Therapeutic and Diagnostic Antibodies to CD146: Thirty Years of Research on Its Potential for Detection and Treatment of Tumors
Abstract
:1. Introduction
2. Description and Cellular Localization of CD146
2.1. Genomic Description of CD146
2.2. CD146 Protein Structure and Isoforms
2.3. Cellular Localization of CD146
3. CD146 in Cancer Cells
4. CD146 in Angiogenesis; Immunity and Inflammation
5. Approaches for Therapeutic Targeting of CD146
6. New Approaches for Theranostic Targeting of CD146
7. Conclusions
Conflicts of Interest
References
- Lehmann, J.M.; Holzmann, B.; Breitbart, E.W.; Schmiegelow, P.; Riethmüller, G.; Johnson, J.P. Discrimination between benign and malignant cells of melanocytic lineage by two novel antigens, a glycoprotein with a molecular weight of 113,000 and a protein with a molecular weight of 76,000. Cancer Res. 1987, 47, 841–845. [Google Scholar] [PubMed]
- Bardin, N.; Francès, V.; Combes, V.; Sampol, J.; Dignat-George, F. CD146: Biosynthesis and production of a soluble form in human cultured endothelial cells. FEBS Lett. 1998, 421, 12–14. [Google Scholar] [CrossRef]
- Kebir, A.; Harhouri, K.; Guillet, B.; Liu, J.W.; Foucault-Bertaud, A.; Lamy, E.; Kaspi, E.; Elganfoud, N.; Vely, F.; Sabatier, F.; et al. CD146 short isoform increases the proangiogenic potential of endothelial progenitor cells in vitro and in vivo. Circ. Res. 2010, 107, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Stalin, J.; Nollet, M.; Garigue, P.; Fernandez, S.; Vivancos, L.; Essaadi, A.; Muller, A.; Bachelier, R.; Foucault-Bertaud, A.; Fugazza, L.; et al. Targeting soluble CD146 with a neutralizing antibody inhibits vascularization, growth and survival of CD146-positive tumors. Oncogene 2016, 35, 5489–5500. [Google Scholar] [CrossRef] [PubMed]
- Harhouri, K.; Kebir, A.; Guillet, B.; Foucault-Bertaud, A.; Voytenko, S.; Piercecchi-Marti, M.-D.; Berenguer, C.; Lamy, E.; Vely, F.; Pisano, P.; et al. Soluble CD146 displays angiogenic properties and promotes neovascularization in experimental hind-limb ischemia. Blood 2010, 115, 3843–3851. [Google Scholar] [CrossRef] [PubMed]
- Bardin, N.; Blot-Chabaud, M.; Despoix, N.; Kebir, A.; Harhouri, K.; Arsanto, J.-P.; Espinosa, L.; Perrin, P.; Robert, S.; Vely, F.; et al. CD146 and its soluble form regulate monocyte transendothelial migration. Arterioscler. Thromb. Vasc. Biol. 2009, 29, 746–753. [Google Scholar] [CrossRef] [PubMed]
- George, F.; Poncelet, P.; Laurent, J.C.; Massot, O.; Arnoux, D.; Lequeux, N.; Ambrosi, P.; Chicheportiche, C.; Sampol, J. Cytofluorometric detection of human endothelial cells in whole blood using S-Endo 1 monoclonal antibody. J. Immunol. Methods 1991, 139, 65–75. [Google Scholar] [CrossRef]
- Mills, L.; Tellez, C.; Huang, S.; Baker, C.; McCarty, M.; Green, L.; Gudas, J.M.; Feng, X.; Bar-Eli, M. Fully human antibodies to MCAM/MUC18 inhibit tumor growth and metastasis of human melanoma. Cancer Res. 2002, 62, 5106–5114. [Google Scholar] [PubMed]
- Yan, X.; Lin, Y.; Yang, D.; Shen, Y.; Yuan, M.; Zhang, Z.; Li, P.; Xia, H.; Li, L.; Luo, D.; et al. A novel anti-CD146 monoclonal antibody, AA98, inhibits angiogenesis and tumor growth. Blood 2003, 102, 184–191. [Google Scholar] [CrossRef] [PubMed]
- Nollet, M.; Stalin, J.; Moyon, A.; Traboulsi, W.; Essaadi, A.; Robert, S.; Malissen, N.; Bachelier, R.; Daniel, L.; Foucault-Bertaud, A.; et al. A novel anti-CD146 antibody specifically targets cancer cells by internalizing the molecule. Oncotarget. in revision.
- Westrøm, S.; Bønsdorff, T.B.; Abbas, N.; Bruland, Ø.S.; Jonasdottir, T.J.; Mælandsmo, G.M.; Larsen, R.H. Evaluation of CD146 as Target for Radioimmunotherapy against Osteosarcoma. PLoS ONE 2016, 11, e0165382. [Google Scholar] [CrossRef] [PubMed]
- Vainio, O.; Dunon, D.; Aïssi, F.; Dangy, J.P.; McNagny, K.M.; Imhof, B.A. HEMCAM, an adhesion molecule expressed by c-kit+ hemopoietic progenitors. J. Cell Biol. 1996, 135, 1655–1668. [Google Scholar] [CrossRef] [PubMed]
- Bu, P.; Zhuang, J.; Feng, J.; Yang, D.; Shen, X.; Yan, X. Visualization of CD146 dimerization and its regulation in living cells. Biochim. Biophys. Acta BBA-Mol. Cell Res. 2007, 1773, 513–520. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Hernandez, R.; Rao, J.; Yin, L.; Qu, Y.; Wu, J.; England, C.G.; Graves, S.A.; Lewis, C.M.; Wang, P.; et al. Targeting CD146 with a 64Cu-labeled antibody enables in vivo immunoPET imaging of high-grade gliomas. Proc. Natl. Acad. Sci. U.S.A. 2015. [Google Scholar] [CrossRef] [PubMed]
- Sers, C.; Kirsch, K.; Rothbächer, U.; Riethmüller, G.; Johnson, J.P. Genomic organization of the melanoma-associated glycoprotein MUC18: Implications for the evolution of the immunoglobulin domains. Proc. Natl. Acad. Sci. USA 1993, 90, 8514–8518. [Google Scholar] [CrossRef] [PubMed]
- Mintz-Weber, C.S.; Johnson, J.P. Identification of the elements regulating the expression of the cell adhesion molecule MCAM/MUC18. Loss of AP-2 is not required for MCAM expression in melanoma cell lines. J. Biol. Chem. 2000, 275, 34672–34680. [Google Scholar] [CrossRef] [PubMed]
- Jean, D.; Gershenwald, J.E.; Huang, S.; Luca, M.; Hudson, M.J.; Tainsky, M.A.; Bar-Eli, M. Loss of AP-2 results in upregulation of MCAM/MUC18 and an increase in tumor growth and metastasis of human melanoma cells. J. Biol. Chem. 1998, 273, 16501–16508. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.; Price, J.E.; Luca, M.; Jean, D.; Ronai, Z.; Bar-Eli, M. Dominant-negative CREB inhibits tumor growth and metastasis of human melanoma cells. Oncogene 1997, 15, 2069–2075. [Google Scholar] [CrossRef] [PubMed]
- Kijima, N.; Hosen, N.; Kagawa, N.; Hashimoto, N.; Nakano, A.; Fujimoto, Y.; Kinoshita, M.; Sugiyama, H.; Yoshimine, T. CD166/activated leukocyte cell adhesion molecule is expressed on glioblastoma progenitor cells and involved in the regulation of tumor cell invasion. Neuro Oncol. 2012, 14, 1254–1264. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Wang, S.; Liu, Z.; Wu, M.H.; McAlpine, B.; Ansel, J.; Armstrong, C.; Wu, G. Isolation and characterization of mouse MUC18 cDNA gene, and correlation of MUC18 expression in mouse melanoma cell lines with metastatic ability. Gene 2001, 265, 133–145. [Google Scholar] [CrossRef]
- Feng, G.; Huang, H.-B.; Ye, X.-B.; Zhang, P.; Huang, J.-J.; Huang, L.-Z.; Cheng, L.; Pu, C.; Li, G. CD146 Promoter Polymorphism (rs3923594) Is Associated with Recurrence of Clear Cell Renal Cell Carcinoma in Chinese Population. Dis. Markers 2017, 2017, 2543059. [Google Scholar] [CrossRef] [PubMed]
- Schön, M.; Kähne, T.; Gollnick, H.; Schön, M.P. Expression of gp130 in tumors and inflammatory disorders of the skin: Formal proof of its identity as CD146 (MUC18, Mel-CAM). J. Investig. Dermatol. 2005, 125, 353–363. [Google Scholar] [CrossRef] [PubMed]
- Ihnen, M.; Kilic, E.; Köhler, N.; Löning, T.; Witzel, I.; Hagel, C.; Höller, S.; Kersten, J.F.; Müller, V.; Jänicke, F.; et al. Protein expression analysis of ALCAM and CEACAM6 in breast cancer metastases reveals significantly increased ALCAM expression in metastases of the skin. J. Clin. Pathol. 2011, 64, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Taira, E.; Nagino, T.; Taniura, H.; Takaha, N.; Kim, C.H.; Kuo, C.H.; Li, B.S.; Higuchi, H.; Miki, N. Expression and functional analysis of a novel isoform of gicerin, an immunoglobulin superfamily cell adhesion molecule. J. Biol. Chem. 1995, 270, 28681–28687. [Google Scholar] [CrossRef] [PubMed]
- Bardin, N.; Moal, V.; Anfosso, F.; Daniel, L.; Brunet, P.; Sampol, J.; Dignat George, F. Soluble CD146, a novel endothelial marker, is increased in physiopathological settings linked to endothelial junctional alteration. Thromb. Haemost. 2003, 90, 915–920. [Google Scholar] [CrossRef] [PubMed]
- Boneberg, E.-M.; Illges, H.; Legler, D.F.; Fürstenberger, G. Soluble CD146 is generated by ectodomain shedding of membrane CD146 in a calcium-induced, matrix metalloprotease-dependent process. Microvasc. Res. 2009, 78, 325–331. [Google Scholar] [CrossRef] [PubMed]
- Guezguez, B.; Vigneron, P.; Alais, S.; Jaffredo, T.; Gavard, J.; Mège, R.-M.; Dunon, D. A dileucine motif targets MCAM-l cell adhesion molecule to the basolateral membrane in MDCK cells. FEBS Lett. 2006, 580, 3649–3656. [Google Scholar] [CrossRef] [PubMed]
- Bardin, N.; Anfosso, F.; Massé, J.M.; Cramer, E.; Sabatier, F.; Le Bivic, A.; Sampol, J.; Dignat-George, F. Identification of CD146 as a component of the endothelial junction involved in the control of cell-cell cohesion. Blood 2001, 98, 3677–3684. [Google Scholar] [CrossRef] [PubMed]
- Okumura, S.; Muraoka, O.; Tsukamoto, Y.; Tanaka, H.; Kohama, K.; Miki, N.; Taira, E. Involvement of gicerin in the extension of microvilli. Exp. Cell Res. 2001, 271, 269–276. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.-Q.; Wang, W.-M.; Gan, S.-L.; Chen, S.-M.; Zhang, Q.-T.; Xie, X.-S.; Liu, Y.-F.; Cheng, Y.-D.; Liu, Y.-F.; Xu, X.-J.; et al. Expression of CD146 in Adult and Children’s Acute B Cell Lymphoblastic Leukemia and Its Significance. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2017, 25, 30–34. [Google Scholar] [PubMed]
- Liu, J.-W.; Nagpal, J.K.; Jeronimo, C.; Lee, J.E.; Henrique, R.; Kim, M.S.; Ostrow, K.L.; Yamashita, K.; van Criekinge, V.; Wu, G.; et al. Hypermethylation of MCAM gene is associated with advanced tumor stage in prostate cancer. Prostate 2008, 68, 418–426. [Google Scholar] [CrossRef] [PubMed]
- Luca, M.; Hunt, B.; Bucana, C.D.; Johnson, J.P.; Fidler, I.J.; Bar-Eli, M. Direct correlation between MUC18 expression and metastatic potential of human melanoma cells. Melanoma Res. 1993, 3, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Schlagbauer-Wadl, H.; Jansen, B.; Müller, M.; Polterauer, P.; Wolff, K.; Eichler, H.G.; Pehamberger, H.; Konak, E.; Johnson, J.P. Influence of MUC18/MCAM/CD146 expression on human melanoma growth and metastasis in SCID mice. Int. J. Cancer 1999, 81, 951–955. [Google Scholar] [CrossRef]
- Xie, S.; Luca, M.; Huang, S.; Gutman, M.; Reich, R.; Johnson, J.P.; Bar-Eli, M. Expression of MCAM/MUC18 by human melanoma cells leads to increased tumor growth and metastasis. Cancer Res. 1997, 57, 2295–2303. [Google Scholar] [PubMed]
- Watson-Hurst, K.; Becker, D. The role of N-cadherin, MCAM and beta3 integrin in melanoma progression, proliferation, migration and invasion. Cancer Biol. Ther. 2006, 5, 1375–1382. [Google Scholar] [CrossRef] [PubMed]
- Rapanotti, M.C.; Bianchi, L.; Ricozzi, I.; Campione, E.; Pierantozzi, A.; Orlandi, A.; Chimenti, S.; Federici, G.; Bernardini, S. Melanoma-associated markers expression in blood: MUC-18 is associated with advanced stages in melanoma patients. Br. J. Dermatol. 2009, 160, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Pearl, R.A.; Pacifico, M.D.; Richman, P.I.; Wilson, G.D.; Grover, R. Stratification of patients by melanoma cell adhesion molecule (MCAM) expression on the basis of risk: Implications for sentinel lymph node biopsy. J. Plast. Reconstr. Aesthet. Surg. 2008, 61, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.-J.; Peng, Q.; Fu, P.; Wang, S.-W.; Chiang, C.-F.; Dillehay, D.L.; Wu, M.-W.H. Ectopical expression of human MUC18 increases metastasis of human prostate cancer cells. Gene 2004, 327, 201–213. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Wu, Z.; Li, J.; Yang, X.; Wang, Y.; Yu, Y.; Ye, J.; Xu, C.; Qin, W.; Zhang, Z. MCAM is a novel metastasis marker and regulates spreading, apoptosis and invasion of ovarian cancer cells. Tumour Biol. 2012, 33, 1619–1628. [Google Scholar] [CrossRef] [PubMed]
- Shih, L.M.; Hsu, M.Y.; Palazzo, J.P.; Herlyn, M. The cell-cell adhesion receptor Mel-CAM acts as a tumor suppressor in breast carcinoma. Am. J. Pathol. 1997, 151, 745–751. [Google Scholar] [PubMed]
- Zabouo, G.; Imbert, A.-M.; Jacquemier, J.; Finetti, P.; Moreau, T.; Esterni, B.; Birnbaum, D.; Bertucci, F.; Chabannon, C. CD146 expression is associated with a poor prognosis in human breast tumors and with enhanced motility in breast cancer cell lines. Breast Cancer Res. 2009, 11, R1. [Google Scholar] [CrossRef] [PubMed]
- Zeng, G.; Cai, S.; Liu, Y.; Wu, G.-J. METCAM/MUC18 augments migration, invasion, and tumorigenicity of human breast cancer SK-BR-3 cells. Gene 2012, 492, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.-F.; Ji, S.-R.; Sun, J.-J.; Zhang, Y.; Liu, Z.-Y.; Liang, A.-B.; Zeng, H.-Z. CD146 expression correlates with epithelial-mesenchymal transition markers and a poor prognosis in gastric cancer. Int. J. Mol. Sci. 2012, 13, 6399–6406. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.-K.; Zeng, D.; Xiao, Y.-S.; Wu, Y.; Ouyang, Y.-X.; Chen, M.; Li, Y.-C.; Lin, H.-Y.; Wei, X.-L.; Zhang, Y.-Q.; et al. MCAM/CD146 promotes tamoxifen resistance in breast cancer cells through induction of epithelial-mesenchymal transition, decreased ERα expression and AKT activation. Cancer Lett. 2017, 386, 65–76. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Q.; Li, W.; Lu, D.; Wu, Z.; Duan, H.; Luo, Y.; Feng, J.; Yang, D.; Fu, L.; Yan, X. CD146, an epithelial-mesenchymal transition inducer, is associated with triple-negative breast cancer. Proc. Natl. Acad. Sci. USA 2012, 109, 1127–1132. [Google Scholar] [CrossRef] [PubMed]
- Staquicini, F.I.; Tandle, A.; Libutti, S.K.; Sun, J.; Zigler, M.; Bar-Eli, M.; Aliperti, F.; Pérez, E.C.; Gershenwald, J.E.; Mariano, M.; et al. A subset of host B lymphocytes controls melanoma metastasis through a melanoma cell adhesion molecule/MUC18-dependent interaction: Evidence from mice and humans. Cancer Res. 2008, 68, 8419–8428. [Google Scholar] [CrossRef] [PubMed]
- Ilie, M.; Long, E.; Hofman, V.; Selva, E.; Bonnetaud, C.; Boyer, J.; Vénissac, N.; Sanfiorenzo, C.; Ferrua, B.; Marquette, C.-H.; et al. Clinical value of circulating endothelial cells and of soluble CD146 levels in patients undergoing surgery for non-small cell lung cancer. Br. J. Cancer 2014, 110, 1236–1243. [Google Scholar] [CrossRef] [PubMed]
- Wellbrock, J.; Fiedler, W. CD146: A new partner for VEGFR2. Blood 2012, 120, 2164–2165. [Google Scholar] [CrossRef] [PubMed]
- Stalin, J.; Harhouri, K.; Hubert, L.; Garrigue, P.; Nollet, M.; Essaadi, A.; Muller, A.; Foucault-Bertaud, A.; Bachelier, R.; Sabatier, F.; et al. Soluble CD146 boosts therapeutic effect of endothelial progenitors through proteolytic processing of short CD146 isoform. Cardiovasc. Res. 2016, 111, 240–251. [Google Scholar] [CrossRef] [PubMed]
- Stalin, J.; Harhouri, K.; Hubert, L.; Subrini, C.; Lafitte, D.; Lissitzky, J.-C.; Elganfoud, N.; Robert, S.; Foucault-Bertaud, A.; Kaspi, E.; et al. Soluble melanoma cell adhesion molecule (sMCAM/sCD146) promotes angiogenic effects on endothelial progenitor cells through angiomotin. J. Biol. Chem. 2013, 288, 8991–9000. [Google Scholar] [CrossRef] [PubMed]
- Colomb, F.; Wang, W.; Simpson, D.; Zafar, M.; Beynon, R.; Rhodes, J.M.; Yu, L.-G. Galectin-3 interacts with the cell-surface glycoprotein CD146 (MCAM, MUC18) and induces secretion of metastasis-promoting cytokines from vascular endothelial cells. J. Biol. Chem. 2017, 292, 8381–8389. [Google Scholar] [CrossRef] [PubMed]
- Elshal, M.F.; Khan, S.S.; Takahashi, Y.; Solomon, M.A.; McCoy, J.P. CD146 (Mel-CAM), an adhesion marker of endothelial cells, is a novel marker of lymphocyte subset activation in normal peripheral blood. Blood 2005, 106, 2923–2924. [Google Scholar] [CrossRef] [PubMed]
- Pickl, W.F.; Majdic, O.; Fischer, G.F.; Petzelbauer, P.; Faé, I.; Waclavicek, M.; Stöckl, J.; Scheinecker, C.; Vidicki, T.; Aschauer, H.; et al. MUC18/MCAM (CD146), an activation antigen of human T lymphocytes. J. Immunol. 1997, 158, 2107–2115. [Google Scholar] [PubMed]
- Despoix, N.; Walzer, T.; Jouve, N.; Blot-Chabaud, M.; Bardin, N.; Paul, P.; Lyonnet, L.; Vivier, E.; Dignat-George, F.; Vély, F. Mouse CD146/MCAM is a marker of natural killer cell maturation. Eur. J. Immunol. 2008, 38, 2855–2864. [Google Scholar] [CrossRef] [PubMed]
- Elshal, M.F.; Khan, S.S.; Raghavachari, N.; Takahashi, Y.; Barb, J.; Bailey, J.J.; Munson, P.J.; Solomon, M.A.; Danner, R.L.; McCoy, J.P. A unique population of effector memory lymphocytes identified by CD146 having a distinct immunophenotypic and genomic profile. BMC Immunol. 2007, 8, 29. [Google Scholar] [CrossRef] [PubMed]
- Solovey, A.N.; Gui, L.; Chang, L.; Enenstein, J.; Browne, P.V.; Hebbel, R.P. Identification and functional assessment of endothelial P1H12. J. Lab. Clin. Med. 2001, 138, 322–331. [Google Scholar] [CrossRef] [PubMed]
- Kamiyama, T.; Watanabe, H.; Iijima, M.; Miyazaki, A.; Iwamoto, S. Coexpression of CCR6 and CD146 (MCAM) is a marker of effector memory T-helper 17 cells. J. Dermatol. 2012, 39, 838–842. [Google Scholar] [CrossRef] [PubMed]
- Sers, C.; Riethmüller, G.; Johnson, J.P. MUC18, a melanoma-progression associated molecule, and its potential role in tumor vascularization and hematogenous spread. Cancer Res. 1994, 54, 5689–5694. [Google Scholar] [PubMed]
- Bardin, N.; George, F.; Mutin, M.; Brisson, C.; Horschowski, N.; Francés, V.; Lesaule, G.; Sampol, J. S-Endo 1, a pan-endothelial monoclonal antibody recognizing a novel human endothelial antigen. Tissue Antigens 1996, 48, 531–539. [Google Scholar] [CrossRef] [PubMed]
- Bardin, N.; Francès, V.; Lesaule, G.; Horschowski, N.; George, F.; Sampol, J. Identification of the S-Endo 1 endothelial-associated antigen. Biochem. Biophys. Res. Commun. 1996, 218, 210–216. [Google Scholar] [CrossRef] [PubMed]
- McGary, E.C.; Heimberger, A.; Mills, L.; Weber, K.; Thomas, G.W.; Shtivelband, M.; Lev, D.C.; Bar-Eli, M. A fully human antimelanoma cellular adhesion molecule/MUC18 antibody inhibits spontaneous pulmonary metastasis of osteosarcoma cells in vivo. Clin. Cancer Res. 2003, 9, 6560–6566. [Google Scholar] [PubMed]
- Bu, P.; Gao, L.; Zhuang, J.; Feng, J.; Yang, D.; Yan, X. Anti-CD146 monoclonal antibody AA98 inhibits angiogenesis via suppression of nuclear factor-kappaB activation. Mol. Cancer Ther. 2006, 5, 2872–2878. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zheng, C.; Zhang, J.; Yang, D.; Feng, J.; Lu, D.; Yan, X. Generation and characterization of a panel of monoclonal antibodies against distinct epitopes of human CD146. Hybrid 2008, 27, 345–352. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Zhuang, J.; Duan, H.; Luo, Y.; Zeng, Q.; Fan, K.; Yan, H.; Lu, D.; Ye, Z.; Hao, J.; et al. CD146 is a coreceptor for VEGFR-2 in tumor angiogenesis. Blood 2012, 120, 2330–2339. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Wang, J.; Liu, J.; Mo, Q.; Yan, X.; Ma, D.; Duan, H. Targeting CD146 in combination with vorinostat for the treatment of ovarian cancer cells. Oncol. Lett. 2017, 13, 1681–1687. [Google Scholar] [CrossRef] [PubMed]
- Zeng, P.; Li, H.; Lu, P.-H.; Zhou, L.-N.; Tang, M.; Liu, C.-Y.; Chen, M.-B. Prognostic value of CD146 in solid tumor: A Systematic Review and Meta-analysis. Sci. Rep. 2017, 7, 4223. [Google Scholar] [CrossRef] [PubMed]
- Alam, I.S.; Arshad, M.A.; Nguyen, Q.-D.; Aboagye, E.O. Radiopharmaceuticals as probes to characterize tumour tissue. Eur. J. Nucl. Med. Mol. Imaging 2015, 42, 537–561. [Google Scholar] [CrossRef] [PubMed]
- Van Dongen, G.A.; Visser, G.W.; Lub-de Hooge, M.N.; de Vries, E.G.; Perk, L.R. Immuno-PET: A navigator in monoclonal antibody development and applications. Oncologist 2007, 12, 1379–1389. [Google Scholar] [CrossRef] [PubMed]
- Kraeber-Bodere, F.; Bailly, C.; Chérel, M.; Chatal, J.-F. ImmunoPET to help stratify patients for targeted therapies and to improve drug development. Eur. J. Nucl. Med. Mol. Imaging 2016, 43, 2166–2168. [Google Scholar] [CrossRef] [PubMed]
- Rahmim, A.; Zaidi, H. PET versus SPECT: Strengths, limitations and challenges. Nucl. Med. Commun. 2008, 29, 193–207. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, R.; Sun, H.; England, C.G.; Valdovinos, H.F.; Ehlerding, E.B.; Barnhart, T.E.; Yang, Y.; Cai, W. CD146-targeted immunoPET and NIRF Imaging of Hepatocellular Carcinoma with a Dual-Labeled Monoclonal Antibody. Theranostics 2016, 6, 1918–1933. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, R.; Sun, H.; England, C.G.; Valdovinos, H.F.; Barnhart, T.E.; Yang, Y.; Cai, W. ImmunoPET Imaging of CD146 Expression in Malignant Brain Tumors. Mol. Pharm. 2016, 13, 2563–2570. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; England, C.G.; Hernandez, R.; Graves, S.A.; Majewski, R.L.; Kamkaew, A.; Jiang, D.; Barnhart, T.E.; Yang, Y.; Cai, W. ImmunoPET for assessing the differential uptake of a CD146-specific monoclonal antibody in lung cancer. Eur. J. Nucl. Med. Mol. Imaging 2016, 43, 2169–2179. [Google Scholar] [CrossRef] [PubMed]
Antibody | Utilization | Antibody generation |
---|---|---|
MUC 18 | IHC, WB | Mouse immunization with a cell lysate of metastazing melanoma (Lehmann JM et al., Cancer Research, 1987) [1]. |
S-endo 1 (Biocytex) | IF, IHC, WB, FC | Mouse immunization with a HUVEC lysate (George et al., J. Immunol. Methods, 1991) [7]. |
7A4 (Biocytex) | IF, WB, FC, ELISA, IP | Mouse immunization with an injection of CD146 |
AA98 | Bloquing in vivo, WB, IHC, IF, WB | Mouse immunization with a lysate of HUVEC stimulated with conditioned medium of hepatoma cell line SMMC 7721 (Yan et al., Blood, 2003 ) [9]. |
ABX-MA1 | WB, FC, IHC | Generated using Abgenix’s proprietary XenoMouse mice (Mills et al,, Cancer Res., 2002) [8]. |
M2J-1 | Bloquing in vivo, ELISA | Rat immunization with an injection of recombinant soluble CD146 (Stalin et al., Oncogene, 2016) [4]. |
TsCD146 | IF, FC, WB, PET/SPECT-CT, bloquing in vivo | Rat immunization with an injection of recombinant soluble CD146 (Nollet et al., in process) [10]. |
YY146 | PET/SPECT-CT | Mouse immunization with an injection of the human CD146 antigen (Yang et al., 2016, Proc Natl Acad Sci) [14]. |
OI-3 | Radiolabeling, FC | Mouse immunization with an injection of recombinant chimeric versions of human IgG1 or human IgG3 Fc sequences (Westrøm et al, 2016, PLoS One) [11]. |
5G6 (Biocytex) | IF | Mouse immunization with an injection of immunopurified CD146 |
2F6 (Biocytex) | IF | Mouse immunization with an injection of immunopurified CD146 |
3D9 (Biocytex) | IF, FC | Mouse immunization with an injection of immunopurified CD146 |
Antibody against short or long isoforms of CD146 | WB, IF, FC, IP | Rabbit immunization with an injection of peptides corresponding to the intracellular part of short and long CD146 (Kebir et al., Circulation research, 2010) [3]. |
P1H12 (Abcam) | IF, IHC, WB, FC, IP, ELISA | Mouse immunization with a HUVEC lysate (Solovey et al., J Lab Clin Med, 2001) [56] |
EPR3208 (Abcam) | IF, IHC, FC, WB | Rabbit immunization with an injection of a synthetic peptide corresponding to Human CD146 AA 600 to the C-terminus |
541-10B2 (Miltenyi Biotec) | FC | Mouse immunization |
AA1 | WB | Mouse immunization with CD146 purified from HUVEC (Zhang et al., Hybridoma, 2008) [63] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stalin, J.; Nollet, M.; Dignat-George, F.; Bardin, N.; Blot-Chabaud, M. Therapeutic and Diagnostic Antibodies to CD146: Thirty Years of Research on Its Potential for Detection and Treatment of Tumors. Antibodies 2017, 6, 17. https://doi.org/10.3390/antib6040017
Stalin J, Nollet M, Dignat-George F, Bardin N, Blot-Chabaud M. Therapeutic and Diagnostic Antibodies to CD146: Thirty Years of Research on Its Potential for Detection and Treatment of Tumors. Antibodies. 2017; 6(4):17. https://doi.org/10.3390/antib6040017
Chicago/Turabian StyleStalin, Jimmy, Marie Nollet, Françoise Dignat-George, Nathalie Bardin, and Marcel Blot-Chabaud. 2017. "Therapeutic and Diagnostic Antibodies to CD146: Thirty Years of Research on Its Potential for Detection and Treatment of Tumors" Antibodies 6, no. 4: 17. https://doi.org/10.3390/antib6040017
APA StyleStalin, J., Nollet, M., Dignat-George, F., Bardin, N., & Blot-Chabaud, M. (2017). Therapeutic and Diagnostic Antibodies to CD146: Thirty Years of Research on Its Potential for Detection and Treatment of Tumors. Antibodies, 6(4), 17. https://doi.org/10.3390/antib6040017