,3) | (7,2) | (5,1) | ||||
0.25 | (11,5) | (6,2) | (6,2) | (4,1) | ||||
1.0 | 0.75 | 0.01 | (25,13) | (13,5) | (9,3) | (8,2) | ||
0.05 | (17,9) | (9,4) | (6,2) | (6,2) | ||||
0.10 | (15,8) | (7,3) | (6,2) | (6,2) | ||||
0.25 | (10,6) | (6,3) | (5,2) | (3,1) | ||||
0.95 | 0.01 | (18,14) | (8,5) | (6,3) | (6,3) | |||
0.05 | (14,11) | (6,4) | (5,3) | (4,2) | ||||
0.10 | (14,11) | (6,4) | (5,3) | (2,1) | ||||
0.25 | (11,9) | (4,3) | (3,2) | (2,1) | ||||
2.5 | 2.0 | 0.5 | 0.75 | 0.01 | (51,7) | (32,3) | (27,2) | (21,1) |
0.05 | (35,5) | (20,2) | (15,1) | (15,1) | ||||
0.10 | (27,4) | (18,2) | (13,1) | (13,1) | ||||
0.25 | (18,3) | (9,1) | (9,1) | (9,1) | ||||
0.95 | 0.01 | (27,7) | (16,3) | (14,2) | (11,1) | |||
0.05 | (18,5) | (11,2) | (8,1) | (8,1) | ||||
0.10 | (14,4) | (9,2) | (7,1) | (7,1) | ||||
0.25 | (12,4) | (5,1) | (5,1) | (5,1) | ||||
1.0 | 0.75 | 0.01 | (16,7) | (9,3) | (8,2) | (6,1) | ||
0.05 | (13,6) | (6,2) | (6,2) | (5,1) | ||||
0.10 | (10,5) | (6,2) | (4,1) | (4,1) | ||||
0.25 | (7,4) | (3,1) | (3,1) | (2,1) | ||||
0.95 | 0.01 | (13,9) | (6,3) | (5,2) | (3,1) | |||
0.05 | (11,8) | (5,3) | (4,2) | (3,1) | ||||
0.10 | (8,6) | (5,3) | (2,1) | (2,1) | ||||
0.25 | (5,4) | (3,2) | (2,1) | (2,1) | ||||
1.5 | 2.5 | 0.75 | 0.75 | 0.01 | (21,4) | (15,2) | (11,1) | (11,1) |
0.05 | (14,3) | (8,1) | (8,1) | (5,1) | ||||
0.10 | (13,3) | (7,1) | (7,1) | (4,1) | ||||
0.25 | (8,2) | (5,1) | (5,1) | (3,1) | ||||
0.95 | 0.01 | (11,4) | (8,2) | (6,2) | (6,2) | |||
0.05 | (8,3) | (5,1) | (5,1) | (5,1) | ||||
0.10 | (7,3) | (4,1) | (4,1) | (2,1) | ||||
0.25 | (6,3) | (3,1) | (3,1) | (2,1) | ||||
1.0 | 0.75 | 0.01 | (11,4) | (8,2) | (6,1) | (6,1) | ||
0.05 | (9,4) | (5,1) | (5,1) | (5,1) | ||||
0.10 | (7,3) | (4,1) | (4,1) | (2,1) | ||||
0.25 | (6,3) | (3,1) | (2,1) | (2,1) | ||||
0.95 | 0.01 | (8,5) | (5,2) | (3,1) | (3,1) | |||
0.05 | (6,4) | (4,2) | (3,1) | (3,1) | ||||
0.10 | (6,4) | (2,1) | (2,1) | (2,1) | ||||
0.25 | (3,2) | (2,1) | (2,1) | (2,1) |
n | a | n | a | ||||||||
2 | 3 | 4 | 5 | 2 | 3 | 4 | 5 | ||||
16 | 0.4 | 0.7962 | 0.9534 | 0.9855 | 0.9944 | 16 | 0.4 | 0.7163 | 0.9299 | 0.9776 | 0.9912 |
12 | 0.6 | 0.6008 | 0.8933 | 0.9653 | 0.9863 | 12 | 0.6 | 0.4812 | 0.8438 | 0.9470 | 0.9787 |
10 | 0.8 | 0.3978 | 0.8046 | 0.9326 | 0.9728 | 10 | 0.8 | 0.2731 | 0.7242 | 0.8987 | 0.9579 |
9 | 1.0 | 0.2166 | 0.6784 | 0.8786 | 0.9492 | 9 | 1.0 | 0.1212 | 0.5677 | 0.8222 | 0.9226 |
7 | 1.2 | 0.1941 | 0.6597 | 0.8719 | 0.9470 | 7 | 1.2 | 0.1049 | 0.5444 | 0.8118 | 0.9187 |
6 | 1.4 | 0.1471 | 0.6062 | 0.8465 | 0.9359 | 6 | 1.4 | 0.0734 | 0.4833 | 0.7766 | 0.9020 |
5 | 1.6 | 0.1437 | 0.6000 | 0.8442 | 0.9355 | 5 | 1.6 | 0.0720 | 0.4763 | 0.7729 | 0.9009 |
n | a | n | a | ||||||||
2 | 3 | 4 | 5 | 2 | 3 | 4 | 5 | ||||
12 | 0.4 | 0.7467 | 0.9411 | 0.9818 | 0.9929 | 12 | 0.4 | 0.5057 | 0.8548 | 0.9512 | 0.9804 |
10 | 0.6 | 0.4433 | 0.8284 | 0.9419 | 0.9767 | 10 | 0.6 | 0.1729 | 0.6321 | 0.8551 | 0.9379 |
9 | 0.8 | 0.1895 | 0.6518 | 0.8659 | 0.9433 | 9 | 0.8 | 0.0347 | 0.3748 | 0.6978 | 0.8573 |
7 | 1.0 | 0.1332 | 0.5875 | 0.8354 | 0.9301 | 7 | 1.0 | 0.0186 | 0.2999 | 0.6390 | 0.8252 |
6 | 1.2 | 0.0788 | 0.4948 | 0.7838 | 0.9056 | 6 | 1.2 | 0.0077 | 0.2122 | 0.5514 | 0.7710 |
5 | 1.4 | 0.0663 | 0.4627 | 0.7642 | 0.8965 | 5 | 1.4 | 0.0061 | 0.1873 | 0.5203 | 0.7504 |
4 | 1.6 | 0.0921 | 0.5082 | 0.7922 | 0.9111 | 4 | 1.6 | 0.0117 | 0.2286 | 0.5638 | 0.7796 |
n | a | n | a | ||||||||
2 | 3 | 4 | 5 | 2 | 3 | 4 | 5 | ||||
16 | 0.4 | 0.9284 | 0.9910 | 0.9982 | 0.9995 | 16 | 0.4 | 0.8931 | 0.9856 | 0.9970 | 0.9992 |
12 | 0.6 | 0.7856 | 0.9662 | 0.9926 | 0.9979 | 12 | 0.6 | 0.7025 | 0.9479 | 0.9881 | 0.9965 |
10 | 0.8 | 0.5815 | 0.9157 | 0.9798 | 0.9939 | 10 | 0.8 | 0.4634 | 0.8748 | 0.9683 | 0.9902 |
9 | 1.0 | 0.3523 | 0.8254 | 0.9533 | 0.9852 | 9 | 1.0 | 0.2363 | 0.7529 | 0.9286 | 0.9766 |
7 | 1.2 | 0.2922 | 0.7937 | 0.9433 | 0.9819 | 7 | 1.2 | 0.1839 | 0.7115 | 0.9140 | 0.9714 |
6 | 1.4 | 0.2085 | 0.7349 | 0.9231 | 0.9748 | 6 | 1.4 | 0.1180 | 0.6380 | 0.8848 | 0.9606 |
5 | 1.6 | 0.1814 | 0.7115 | 0.9150 | 0.9720 | 5 | 1.6 | 0.0986 | 0.6093 | 0.8730 | 0.9562 |
n | a | n | a | ||||||||
2 | 3 | 4 | 5 | 2 | 3 | 4 | 5 | ||||
12 | 0.4 | 0.9087 | 0.9881 | 0.9976 | 0.9993 | 12 | 0.4 | 0.7907 | 0.9673 | 0.9929 | 0.9979 |
10 | 0.6 | 0.6803 | 0.9429 | 0.9869 | 0.9961 | 10 | 0.6 | 0.4293 | 0.8609 | 0.9642 | 0.9888 |
9 | 0.8 | 0.3767 | 0.8377 | 0.9572 | 0.9865 | 9 | 0.8 | 0.1381 | 0.6595 | 0.8923 | 0.9631 |
7 | 1.0 | 0.2613 | 0.7736 | 0.9365 | 0.9795 | 7 | 1.0 | 0.0702 | 0.5552 | 0.8462 | 0.9450 |
6 | 1.2 | 0.1517 | 0.6800 | 0.9021 | 0.9671 | 6 | 1.2 | 0.0268 | 0.4249 | 0.7751 | 0.9147 |
5 | 1.4 | 0.1109 | 0.6283 | 0.8813 | 0.9594 | 5 | 1.4 | 0.0158 | 0.3619 | 0.7342 | 0.8963 |
4 | 1.6 | 0.1244 | 0.6443 | 0.8887 | 0.9625 | 4 | 1.6 | 0.0202 | 0.3810 | 0.7474 | 0.9029 |
a0 | p | a0 | p | ||||||||||
2 | 4 | 2 | 4 | ||||||||||
c1,c2 | n1,n2 | c1,c2 | n1,n2 | c1,c2 | n1,n2 | c1,c2 | n1,n2 | ||||||
0.75 | 0.75 | 0.01 | 2,5 | 15,13 | 1,3 | 14,10 | 0.75 | 0.75 | 0.01 | 2,6 | 18,15 | 2,3 | 17,14 |
0.05 | 2,5 | 15,13 | 1,4 | 13,10 | 0.05 | 2,5 | 16,13 | 2,4 | 15,10 | ||||
0.10 | 2,5 | 12,8 | 1,3 | 11,9 | 0.10 | 2,5 | 12,9 | 1,3 | 12,7 | ||||
0.90 | 0.01 | 3,5 | 15,8 | 2,3 | 18,7 | 0.90 | 0.01 | 3,6 | 16,10 | 2,4 | 21,13 | ||
0.05 | 2,5 | 14,8 | 2,4 | 16,12 | 0.05 | 2,6 | 14,9 | 2,3 | 18,12 | ||||
0.10 | 2,6 | 12,10 | 1,3 | 14,10 | 0.10 | 3,6 | 13,10 | 1,4 | 15,11 | ||||
0.95 | 0.01 | 3,7 | 12,10 | 1,3 | 15,11 | 0.95 | 0.01 | 4,7 | 13,9 | 1,3 | 19,11 | ||
0.05 | 2,6 | 10,9 | 1,3 | 13,10 | 0.05 | 2,5 | 11,9 | 1,3 | 16,10 | ||||
0.10 | 1,6 | 9,8 | 1,2 | 10,9 | 0.10 | 2,6 | 10,9 | 1,2 | 12,9 | ||||
0.95 | 0.75 | 0.01 | 1,7 | 12,10 | 1,3 | 11,8 | 0.95 | 0.75 | 0.01 | 1,7 | 12,10 | 1,3 | 14,9 |
0.05 | 1,6 | 10,9 | 1,3 | 11,7 | 0.05 | 1,6 | 10,9 | 1,3 | 13,7 | ||||
0.10 | 1,5 | 9,6 | 1,3 | 9,8 | 0.10 | 1,5 | 9,6 | 1,3 | 11,8 | ||||
0.90 | 0.01 | 2,6 | 11,9 | 2,4 | 9,8 | 0.90 | 0.01 | 2,6 | 11,9 | 2,4 | 16,10 | ||
0.05 | 1,6 | 10,8 | 1,3 | 9,7 | 0.05 | 1,6 | 10,8 | 1,3 | 14,9 | ||||
0.10 | 1,5 | 9,8 | 1,3 | 9,7 | 0.10 | 1,5 | 9,8 | 1,3 | 13,8 | ||||
0.95 | 0.01 | 1,5 | 10,9 | 1,3 | 11,7 | 0.95 | 0.01 | 1,5 | 10,9 | 1,3 | 14,9 | ||
0.05 | 1,4 | 9,7 | 1,3 | 10,7 | 0.05 | 1,4 | 9,7 | 1,3 | 13,7 | ||||
0.10 | 1,2 | 8,7 | 1,3 | 9,6 | 0.10 | 1,2 | 8,7 | 1,3 | 11,7 | ||||
a0 | p | a0 | p | ||||||||||
2 | 4 | 2 | 4 | ||||||||||
c1,c2 | n1,n2 | c1,c2 | n1,n2 | c1,c2 | n1,n2 | c1,c2 | n1,n2 | ||||||
0.75 | 0.75 | 0.01 | 4,9 | 19,14 | 3,8 | 17,12 | 0.75 | 0.75 | 0.01 | 5,9 | 22,16 | 4,9 | 20,15 |
0.05 | 4,8 | 18,13 | 3,6 | 17,11 | 0.05 | 5,9 | 21,16 | 3,8 | 20,14 | ||||
0.10 | 3,7 | 17,12 | 2,5 | 15,11 | 0.10 | 4,8 | 18,12 | 3,6 | 19,14 | ||||
0.90 | 0.01 | 3,8 | 19,11 | 2,7 | 17,10 | 0.90 | 0.01 | 3,9 | 22,12 | 2,7 | 20,14 | ||
0.05 | 3,7 | 18,13 | 1,5 | 16,12 | 0.05 | 3,9 | 21,11 | 2,6 | 19,14 | ||||
0.10 | 2,6 | 18,13 | 2,5 | 17,11 | 0.10 | 2,8 | 20,10 | 2,6 | 19,13 | ||||
0.95 | 0.01 | 2,5 | 18,9 | 1,5 | 16,9 | 0.95 | 0.01 | 2,6 | 22,11 | 2,5 | 21,13 | ||
0.05 | 2,5 | 17,9 | 1,4 | 15,8 | 0.05 | 2,6 | 22,10 | 2,5 | 20,12 | ||||
0.10 | 2,4 | 17,8 | 1,4 | 14,8 | 0.10 | 2,5 | 21,9 | 1,5 | 19,13 | ||||
0.95 | 0.75 | 0.01 | 2,7 | 18,11 | 2,6 | 16,9 | 0.95 | 0.75 | 0.01 | 2,8 | 21,9 | 2,4 | 21,13 |
0.05 | 2,7 | 17,11 | 2,6 | 14,9 | 0.05 | 1,7 | 21,9 | 2,4 | 19,11 | ||||
0.10 | 1,6 | 16,10 | 1,5 | 14,8 | 0.10 | 1,7 | 21,9 | 2,3 | 17,12 | ||||
0.90 | 0.01 | 2,6 | 17,10 | 2,5 | 14,9 | 0.90 | 0.01 | 1,8 | 19,10 | 2,4 | 14,9 | ||
0.05 | 1,6 | 17,10 | 1,5 | 15,9 | 0.05 | 1,7 | 19,9 | 2,4 | 13,9 | ||||
0.10 | 1,6 | 16,9 | 1,5 | 15,7 | 0.10 | 1,7 | 19,9 | 1,3 | 13,8 | ||||
0.95 | 0.01 | 1,5 | 17,11 | 1,4 | 14,8 | 0.95 | 0.01 | 1,6 | 18,9 | 1,3 | 10,8 | ||
0.05 | 1,4 | 17,10 | 1,3 | 15,7 | 0.05 | 1,5 | 18,9 | 1,3 | 9,7 | ||||
0.10 | 1,4 | 16,9 | 1,3 | 12,7 | 0.10 | 1,5 | 17,9 | 1,3 | 9,7 |
References
- Sobel, M.; Tischendrof, J.A. Acceptance sampling with new life test objectives. In Proceedings of the Fifth National Symposium on Reliability and Quality Control, Philadelphia, PA, USA, 1959; pp. 108–118. Available online: http://www.oalib.com/references/13860171 (accessed on 19 September 2018).
- Feigenbaum, V. Total Quality Control, 3rd ed.; McGraw-Hill: New York, NY, USA, 1991. [Google Scholar]
- Montgomery, D.C. Introduction to Statistical Quality Control, 6th ed.; John Wiley: New York, NY, USA, 2009. [Google Scholar]
- Goode, H.P.; Kao, J.H.K. Sampling plans based on the Weibull distribution. In Proceedings of the Seventh National Symposium on Reliability and Quality Control, Philadelphia, PA, USA, 9–11 January 1961; pp. 24–40. [Google Scholar]
- Gupta, S.S.; Groll, P.A. Gamma distribution in acceptance sampling based on life tests. J. Am. Stat. Assoc. 1961, 56, 942–970. [Google Scholar] [CrossRef]
- Kantam, R.R.L.; Rosaiah, K.; Srinivasa Rao, G. Acceptance sampling based on life test: Log-Logistic model. J. App. Stat. 2001, 28, 121–128. [Google Scholar] [CrossRef]
- Tsai, T.R.; Wu, S.J. Acceptance sampling based on truncated life tests for generalized Rayleigh distribution. J. App. Stat. 2006, 33, 595–600. [Google Scholar] [CrossRef]
- Al-Nasser, A.D.; Al-Omari, A.I. Acceptance sampling plan based on truncated life tests for exponentiated Frechet distribution. J. Stat. Manag. Syst. 2013, 16, 13–24. [Google Scholar] [CrossRef]
- Dumicic, K.; Zmuk, B. Decision making based on single and double acceptance sampling plans for assessing quality of lots. Bus. Syst. Res. 2012, 3, 27–40. [Google Scholar]
- Ghitany, M.E.; Al-Mutairi, D.K.; Balakrishnan, N.; Al-Enezi, L.J. Power Lindley distribution and associated inference. Comput. Stat. Data Anal. 2013, 64, 20–33. [Google Scholar] [CrossRef]
- Gradshteyn, S.; Ryzhik, I.M. Table of Integrals, Series, and Products; John Wiley: New York, NY, USA, 2007. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shahbaz, S.H.; Khan, K.; Shahbaz, M.Q. Acceptance Sampling Plans for Finite and Infinite Lot Size under Power Lindley Distribution. Symmetry 2018, 10, 496. https://doi.org/10.3390/sym10100496
Shahbaz SH, Khan K, Shahbaz MQ. Acceptance Sampling Plans for Finite and Infinite Lot Size under Power Lindley Distribution. Symmetry. 2018; 10(10):496. https://doi.org/10.3390/sym10100496
Chicago/Turabian StyleShahbaz, Saman Hanif, Khushnoor Khan, and Muhammad Qaiser Shahbaz. 2018. "Acceptance Sampling Plans for Finite and Infinite Lot Size under Power Lindley Distribution" Symmetry 10, no. 10: 496. https://doi.org/10.3390/sym10100496
APA StyleShahbaz, S. H., Khan, K., & Shahbaz, M. Q. (2018). Acceptance Sampling Plans for Finite and Infinite Lot Size under Power Lindley Distribution. Symmetry, 10(10), 496. https://doi.org/10.3390/sym10100496