Autoantibodies in Neuropsychiatric Disorders
Abstract
:1. Introduction
2. Indications for Autoimmune Mechanisms in Neuropsychiatric Disorders
3. Ion Channels and Receptor Functions
4. The Role of Blood-Brain Barrier Integrity on Autoantibody Effects
5. Transfer of Autoantibodies via the Placenta
6. Autoantibody Effector Mechanisms
7. Relevance of Intracellular Antigens as Target of Autoimmunity
8. Autoimmune Encephalitis
9. Psychotic Disorders
10. Major Depressive Disorders (MDD)
11. Autism Spectrum Disorder (ASD)
12. Obsessive-Compulsive Disorder (OCD) and Attention-Deficit/Hyperactivity Disorder (ADHD)
13. Conclusions/Future Directions
To take home…
- -
- Neuronal surface autoantibodies cause neuropsychiatric symptoms in a subgroup of the patients.
- -
- Antibody screening and neurological examinations should be implemented to improve diagnosis of autoimmune psychotic disorders.
- -
- Limited sample sizes, differences in patient cohorts and stage of the disease but also methodological differences generate high variation in current results.
- -
- Common techniques, more sensitive and reproducible, are required to standardize the diagnostic tools for the different neuronal antigens across-laboratories.
- -
- It is important to implement CSF analysis in neuropsychiatric disorder diagnosis routine, since some autoantibodies are only detectable in CSF.
- -
- More animal studies are needed to unravel the pathogenic effect of the autoantibodies in the CNS.
Acknowledgements
Author Contributions
Conflicts of Interest
Abbreviations
5HT | serotonin |
5HT-R | serotonin receptor |
ABGA | Anti-basal ganglia antibodies |
ACh | acetylcholine |
AChR | acetylcholine receptor |
AChRγ | gamma subunit of the peripheral neuronal ACh receptor |
ADHD | attention-deficit/hyperactivity disorder |
AMPA-R | α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor |
ApoE | apolipoprotein E |
ASD | Autism Spectrum disorder |
BBB | blood-brain barrier |
BD | bipolar disorder |
CASPR2 | contactin associated protein-2 |
CBA | cell based assay |
CHRM1 | muscarinic cholinergic receptor 1 |
CNS | central nervous system |
CSF | cerebrospinal fluid |
D | Disorder |
DAT | dopamine transporter |
DPPX | Dipeptidyl-Peptidase-Like Protein-6 |
DRD2 | dopamine-2 receptor |
dsDNA | double stranded DNA |
FcRn | neonatal Fc receptors |
FR | folate receptor |
GABA | γ-aminobutyric acid |
GABAA-R | A class of the GABA-R |
GABAB-R | B class of the GABA-R |
GABA-R | γ-aminobutyric acid receptor |
GAD | glutamic acid decarboxylase |
Glu | glutamate |
Gly | glycine |
GlyR | glycine receptor |
HLA | human leukocyte antigen |
HTR-1A | 5-hydroxytryptamine receptor 1A |
IgG | immunoglobulin G |
IHC | immunohistochemistry |
LE | limbic encephalitis |
LGI1 | leucine-rich glioma inactivated-1 |
mAChR | muscarinic AChR |
MDD | major depressive disorder |
MG | myasthenia gravis |
mGluR | metabotropic glutamate receptor |
MHC | major histocompatibility complex |
nAChR | nicotinic AChR |
NMDA-R | N-Methyl-d-Asparte receptor |
NMJ | neuromuscular junction |
OCD | Obsessive-Compulsive disorder |
PNS | peripheral nervous system |
RIA | radioimmunoassay |
Rib-P | ribosome P protein |
SERT | serotonin transporter |
SC | Sydenham chorea |
SLE | systemic lupus erythematous |
VGKC complex | voltage gated potassium channel complex |
References
- Descartes, R. Meditations on first philosophy. In The Philosophical Writings of René Descartes; Cambridge University Press: Cambridge, UK, 1984; Volume 2, pp. 1–62. [Google Scholar]
- Myin-Germeys, I.; Oorschot, M.; Collip, D.; Lataster, J.; Delespaul, P.; van Os, J. Experience sampling research in psychopathology: Opening the black box of daily life. Psychol. Med. 2009, 39, 1533–1547. [Google Scholar] [CrossRef] [PubMed]
- Stephan, K.E.; Baldeweg, T.; Friston, K.J. Synaptic plasticity and dysconnection in schizophrenia. Biol. Psychiatry 2006, 59, 929–939. [Google Scholar] [CrossRef] [PubMed]
- Corti, C.; Xuereb, J.H.; Crepaldi, L.; Corsi, M.; Michielin, F.; Ferraguti, F. Altered levels of glutamatergic receptors and Na+/K+ atpase-alpha1 in the prefrontal cortex of subjects with schizophrenia. Schizophr. Res. 2011, 128, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Vukadinovic, Z.; Rosenzweig, I. Abnormalities in thalamic neurophysiology in schizophrenia: Could psychosis be a result of potassium channel dysfunction? Neurosci. Biobehav. Rev. 2012, 36, 960–968. [Google Scholar] [CrossRef] [PubMed]
- Moscato, E.H.; Jain, A.; Peng, X.; Hughes, E.G.; Dalmau, J.; Balice-Gordon, R.J. Mechanisms underlying autoimmune synaptic encephalitis leading to disorders of memory, behavior and cognition: Insights from molecular, cellular and synaptic studies. Eur. J. Neurosci. 2010, 32, 298–309. [Google Scholar] [CrossRef] [PubMed]
- Leypoldt, F.; Armangue, T.; Dalmau, J. Autoimmune encephalopathies. Ann. N. Y. Acad. Sci. 2015, 1338, 94–114. [Google Scholar] [CrossRef] [PubMed]
- Kayser, M.S.; Titulaer, M.J.; Gresa-Arribas, N.; Dalmau, J. Frequency and characteristics of isolated psychiatric episodes in anti-N-methyl-d-aspartate receptor encephalitis. JAMA Neurol. 2013, 70, 1133–1139. [Google Scholar] [CrossRef] [PubMed]
- Van Os, J.; Linscott, R.J.; Myin-Germeys, I.; Delespaul, P.; Krabbendam, L. A systematic review and meta-analysis of the psychosis continuum: Evidence for a psychosis proneness-persistence-impairment model of psychotic disorder. Psychol. Med. 2009, 39, 179–195. [Google Scholar] [CrossRef] [PubMed]
- Nothen, M.M.; Nieratschker, V.; Cichon, S.; Rietschel, M. New findings in the genetics of major psychoses. Dialog. Clin. Neurosci. 2010, 12, 85–93. [Google Scholar]
- Van Os, J.; Kapur, S. Schizophrenia. Lancet 2009, 374, 635–645. [Google Scholar] [CrossRef]
- Warren, R.P.; Singh, V.K.; Averett, R.E.; Odell, J.D.; Maciulis, A.; Burger, R.A.; Daniels, W.W.; Warren, W.L. Immunogenetic studies in autism and related disorders. Mol. Chem. Neuropathol. 1996, 28, 77–81. [Google Scholar] [CrossRef] [PubMed]
- Crespi, B.J.; Thiselton, D.L. Comparative immunogenetics of autism and schizophrenia. Genes Brain Behav. 2011, 10, 689–701. [Google Scholar] [CrossRef] [PubMed]
- Brundtland, G.H. Mental health: New understanding, new hope. JAMA J. Am. Med. Assoc. 2001, 286, 2391–2391. [Google Scholar]
- Iseme, R.A.; McEvoy, M.; Kelly, B.; Agnew, L.; Attia, J.; Walker, F.R. Autoantibodies and depression: Evidence for a causal link? Neurosci. Biobehav. Rev. 2014, 40, 62–79. [Google Scholar] [CrossRef] [PubMed]
- Postal, M.; Appenzeller, S. The importance of cytokines and autoantibodies in depression. Autoimmun. Rev. 2015, 14, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Torres, G.E.; Gainetdinov, R.R.; Caron, M.G. Plasma membrane monoamine transporters: Structure, regulation and function. Nat. Rev. Neurosci. 2003, 4, 13–25. [Google Scholar] [CrossRef] [PubMed]
- Camardese, G.; De Risio, L.; Di Nicola, M.; Pucci, L.; Cocciolillo, F.; Bria, P.; Giordano, A.; Janiri, L.; Di Giuda, D. Changes of dopamine transporter availability in depressed patients with and without anhedonia: A 123I-N-ω-fluoropropyl-carbomethoxy-3β-(4-iodophenyl)tropane SPECT study. Neuropsychobiology 2014, 70, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Gatt, J.M.; Burton, K.L.; Williams, L.M.; Schofield, P.R. Specific and common genes implicated across major mental disorders: A review of meta-analysis studies. J. Psychiatr. Res. 2015, 60, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Ashok, A.H.; Baugh, J.; Yeragani, V.K. Paul eugen bleuler and the origin of the term schizophrenia (schizopreniegruppe). Indian J. Psychiatry 2012, 54, 95–96. [Google Scholar] [PubMed]
- Developmental Disabilities Monitoring Network Surveillance Year 2010 Principal Investigators; Centers for Disease Control and Prevention (CDC). Prevalence of autism spectrum disorder among children aged 8 years—Autism and developmental disabilities monitoring network, 11 sites, United States, 2010. Morb. Mortal. Wkly. Rep. 2014, 63, 1–21. [Google Scholar]
- Forrester, J.V.; Xu, H.; Lambe, T.; Cornall, R. Immune privilege or privileged immunity? Mucosal Immunol. 2008, 1, 372–381. [Google Scholar] [CrossRef] [PubMed]
- Bailey, A.; Le Couteur, A.; Gottesman, I.; Bolton, P.; Simonoff, E.; Yuzda, E.; Rutter, M. Autism as a strongly genetic disorder: Evidence from a british twin study. Psychol. Med. 1995, 25, 63–77. [Google Scholar] [CrossRef] [PubMed]
- Faraone, S.V.; Sergeant, J.; Gillberg, C.; Biederman, J. The worldwide prevalence of ADHD: Is it an american condition? World Psychiatry Off. J. World Psychiatr. Assoc. 2003, 2, 104–113. [Google Scholar]
- Rowland, A.S.; Lesesne, C.A.; Abramowitz, A.J. The epidemiology of attention-deficit/hyperactivity disorder (ADHD): A public health view. Mental Retard. Dev. Disabil. Res. Rev. 2002, 8, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Faraone, S.V.; Perlis, R.H.; Doyle, A.E.; Smoller, J.W.; Goralnick, J.J.; Holmgren, M.A.; Sklar, P. Molecular genetics of attention-deficit/hyperactivity disorder. Biol. Psychiatry 2005, 57, 1313–1323. [Google Scholar] [CrossRef] [PubMed]
- Toto, M.; Margari, F.; Simone, M.; Craig, F.; Petruzzelli, M.G.; Tafuri, S.; Margari, L. Antibasal ganglia antibodies and antistreptolysin o in noncomorbid ADHD. J. Atten. Disord. 2015, 19, 965–970. [Google Scholar] [CrossRef] [PubMed]
- Mancebo, M.C.; Greenberg, B.; Grant, J.E.; Pinto, A.; Eisen, J.L.; Dyck, I.; Rasmussen, S.A. Correlates of occupational disability in a clinical sample of obsessive-compulsive disorder. Compr. Psychiatry 2008, 49, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Eisen, J.L.; Mancebo, M.A.; Pinto, A.; Coles, M.E.; Pagano, M.E.; Stout, R.; Rasmussen, S.A. Impact of obsessive-compulsive disorder on quality of life. Compr. Psychiatry 2006, 47, 270–275. [Google Scholar] [CrossRef] [PubMed]
- Ruscio, A.M.; Stein, D.J.; Chiu, W.T.; Kessler, R.C. The epidemiology of obsessive-compulsive disorder in the national comorbidity survey replication. Mol. Psychiatry 2010, 15, 53–63. [Google Scholar] [CrossRef] [PubMed]
- Hoekstra, P.J.; Minderaa, R.B. Tic disorders and obsessive-compulsive disorder: Is autoimmunity involved? Int. Rev. Psychiatry 2005, 17, 497–502. [Google Scholar] [CrossRef] [PubMed]
- Pauls, D.L.; Abramovitch, A.; Rauch, S.L.; Geller, D.A. Obsessive-compulsive disorder: An integrative genetic and neurobiological perspective. Nat. Rev. Neurosci. 2014, 15, 410–424. [Google Scholar] [CrossRef] [PubMed]
- Pavone, P.; Bianchini, R.; Parano, E.; Incorpora, G.; Rizzo, R.; Mazzone, L.; Trifiletti, R.R. Anti-brain antibodies in pandas versus uncomplicated streptococcal infection. Pediatr. Neurol. 2004, 30, 107–110. [Google Scholar] [CrossRef]
- Dale, R.C.; Heyman, I.; Giovannoni, G.; Church, A.W. Incidence of anti-brain antibodies in children with obsessive-compulsive disorder. Br. J. Psychiatry J. Ment. Sci. 2005, 187, 314–319. [Google Scholar] [CrossRef] [PubMed]
- Cross-Disorder Group of the Psychiatric Genomics Consortium. Identification of risk loci with shared effects on five major psychiatric disorders: A genome-wide analysis. Lancet 2013, 381, 1371–1379. [Google Scholar]
- Alonsoa, V.R.; de Jesus, F.R.J.; Garcia, Y.R.; Granados, J.; Sanchez, T.; Mena-Hernandez, L.; Coronaa, T. Neuromyelitis optica (NMO IgG+) and genetic susceptibility, potential ethnic influences. Central Nervous Syst. Agents Med. Chem. 2016, 16, 1–4. [Google Scholar]
- Kim, K.; Bang, S.Y.; Yoo, D.H.; Cho, S.K.; Choi, C.B.; Sung, Y.K.; Kim, T.H.; Jun, J.B.; Kang, Y.M.; Suh, C.H.; et al. Imputing variants in HLA-DR beta genes reveals that HLA-DRB1 is solely associated with rheumatoid arthritis and systemic lupus erythematosus. PLoS ONE 2016, 11. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Martinez, P.; Molenaar, P.; Losen, M.; Stevens, J.; De Baets, M.; Szoke, A.; Honnorat, J.; Tamouza, R.; Leboyer, M.; van Os, J.; et al. Autoantibodies to neurotransmitter receptors and ion channels: From neuromuscular to neuropsychiatric disorders. Front. Genet. 2013, 4. [Google Scholar] [CrossRef] [PubMed]
- Gomez, A.M.; van den Broeck, J.; Vrolix, K.; Janssen, S.P.; Lemmens, M.A.; van der Esch, E.; Duimel, H.; Frederik, P.; Molenaar, P.C.; Martinez-Martinez, P.; et al. Antibody effector mechanisms in myasthenia gravis-pathogenesis at the neuromuscular junction. Autoimmunity 2010, 43, 353–370. [Google Scholar] [CrossRef] [PubMed]
- Lennon, V.A.; Wingerchuk, D.M.; Kryzer, T.J.; Pittock, S.J.; Lucchinetti, C.F.; Fujihara, K.; Nakashima, I.; Weinshenker, B.G. A serum autoantibody marker of neuromyelitis optica: Distinction from multiple sclerosis. Lancet 2004, 364, 2106–2112. [Google Scholar] [CrossRef]
- Squire, L.; Berg, D.; Bloom, F.; du Lac, S.; Ghosh, A.; Spitzer, N. Fundamental Neuroscience, 4th ed.; Academic Press: Waltham, MA, USA, 2012. [Google Scholar]
- Cutler, R.W.; Watters, G.V.; Hammerstad, J.P. The origin and turnover rates of cerebrospinal fluid albumin and gamma-globulin in man. J. Neurol. Sci. 1970, 10, 259–268. [Google Scholar] [CrossRef]
- Poduslo, J.F.; Curran, G.L.; Berg, C.T. Macromolecular permeability across the blood-nerve and blood-brain barriers. Proc. Natl. Acad. Sci. USA 1994, 91, 5705–5709. [Google Scholar] [CrossRef] [PubMed]
- Nishitsuji, K.; Hosono, T.; Nakamura, T.; Bu, G.; Michikawa, M. Apolipoprotein E regulates the integrity of tight junctions in an isoform-dependent manner in an in vitro blood-brain barrier model. J. Biol. Chem. 2011, 286, 17536–17542. [Google Scholar] [CrossRef] [PubMed]
- Hammer, C.; Stepniak, B.; Schneider, A.; Papiol, S.; Tantra, M.; Begemann, M.; Siren, A.L.; Pardo, L.A.; Sperling, S.; Mohd Jofrry, S.; et al. Neuropsychiatric disease relevance of circulating anti-NMDA receptor autoantibodies depends on blood-brain barrier integrity. Mol. Psychiatry 2014, 19, 1143–1149. [Google Scholar] [CrossRef] [PubMed]
- Postal, M.; Costallat, L.T.; Appenzeller, S. Neuropsychiatric manifestations in systemic lupus erythematosus: Epidemiology, pathophysiology and management. CNS Drugs 2011, 25, 721–736. [Google Scholar] [CrossRef] [PubMed]
- Mahajan, S.D.; Parikh, N.U.; Woodruff, T.M.; Jarvis, J.N.; Lopez, M.; Hennon, T.; Cunningham, P.; Quigg, R.J.; Schwartz, S.A.; Alexander, J.J. C5a alters blood-brain barrier integrity in a human in vitro model of systemic lupus erythematosus. Immunology 2015, 146, 130–143. [Google Scholar] [CrossRef] [PubMed]
- Hirohata, S.; Arinuma, Y.; Yanagida, T.; Yoshio, T. Blood-brain barrier damages and intrathecal synthesis of anti-N-methyl-d-aspartate receptor NR2 antibodies in diffuse psychiatric/neuropsychological syndromes in systemic lupus erythematosus. Arthritis Res. Ther. 2014, 16. [Google Scholar] [CrossRef] [PubMed]
- Hackett, M.L.; Yapa, C.; Parag, V.; Anderson, C.S. Frequency of depression after stroke: A systematic review of observational studies. Stroke J. Cereb. Circ. 2005, 36, 1330–1340. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; d’Esterre, C.; Ceruti, S.; Roversi, G.; Saletti, A.; Fainardi, E.; Lee, T.Y. Temporal changes in blood-brain barrier permeability and cerebral perfusion in lacunar/subcortical ischemic stroke. BMC Neurol. 2015, 15. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, M.A.L.; Kooij, G.; Mizee, M.R.; Kamermans, A.; Enzmann, G.; Lyck, R.; Schwaninger, M.; Engelhardt, B.; de Vries, H.E. Immune cell trafficking across the barriers of the central nervous system in multiple sclerosis and stroke. Biochim. Biophys. Acta 2015, 1862, 461–471. [Google Scholar] [CrossRef] [PubMed]
- Prakash, R.; Carmichael, S.T. Blood-brain barrier breakdown and neovascularization processes after stroke and traumatic brain injury. Curr. Opin. Neurol. 2015, 28, 556–564. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.J.; Mula, M.; Hermann, B.P. Uncovering the neurobehavioural comorbidities of epilepsy over the lifespan. Lancet 2012, 380, 1180–1192. [Google Scholar] [CrossRef]
- Sahin, D.; Ilbay, G.; Ates, N. Changes in the blood-brain barrier permeability and in the brain tissue trace element concentrations after single and repeated pentylenetetrazole-induced seizures in rats. Pharmacol. Res. 2003, 48, 69–73. [Google Scholar] [CrossRef]
- Boettger, M.K.; Weishaupt, A.; Geis, C.; Toyka, K.V.; Sommer, C. Mild experimental autoimmune encephalitis as a tool to induce blood-brain barrier dysfunction. J. Neural Transm. 2010, 117, 165–169. [Google Scholar] [CrossRef] [PubMed]
- Shalev, H.; Serlin, Y.; Friedman, A. Breaching the blood-brain barrier as a gate to psychiatric disorder. Cardiovasc. Psychiatry Neurol. 2009, 2009. [Google Scholar] [CrossRef] [PubMed]
- Alter, A.; Duddy, M.; Hebert, S.; Biernacki, K.; Prat, A.; Antel, J.P.; Yong, V.W.; Nuttall, R.K.; Pennington, C.J.; Edwards, D.R.; et al. Determinants of human b cell migration across brain endothelial cells. J. Immunol. 2003, 170, 4497–4505. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Hernandez, E.; Horvath, J.; Shiloh-Malawsky, Y.; Sangha, N.; Martinez-Lage, M.; Dalmau, J. Analysis of complement and plasma cells in the brain of patients with anti-NMDAR encephalitis. Neurology 2011, 77, 589–593. [Google Scholar] [CrossRef] [PubMed]
- Smitt, P.S.; Kinoshita, A.; De Leeuw, B.; Moll, W.; Coesmans, M.; Jaarsma, D.; Henzen-Logmans, S.; Vecht, C.; De Zeeuw, C.; Sekiyama, N.; et al. Paraneoplastic cerebellar ataxia due to autoantibodies against a glutamate receptor. N. Engl. J. Med. 2000, 342, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Castillo-Gomez, E.; Kastner, A.; Steiner, J.; Schneider, A.; Hettling, B.; Poggi, G.; Ostehr, K.; Uhr, M.; Asif, A.R.; Matzke, M.; et al. The brain as immunoprecipitator of serum autoantibodies against N-Methyl-d-aspartate receptor subunit NR1. Ann. Neurol. 2016, 79, 144–151. [Google Scholar] [CrossRef] [PubMed]
- Dileepan, T.; Smith, E.D.; Knowland, D.; Hsu, M.; Platt, M.; Bittner-Eddy, P.; Cohen, B.; Southern, P.; Latimer, E.; Harley, E.; et al. Group A Streptococcus intranasal infection promotes CNS infiltration by streptococcal-specific Th17 cells. J. Clin. Investig. 2015, 126, 303–317. [Google Scholar] [CrossRef] [PubMed]
- Palmeira, P.; Quinello, C.; Silveira-Lessa, A.L.; Zago, C.A.; Carneiro-Sampaio, M. IgG placental transfer in healthy and pathological pregnancies. Clin. Dev. Immunol. 2012, 2012. [Google Scholar] [CrossRef] [PubMed]
- Hulsebosch, C.E.; Fabian, R.H. Penetration of IgGs into the neuraxis of the neonatal rat. Neurosci. Lett. 1989, 98, 13–18. [Google Scholar] [CrossRef]
- Riemersma, S.; Vincent, A.; Beeson, D.; Newland, C.; Hawke, S.; Vernet-der Garabedian, B.; Eymard, B.; Newsom-Davis, J. Association of arthrogryposis multiplex congenita with maternal antibodies inhibiting fetal acetylcholine receptor function. J. Clin. Investig. 1996, 98, 2358–2363. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, L.; Polizzi, A.; Morriss-Kay, G.; Vincent, A. Plasma from human mothers of fetuses with severe arthrogryposis multiplex congenita causes deformities in mice. J. Clin. Investig. 1999, 103, 1031–1038. [Google Scholar] [CrossRef] [PubMed]
- Warren, R.P.; Cole, P.; Odell, J.D.; Pingree, C.B.; Warren, W.L.; White, E.; Yonk, J.; Singh, V.K. Detection of maternal antibodies in infantile autism. J. Am. Acad. Child Adolesc. Psychiatry 1990, 29, 873–877. [Google Scholar] [CrossRef] [PubMed]
- Dalton, P.; Deacon, R.; Blamire, A.; Pike, M.; McKinlay, I.; Stein, J.; Styles, P.; Vincent, A. Maternal neuronal antibodies associated with autism and a language disorder. Ann. Neurol. 2003, 53, 533–537. [Google Scholar] [CrossRef] [PubMed]
- Martin, L.A.; Ashwood, P.; Braunschweig, D.; Cabanlit, M.; van de Water, J.; Amaral, D.G. Stereotypies and hyperactivity in rhesus monkeys exposed to IgG from mothers of children with autism. Brain Behav. Immunity 2008, 22, 806–816. [Google Scholar] [CrossRef] [PubMed]
- Vincent, A.; Deacon, R.; Dalton, P.; Salmond, C.; Blamire, A.M.; Pendlebury, S.; Johansen-Berg, H.; Rajogopalan, B.; Styles, P.; Stein, J. Maternal antibody-mediated dyslexia? Evidence for a pathogenic serum factor in a mother of two dyslexic children shown by transfer to mice using behavioural studies and magnetic resonance spectroscopy. J. Neuroimmunol. 2002, 130, 243–247. [Google Scholar] [CrossRef]
- Kobayashi, R.; Mii, S.; Nakano, T.; Harada, H.; Eto, H. Neonatal lupus erythematosus in japan: A review of the literature. Autoimmun. Rev. 2009, 8, 462–466. [Google Scholar] [CrossRef] [PubMed]
- McAllister, D.L.; Kaplan, B.J.; Edworthy, S.M.; Martin, L.; Crawford, S.G.; Ramsey-Goldman, R.; Manzi, S.; Fries, J.F.; Sibley, J. The influence of systemic lupus erythematosus on fetal development: Cognitive, behavioral, and health trends. J. Int. Neuropsychol. Soc. 1997, 3, 370–376. [Google Scholar] [PubMed]
- Neri, F.; Chimini, L.; Bonomi, F.; Filippini, E.; Motta, M.; Faden, D.; Lojacono, A.; Rebaioli, C.B.; Frassi, M.; Danieli, E.; et al. Neuropsychological development of children born to patients with systemic lupus erythematosus. Lupus 2004, 13, 805–811. [Google Scholar] [CrossRef] [PubMed]
- Ross, G.; Sammaritano, L.; Nass, R.; Lockshin, M. Effects of mothers’ autoimmune disease during pregnancy on learning disabilities and hand preference in their children. Arch. Pediatr. Adolesc. Med. 2003, 157, 397–402. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Huerta, P.T.; Zhang, J.; Kowal, C.; Bertini, E.; Volpe, B.T.; Diamond, B. Neurotoxic autoantibodies mediate congenital cortical impairment of offspring in maternal lupus. Nat. Med. 2009, 15, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Lennon, V.A. Mechanism of intravenous immune globulin therapy in antibody-mediated autoimmune diseases. N. Engl. J. Med. 1999, 340, 227–228. [Google Scholar] [CrossRef] [PubMed]
- Martin, F.; Chan, A.C. Pathogenic roles of b cells in human autoimmunity; insights from the clinic. Immunity 2004, 20, 517–527. [Google Scholar] [CrossRef]
- Whitney, K.D.; McNamara, J.O. GluR3 autoantibodies destroy neural cells in a complement-dependent manner modulated by complement regulatory proteins. J. Neurosci. Off. J. Soc. Neurosci. 2000, 20, 7307–7316. [Google Scholar]
- Rodgaard, A.; Nielsen, F.C.; Djurup, R.; Somnier, F.; Gammeltoft, S. Acetylcholine receptor antibody in myasthenia gravis: Predominance of IgG subclasses 1 and 3. Clin. Exp. Immunol. 1987, 67, 82–88. [Google Scholar] [PubMed]
- Vincent, A.; Newsom-Davis, J. Acetylcholine receptor antibody characteristics in myasthenia gravis. I. Patients with generalized myasthenia or disease restricted to ocular muscles. Clin. Exp. Immunol. 1982, 49, 257–265. [Google Scholar] [PubMed]
- Ramaekers, V.T.; Rothenberg, S.P.; Sequeira, J.M.; Opladen, T.; Blau, N.; Quadros, E.V.; Selhub, J. Autoantibodies to folate receptors in the cerebral folate deficiency syndrome. N. Engl. J. Med. 2005, 352, 1985–1991. [Google Scholar] [CrossRef] [PubMed]
- Cox, C.J.; Sharma, M.; Leckman, J.F.; Zuccolo, J.; Zuccolo, A.; Kovoor, A.; Swedo, S.E.; Cunningham, M.W. Brain human monoclonal autoantibody from sydenham chorea targets dopaminergic neurons in transgenic mice and signals dopamine D2 receptor: Implications in human disease. J. Immunol. 2013, 191, 5524–5541. [Google Scholar] [CrossRef] [PubMed]
- Kotani, M.; Kawashima, I.; Ozawa, H.; Ogura, K.; Ishizuka, I.; Terashima, T.; Tai, T. Immunohistochemical localization of minor gangliosides in the rat central nervous system. Glycobiology 1994, 4, 855–865. [Google Scholar] [CrossRef] [PubMed]
- Kirvan, C.A.; Swedo, S.E.; Heuser, J.S.; Cunningham, M.W. Mimicry and autoantibody-mediated neuronal cell signaling in sydenham chorea. Nat. Med. 2003, 9, 914–920. [Google Scholar] [CrossRef] [PubMed]
- Ishida, A.; Fujisawa, H. Stabilization of calmodulin-dependent protein kinase II through the autoinhibitory domain. J. Biol. Chem. 1995, 270, 2163–2170. [Google Scholar] [PubMed]
- Kantor, L.; Hewlett, G.H.; Gnegy, M.E. Enhanced amphetamine- and K+-mediated dopamine release in rat striatum after repeated amphetamine: Differential requirements for Ca2+- and calmodulin-dependent phosphorylation and synaptic vesicles. J. Neurosci. Off. J. Soc. Neurosci. 1999, 19, 3801–3808. [Google Scholar]
- Hughes, E.G.; Peng, X.; Gleichman, A.J.; Lai, M.; Zhou, L.; Tsou, R.; Parsons, T.D.; Lynch, D.R.; Dalmau, J.; Balice-Gordon, R.J. Cellular and synaptic mechanisms of anti-NMDA receptor encephalitis. J. Neurosci. Off. J. Soc. Neurosci. 2010, 30, 5866–5875. [Google Scholar] [CrossRef] [PubMed]
- Mikasova, L.; De Rossi, P.; Bouchet, D.; Georges, F.; Rogemond, V.; Didelot, A.; Meissirel, C.; Honnorat, J.; Groc, L. Disrupted surface cross-talk between NMDA and Ephrin-B2 receptors in anti-NMDA encephalitis. Brain J. Neurol. 2012, 135, 1606–1621. [Google Scholar] [CrossRef] [PubMed]
- Drachman, D.B.; Angus, C.W.; Adams, R.N.; Michelson, J.D.; Hoffman, G.J. Myasthenic antibodies cross-link acetylcholine receptors to accelerate degradation. N. Engl. J. Med. 1978, 298, 1116–1122. [Google Scholar] [CrossRef] [PubMed]
- Heinemann, S.; Bevan, S.; Kullberg, R.; Lindstrom, J.; Rice, J. Modulation of acetylcholine receptor by antibody against the receptor. Proc. Natl. Acad. Sci. USA 1977, 74, 3090–3094. [Google Scholar] [CrossRef] [PubMed]
- Losen, M.; Stassen, M.H.; Martinez-Martinez, P.; Machiels, B.M.; Duimel, H.; Frederik, P.; Veldman, H.; Wokke, J.H.; Spaans, F.; Vincent, A.; et al. Increased expression of rapsyn in muscles prevents acetylcholine receptor loss in experimental autoimmune myasthenia gravis. Brain J. Neurol. 2005, 128, 2327–2337. [Google Scholar] [CrossRef] [PubMed]
- Vincent, A.; Buckley, C.; Schott, J.M.; Baker, I.; Dewar, B.K.; Detert, N.; Clover, L.; Parkinson, A.; Bien, C.G.; Omer, S.; et al. Potassium channel antibody-associated encephalopathy: A potentially immunotherapy-responsive form of limbic encephalitis. Brain J. Neurol. 2004, 127, 701–712. [Google Scholar] [CrossRef] [PubMed]
- Sunwoo, J.S.; Lee, S.T.; Byun, J.I.; Moon, J.; Shin, J.W.; Jeong, D.E.; Lee, G.H.; Jeong, S.H.; Shin, Y.W.; Jung, K.H.; et al. Clinical manifestations of patients with CASPR2 antibodies. J. Neuroimmunol. 2015, 281, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Lai, M.; Huijbers, M.G.; Lancaster, E.; Graus, F.; Bataller, L.; Balice-Gordon, R.; Cowell, J.K.; Dalmau, J. Investigation of lGI1 as the antigen in limbic encephalitis previously attributed to potassium channels: A case series. Lancet Neurol. 2010, 9, 776–785. [Google Scholar] [CrossRef]
- Ohkawa, T.; Fukata, Y.; Yamasaki, M.; Miyazaki, T.; Yokoi, N.; Takashima, H.; Watanabe, M.; Watanabe, O.; Fukata, M. Autoantibodies to epilepsy-related lGI1 in limbic encephalitis neutralize lGI1-ADAM22 interaction and reduce synaptic AMPA receptors. J. Neurosci. Off. J. Soc. Neurosci. 2013, 33, 18161–18174. [Google Scholar] [CrossRef] [PubMed]
- Blaes, F.; Tschernatsch, M. Paraneoplastic neurological disorders. Expert Rev. Neurother. 2010, 10, 1559–1568. [Google Scholar] [CrossRef] [PubMed]
- Liblau, R.S.; Gonzalez-Dunia, D.; Wiendl, H.; Zipp, F. Neurons as targets for t cells in the nervous system. Trends Neurosci. 2013, 36, 315–324. [Google Scholar] [CrossRef] [PubMed]
- Werner, C.; Pauli, M.; Doose, S.; Weishaupt, A.; Haselmann, H.; Grunewald, B.; Sauer, M.; Heckmann, M.; Toyka, K.V.; Asan, E.; et al. Human autoantibodies to amphiphysin induce defective presynaptic vesicle dynamics and composition. Brain J. Neurol. 2015, 139, 365–379. [Google Scholar] [CrossRef] [PubMed]
- Fouka, P.; Alexopoulos, H.; Akrivou, S.; Trohatou, O.; Politis, P.K.; Dalakas, M.C. GAD65 epitope mapping and search for novel autoantibodies in GAD-associated neurological disorders. J. Neuroimmunol. 2015, 281, 73–77. [Google Scholar] [CrossRef] [PubMed]
- Gresa-Arribas, N.; Arino, H.; Martinez-Hernandez, E.; Petit-Pedrol, M.; Sabater, L.; Saiz, A.; Dalmau, J.; Graus, F. Antibodies to inhibitory synaptic proteins in neurological syndromes associated with glutamic acid decarboxylase autoimmunity. PLoS ONE 2015, 10. [Google Scholar] [CrossRef]
- Arino, H.; Hoftberger, R.; Gresa-Arribas, N.; Martinez-Hernandez, E.; Armangue, T.; Kruer, M.C.; Arpa, J.; Domingo, J.; Rojc, B.; Bataller, L.; et al. Paraneoplastic neurological syndromes and glutamic acid decarboxylase antibodies. JAMA Neurol. 2015, 72, 874–881. [Google Scholar] [CrossRef] [PubMed]
- Bien, C.G. Association of paraneoplastic neurological disorders with glutamic acid decarboxylase antibodies. JAMA Neurol. 2015, 72, 861–862. [Google Scholar] [CrossRef] [PubMed]
- Carvajal-Gonzalez, A.; Leite, M.I.; Waters, P.; Woodhall, M.; Coutinho, E.; Balint, B.; Lang, B.; Pettingill, P.; Carr, A.; Sheerin, U.M.; et al. Glycine receptor antibodies in PERM and related syndromes: Characteristics, clinical features and outcomes. Brain J. Neurol. 2014, 137, 2178–2192. [Google Scholar] [CrossRef] [PubMed]
- Iizuka, T.; Leite, M.I.; Lang, B.; Waters, P.; Urano, Y.; Miyakawa, S.; Hamada, J.; Sakai, F.; Mochizuki, H.; Vincent, A. Glycine receptor antibodies are detected in progressive encephalomyelitis with rigidity and myoclonus (PERM) but not in saccadic oscillations. J. Neurol. 2012, 259, 1566–1573. [Google Scholar] [CrossRef] [PubMed]
- Manto, M.U.; Laute, M.A.; Aguera, M.; Rogemond, V.; Pandolfo, M.; Honnorat, J. Effects of anti-glutamic acid decarboxylase antibodies associated with neurological diseases. Ann. Neurol. 2007, 61, 544–551. [Google Scholar] [CrossRef] [PubMed]
- Karimifar, M.; Sharifi, I.; Shafiey, K. Anti-ribosomal p antibodies related to depression in early clinical course of systemic lupus erythematosus. J. Res. Med. Sci. Off. J. Isfahan Univ. Med. Sci. 2013, 18, 860–864. [Google Scholar]
- Katzav, A.; Solodeev, I.; Brodsky, O.; Chapman, J.; Pick, C.G.; Blank, M.; Zhang, W.; Reichlin, M.; Shoenfeld, Y. Induction of autoimmune depression in mice by anti–ribosomal p antibodies via the limbic system. Arthritis Rheum. 2007, 56, 938–948. [Google Scholar] [CrossRef] [PubMed]
- Shoenfeld, Y. To smell autoimmunity: Anti-p-ribosomal autoantibodies, depression, and the olfactory system. J. Autoimmun. 2007, 28, 165–169. [Google Scholar] [CrossRef] [PubMed]
- Nojima, Y.; Minota, S.; Yamada, A.; Takaku, F.; Aotsuka, S.; Yokohari, R. Correlation of antibodies to ribosomal p protein with psychosis in patients with systemic lupus erythematosus. Ann. Rheum. Dis. 1992, 51, 1053–1055. [Google Scholar] [CrossRef] [PubMed]
- Schneebaum, A.B.; Singleton, J.D.; West, S.G.; Blodgett, J.K.; Allen, L.G.; Cheronis, J.C.; Kotzin, B.L. Association of psychiatric manifestations with antibodies to ribosomal P proteins in systemic lupus erythematosus. Am. J. Med. 1991, 90, 54–62. [Google Scholar] [CrossRef]
- Watson, P.; Storbeck, J.; Mattis, P.; Mackay, M. Cognitive and emotional abnormalities in systemic lupus erythematosus: Evidence for amygdala dysfunction. Neuropsychol. Rev. 2012, 22, 252–270. [Google Scholar] [CrossRef] [PubMed]
- Gultekin, S.H.; Rosenfeld, M.R.; Voltz, R.; Eichen, J.; Posner, J.B.; Dalmau, J. Paraneoplastic limbic encephalitis: Neurological symptoms, immunological findings and tumour association in 50 patients. Brain J. Neurol. 2000, 123, 1481–1494. [Google Scholar] [CrossRef]
- Darnell, R.B.; Posner, J.B. A new cause of limbic encephalopathy. Brain J. Neurol. 2005, 128, 1745–1746. [Google Scholar] [CrossRef] [PubMed]
- Pozo-Rosich, P.; Clover, L.; Saiz, A.; Vincent, A.; Graus, F. Voltage-gated potassium channel antibodies in limbic encephalitis. Ann. Neurol. 2003, 54, 530–533. [Google Scholar] [CrossRef] [PubMed]
- Irani, S.R.; Bera, K.; Waters, P.; Zuliani, L.; Maxwell, S.; Zandi, M.S.; Friese, M.A.; Galea, I.; Kullmann, D.M.; Beeson, D.; et al. N-methyl-d-aspartate antibody encephalitis: Temporal progression of clinical and paraclinical observations in a predominantly non-paraneoplastic disorder of both sexes. Brain J. Neurol. 2010, 133, 1655–1667. [Google Scholar] [CrossRef] [PubMed]
- Dalmau, J.; Gleichman, A.J.; Hughes, E.G.; Rossi, J.E.; Peng, X.; Lai, M.; Dessain, S.K.; Rosenfeld, M.R.; Balice-Gordon, R.; Lynch, D.R. Anti-NMDA-receptor encephalitis: Case series and analysis of the effects of antibodies. Lancet Neurol. 2008, 7, 1091–1098. [Google Scholar] [CrossRef]
- Gresa-Arribas, N.; Titulaer, M.J.; Torrents, A.; Aguilar, E.; McCracken, L.; Leypoldt, F.; Gleichman, A.J.; Balice-Gordon, R.; Rosenfeld, M.R.; Lynch, D.; et al. Antibody titres at diagnosis and during follow-up of anti-NMDA receptor encephalitis: A retrospective study. Lancet Neurol. 2014, 13, 167–177. [Google Scholar] [CrossRef]
- Pruss, H.; Dalmau, J.; Harms, L.; Holtje, M.; Ahnert-Hilger, G.; Borowski, K.; Stoecker, W.; Wandinger, K.P. Retrospective analysis of NMDA receptor antibodies in encephalitis of unknown origin. Neurology 2010, 75, 1735–1739. [Google Scholar] [CrossRef] [PubMed]
- Creten, C.; van der Zwaan, S.; Blankespoor, R.J.; Maatkamp, A.; Nicolai, J.; van Os, J.; Schieveld, J.N. Late onset autism and anti-NMDA-receptor encephalitis. Lancet 2011, 378. [Google Scholar] [CrossRef]
- Bergink, V.; Armangue, T.; Titulaer, M.J.; Markx, S.; Dalmau, J.; Kushner, S.A. Autoimmune encephalitis in postpartum psychosis. Am. J. Psychiatry 2015, 172, 901–908. [Google Scholar] [CrossRef] [PubMed]
- Pruss, H.; Holtje, M.; Maier, N.; Gomez, A.; Buchert, R.; Harms, L.; Ahnert-Hilger, G.; Schmitz, D.; Terborg, C.; Kopp, U.; et al. Iga NMDA receptor antibodies are markers of synaptic immunity in slow cognitive impairment. Neurology 2012, 78, 1743–1753. [Google Scholar] [CrossRef] [PubMed]
- Pruss, H.; Finke, C.; Holtje, M.; Hofmann, J.; Klingbeil, C.; Probst, C.; Borowski, K.; Ahnert-Hilger, G.; Harms, L.; Schwab, J.M.; et al. N-methyl-d-aspartate receptor antibodies in herpes simplex encephalitis. Ann. Neurol. 2012, 72, 902–911. [Google Scholar] [CrossRef] [PubMed]
- Tsutsui, K.; Kanbayashi, T.; Tanaka, K.; Boku, S.; Ito, W.; Tokunaga, J.; Mori, A.; Hishikawa, Y.; Shimizu, T.; Nishino, S. Anti-NMDA-receptor antibody detected in encephalitis, schizophrenia, and narcolepsy with psychotic features. BMC Psychiatry 2012, 12, 37. [Google Scholar] [CrossRef] [PubMed]
- Dalmau, J.; Tuzun, E.; Wu, H.Y.; Masjuan, J.; Rossi, J.E.; Voloschin, A.; Baehring, J.M.; Shimazaki, H.; Koide, R.; King, D.; et al. Paraneoplastic anti-N-methyl-d-aspartate receptor encephalitis associated with ovarian teratoma. Ann. Neurol. 2007, 61, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Hoftberger, R.; van Sonderen, A.; Leypoldt, F.; Houghton, D.; Geschwind, M.; Gelfand, J.; Paredes, M.; Sabater, L.; Saiz, A.; Titulaer, M.J.; et al. Encephalitis and AMPA receptor antibodies: Novel findings in a case series of 22 patients. Neurology 2015, 84, 2403–2412. [Google Scholar] [CrossRef] [PubMed]
- Petit-Pedrol, M.; Armangue, T.; Peng, X.; Bataller, L.; Cellucci, T.; Davis, R.; McCracken, L.; Martinez-Hernandez, E.; Mason, W.P.; Kruer, M.C.; et al. Encephalitis with refractory seizures, status epilepticus, and antibodies to the GABAA receptor: A case series, characterisation of the antigen, and analysis of the effects of antibodies. Lancet Neurol. 2014, 13, 276–286. [Google Scholar] [CrossRef]
- Simabukuro, M.M.; Petit-Pedrol, M.; Castro, L.H.; Nitrini, R.; Lucato, L.; Zambon, A.A.; Silva, L.G.; Fortes, G.C.; Soares Neto, H.R.; Dalmau, J.O. GABAA receptor and lGI1 antibody encephalitis in a patient with thymoma. Neurol. Neuroimmunol. Neuroinflamm. 2015, 2. [Google Scholar] [CrossRef] [PubMed]
- Lancaster, E.; Martinez-Hernandez, E.; Titulaer, M.J.; Boulos, M.; Weaver, S.; Antoine, J.C.; Liebers, E.; Kornblum, C.; Bien, C.G.; Honnorat, J.; et al. Antibodies to metabotropic glutamate receptor 5 in the ophelia syndrome. Neurology 2011, 77, 1698–1701. [Google Scholar] [CrossRef] [PubMed]
- Boronat, A.; Gelfand, J.M.; Gresa-Arribas, N.; Jeong, H.Y.; Walsh, M.; Roberts, K.; Martinez-Hernandez, E.; Rosenfeld, M.R.; Balice-Gordon, R.; Graus, F.; et al. Encephalitis and antibodies to dipeptidyl-peptidase-like protein-6, a subunit of Kv4.2 potassium channels. Ann. Neurol. 2013, 73, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Dale, R.C.; Merheb, V.; Pillai, S.; Wang, D.; Cantrill, L.; Murphy, T.K.; Ben-Pazi, H.; Varadkar, S.; Aumann, T.D.; Horne, M.K.; et al. Antibodies to surface dopamine-2 receptor in autoimmune movement and psychiatric disorders. Brain J. Neurol. 2012, 135, 3453–3468. [Google Scholar] [CrossRef] [PubMed]
- Vo, H.D.; Sequeira, J.M.; Quadros, E.V.; Schwarz, S.M.; Perenyi, A.R. The role of folate receptor autoantibodies in preterm birth. Nutrition 2015, 31, 1224–1227. [Google Scholar] [CrossRef] [PubMed]
- Matà, S.; Muscas, G.C.; Naldi, I.; Rosati, E.; Paladini, S.; Cruciatti, B.; Bisulli, F.; Paganini, M.; Mazzi, G.; Sorbi, S.; et al. Non-paraneoplastic limbic encephalitis associated with anti-glutamic acid decarboxylase antibodies. J. Neuroimmunol. 2008, 199, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Iizuka, T.; Sakai, F.; Ide, T.; Monzen, T.; Yoshii, S.; Iigaya, M.; Suzuki, K.; Lynch, D.R.; Suzuki, N.; Hata, T.; et al. Anti-NMDA receptor encephalitis in japan: Long-term outcome without tumor removal. Neurology 2008, 70, 504–511. [Google Scholar] [CrossRef] [PubMed]
- Sansing, L.H.; Tuzun, E.; Ko, M.W.; Baccon, J.; Lynch, D.R.; Dalmau, J. A patient with encephalitis associated with NMDA receptor antibodies. Nat. Clin. Pract. Neurol. 2007, 3, 291–296. [Google Scholar] [CrossRef] [PubMed]
- Dale, R.C.; Irani, S.R.; Brilot, F.; Pillai, S.; Webster, R.; Gill, D.; Lang, B.; Vincent, A. N-methyl-d-aspartate receptor antibodies in pediatric dyskinetic encephalitis lethargica. Ann. Neurol. 2009, 66, 704–709. [Google Scholar] [CrossRef] [PubMed]
- Florance, N.R.; Davis, R.L.; Lam, C.; Szperka, C.; Zhou, L.; Ahmad, S.; Campen, C.J.; Moss, H.; Peter, N.; Gleichman, A.J.; et al. Anti-N-methyl-d-aspartate receptor (NMDAR) encephalitis in children and adolescents. Ann. Neurol. 2009, 66, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Gleichman, A.J.; Spruce, L.A.; Dalmau, J.; Seeholzer, S.H.; Lynch, D.R. Anti-NMDA receptor encephalitis antibody binding is dependent on amino acid identity of a small region within the GluN1 amino terminal domain. J. Neurosci. Off. J. Soc. Neurosc. 2012, 32, 11082–11094. [Google Scholar] [CrossRef] [PubMed]
- Planaguma, J.; Leypoldt, F.; Mannara, F.; Gutierrez-Cuesta, J.; Martin-Garcia, E.; Aguilar, E.; Titulaer, M.J.; Petit-Pedrol, M.; Jain, A.; Balice-Gordon, R.; et al. Human N-methyl-d-aspartate receptor antibodies alter memory and behaviour in mice. Brain J. Neurol. 2015, 138, 94–109. [Google Scholar] [CrossRef] [PubMed]
- Wright, S.; Hashemi, K.; Stasiak, L.; Bartram, J.; Lang, B.; Vincent, A.; Upton, A.L. Epileptogenic effects of NMDAR antibodies in a passive transfer mouse model. Brain J. Neurol. 2015, 138, 3159–3167. [Google Scholar] [CrossRef] [PubMed]
- Vincent, A.; Bien, C.G.; Irani, S.R.; Waters, P. Autoantibodies associated with diseases of the CNS: New developments and future challenges. Lancet Neurol. 2011, 10, 759–772. [Google Scholar] [CrossRef]
- Bataller, L.; Kleopa, K.A.; Wu, G.F.; Rossi, J.E.; Rosenfeld, M.R.; Dalmau, J. Autoimmune limbic encephalitis in 39 patients: Immunophenotypes and outcomes. J. Neurol. Neurosurg. Psychiatry 2007, 78, 381–385. [Google Scholar] [CrossRef] [PubMed]
- Graus, F.; Saiz, A.; Lai, M.; Bruna, J.; Lopez, F.; Sabater, L.; Blanco, Y.; Rey, M.J.; Ribalta, T.; Dalmau, J. Neuronal surface antigen antibodies in limbic encephalitis: Clinical-immunologic associations. Neurology 2008, 71, 930–936. [Google Scholar] [CrossRef] [PubMed]
- Poliak, S.; Salomon, D.; Elhanany, H.; Sabanay, H.; Kiernan, B.; Pevny, L.; Stewart, C.L.; Xu, X.; Chiu, S.Y.; Shrager, P.; et al. Juxtaparanodal clustering of Shaker-like K+ channels in myelinated axons depends on CASPR2 and TAG-1. J. Cell Biol. 2003, 162, 1149–1160. [Google Scholar] [CrossRef] [PubMed]
- Becker, E.B.; Zuliani, L.; Pettingill, R.; Lang, B.; Waters, P.; Dulneva, A.; Sobott, F.; Wardle, M.; Graus, F.; Bataller, L.; et al. Contactin-associated protein-2 antibodies in non-paraneoplastic cerebellar ataxia. J. Neurol. Neurosurg. Psychiatry 2012, 83, 437–440. [Google Scholar] [CrossRef] [PubMed]
- Endres, D.; Perlov, E.; Baumgartner, A.; Hottenrott, T.; Dersch, R.; Stich, O.; van Elst, L.T. Immunological findings in psychotic syndromes: A tertiary care hospital's CSF sample of 180 patients. Front. Hum. Neurosci. 2015, 9. [Google Scholar] [CrossRef] [PubMed]
- Zandi, M.S.; Irani, S.R.; Lang, B.; Waters, P.; Jones, P.B.; McKenna, P.; Coles, A.J.; Vincent, A.; Lennox, B.R. Disease-relevant autoantibodies in first episode schizophrenia. J. Neurol. 2011, 258, 686–688. [Google Scholar] [CrossRef] [PubMed]
- Dahm, L.; Ott, C.; Steiner, J.; Stepniak, B.; Teegen, B.; Saschenbrecker, S.; Hammer, C.; Borowski, K.; Begemann, M.; Lemke, S.; et al. Seroprevalence of autoantibodies against brain antigens in health and disease. Ann. Neurol. 2014, 76, 82–94. [Google Scholar] [CrossRef] [PubMed]
- Borda, T.; Rivera, R.P.; Joensen, L.; Gomez, R.M.; Sterin-Borda, L. Antibodies against cerebral M1 cholinergic muscarinic receptor from schizophrenic patients: Molecular interaction. J. Immunol. 2002, 168, 3667–3674. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, S.; Matsunaga, H.; Kimura, M.; Tatsumi, K.; Hidaka, Y.; Takano, T.; Uema, T.; Takeda, M.; Amino, N. Autoantibodies against four kinds of neurotransmitter receptors in psychiatric disorders. J. Neuroimmunol. 2003, 141, 155–164. [Google Scholar] [CrossRef]
- Chandley, M.J.; Miller, M.N.; Kwasigroch, C.N.; Wilson, T.D.; Miller, B.E. Increased antibodies for the α7 subunit of the nicotinic receptor in schizophrenia. Schizophr. Res. 2009, 109, 98–101. [Google Scholar] [CrossRef] [PubMed]
- Roy, B.F.; Bowen, W.D.; Frazier, J.S.; Rose, J.W.; McFarland, H.F.; McFarlin, D.E.; Murphy, D.L.; Morihisa, J.M. Human antiidiotypic antibody against opiate receptors. Ann. Neurol. 1988, 24, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.K.; Singh, E.A.; Warren, R.P. Hyperserotoninemia and serotonin receptor antibodies in children with autism but not mental retardation. Biol. Psychiatry 1997, 41, 753–755. [Google Scholar] [CrossRef]
- Frye, R.E.; Sequeira, J.M.; Quadros, E.V.; James, S.J.; Rossignol, D.A. Cerebral folate receptor autoantibodies in autism spectrum disorder. Mol. Psychiatry 2013, 18, 369–381. [Google Scholar] [CrossRef] [PubMed]
- Giana, G.; Romano, E.; Porfirio, M.C.; D’Ambrosio, R.; Giovinazzo, S.; Troianiello, M.; Barlocci, E.; Travaglini, D.; Granstrem, O.; Pascale, E.; et al. Detection of auto-antibodies to dat in the serum: Interactions with dat genotype and psycho-stimulant therapy for ADHD. J. Neuroimmunol. 2015, 278, 212–222. [Google Scholar] [CrossRef] [PubMed]
- Najjar, S.; Pearlman, D.; Zagzag, D.; Golfinos, J.; Devinsky, O. Glutamic acid decarboxylase autoantibody syndrome presenting as schizophrenia. Neurologist 2012, 18, 88–91. [Google Scholar] [CrossRef] [PubMed]
- Rout, U.K.; Mungan, N.K.; Dhossche, D.M. Presence of GAD65 autoantibodies in the serum of children with autism or ADHD. Eur. Child Adolesc. Psychiatry 2012, 21, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Boeder, F. Über die serologische diagnostik der schizophrenie aus dem liquor nach der methode von lehmann-facius. Z. Gesamte Neurol. Psychiatr. 1939, 165, 462–467. (In German) [Google Scholar] [CrossRef]
- Lancaster, E.; Martinez-Hernandez, E.; Dalmau, J. Encephalitis and antibodies to synaptic and neuronal cell surface proteins. Neurology 2011, 77, 179–189. [Google Scholar] [CrossRef] [PubMed]
- Armangue, T.; Titulaer, M.J.; Malaga, I.; Bataller, L.; Gabilondo, I.; Graus, F.; Dalmau, J. Pediatric anti-N-methyl-d-aspartate receptor encephalitis-clinical analysis and novel findings in a series of 20 patients. J. Pediatr. 2013, 162, 850–856. [Google Scholar] [CrossRef] [PubMed]
- Steiner, J.; Walter, M.; Glanz, W.; Sarnyai, Z.; Bernstein, H.G.; Vielhaber, S.; Kastner, A.; Skalej, M.; Jordan, W.; Schiltz, K.; et al. Increased prevalence of diverse N-methyl-d-aspartate glutamate receptor antibodies in patients with an initial diagnosis of schizophrenia: Specific relevance of IgG NR1a antibodies for distinction from N-methyl-d-aspartate glutamate receptor encephalitis. JAMA Psychiatry 2013, 70, 271–278. [Google Scholar] [CrossRef] [PubMed]
- Pathmanandavel, K.; Starling, J.; Merheb, V.; Ramanathan, S.; Sinmaz, N.; Dale, R.C.; Brilot, F. Antibodies to surface dopamine-2 receptor and N-methyl-d-aspartate receptor in the first episode of acute psychosis in children. Biol. Psychiatry 2015, 77, 537–547. [Google Scholar] [CrossRef] [PubMed]
- Ezeoke, A.; Mellor, A.; Buckley, P.; Miller, B. A systematic, quantitative review of blood autoantibodies in schizophrenia. Schizophr. Res. 2013, 150, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Masdeu, J.C.; Gonzalez-Pinto, A.; Matute, C.; De Azua, S.R.; Palomino, A.; De Leon, J.; Berman, K.F.; Dalmau, J. Serum IgG antibodies against the NR1 subunit of the NMDA receptor not detected in schizophrenia. Am. J. Psychiatry 2012, 169, 1120–1121. [Google Scholar] [CrossRef] [PubMed]
- De Witte, L.D.; Hoffmann, C.; van Mierlo, H.C.; Titulaer, M.J.; Kahn, R.S.; Martinez-Martinez, P.; European Consortium of Autoimmune Mental Disorders (CAIMED). Absence of N-methyl-d-aspartate receptor IgG autoantibodies in schizophrenia: The importance of cross-validation studies. JAMA Psychiatry 2015, 72, 731–733. [Google Scholar] [CrossRef] [PubMed]
- Borda, T.; Gomez, R.; Berria, M.I.; Sterin-Borda, L. Antibodies against astrocyte M1 and M2 muscarinic cholinoceptor from schizophrenic patients’ sera. Glia 2004, 45, 144–154. [Google Scholar] [CrossRef] [PubMed]
- Moussavi, S.; Chatterji, S.; Verdes, E.; Tandon, A.; Patel, V.; Ustun, B. Depression, chronic diseases, and decrements in health: Results from the world health surveys. Lancet 2007, 370, 851–858. [Google Scholar] [CrossRef]
- Salmans, S. Depression: Questions You Have—Answers You Need; People’s Medical Society: Allentown, PA, US, 1997. [Google Scholar]
- Association, A.P. Diagnostic and Statistical Manual of Mental Disorders (DSM-5®); American Psychiatric Association: Arlington, VA, USA, 2013. [Google Scholar]
- Elhwuegi, A.S. Central monoamines and their role in major depression. Prog. Neuro Psychopharmacol. Biol. Psychiatry 2004, 28, 435–451. [Google Scholar] [CrossRef] [PubMed]
- Murphy, D.L.; Fox, M.A.; Timpano, K.R.; Moya, P.R.; Ren-Patterson, R.; Andrews, A.M.; Holmes, A.; Lesch, K.-P.; Wendland, J.R. How the serotonin story is being rewritten by new gene-based discoveries principally related to SLC6A4, the serotonin transporter gene, which functions to influence all cellular serotonin systems. Neuropharmacology 2008, 55, 932–960. [Google Scholar] [CrossRef] [PubMed]
- Roy, B.F.; Rose, J.W.; McFarland, H.F.; McFarlin, D.E.; Murphy, D.L. Anti-beta-endorphin immunoglobulin G in humans. Proc. Natl. Acad. Sci. USA 1986, 83, 8739–8743. [Google Scholar] [CrossRef] [PubMed]
- Lapteva, L.; Nowak, M.; Yarboro, C.H.; Takada, K.; Roebuck-Spencer, T.; Weickert, T.; Bleiberg, J.; Rosenstein, D.; Pao, M.; Patronas, N.; et al. Anti–N-methyl-d-aspartate receptor antibodies, cognitive dysfunction, and depression in systemic lupus erythematosus. Arthritis Rheum. 2006, 54, 2505–2514. [Google Scholar] [CrossRef] [PubMed]
- DeGiorgio, L.A.; Konstantinov, K.N.; Lee, S.C.; Hardin, J.A.; Volpe, B.T.; Diamond, B. A subset of lupus anti-DNA antibodies cross-reacts with the NR2 glutamate receptor in systemic lupus erythematosus. Nat. Med. 2001, 7, 1189–1193. [Google Scholar] [CrossRef] [PubMed]
- Keil, A.; Daniels, J.L.; Forssen, U.; Hultman, C.; Cnattingius, S.; Soderberg, K.C.; Feychting, M.; Sparen, P. Parental autoimmune diseases associated with autism spectrum disorders in offspring. Epidemiology 2010, 21, 805–808. [Google Scholar] [CrossRef] [PubMed]
- Kohane, I.S.; McMurry, A.; Weber, G.; MacFadden, D.; Rappaport, L.; Kunkel, L.; Bickel, J.; Wattanasin, N.; Spence, S.; Murphy, S.; et al. The co-morbidity burden of children and young adults with autism spectrum disorders. PLoS ONE 2012, 7. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhou, D.; Lee, J.; Niu, H.; Faust, T.W.; Frattini, S.; Kowal, C.; Huerta, P.T.; Volpe, B.T.; Diamond, B. Female mouse fetal loss mediated by maternal autoantibody. J. Exp. Med. 2012, 209, 1083–1089. [Google Scholar] [CrossRef] [PubMed]
- Singer, H.S.; Morris, C.; Gause, C.; Pollard, M.; Zimmerman, A.W.; Pletnikov, M. Prenatal exposure to antibodies from mothers of children with autism produces neurobehavioral alterations: A pregnant dam mouse model. J. Neuroimmunol. 2009, 211, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Camacho, J.; Jones, K.; Miller, E.; Ariza, J.; Noctor, S.; van de Water, J.; Martinez-Cerdeno, V. Embryonic intraventricular exposure to autism-specific maternal autoantibodies produces alterations in autistic-like stereotypical behaviors in offspring mice. Behav. Brain Res. 2014, 266, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Braunschweig, D.; Golub, M.S.; Koenig, C.M.; Qi, L.; Pessah, I.N.; van de Water, J.; Berman, R.F. Maternal autism-associated IgG antibodies delay development and produce anxiety in a mouse gestational transfer model. J. Neuroimmunol. 2012, 252, 56–65. [Google Scholar] [CrossRef] [PubMed]
- Bauman, M.D.; Iosif, A.M.; Ashwood, P.; Braunschweig, D.; Lee, A.; Schumann, C.M.; van de Water, J.; Amaral, D.G. Maternal antibodies from mothers of children with autism alter brain growth and social behavior development in the rhesus monkey. Transl. Psychiatry 2013, 3. [Google Scholar] [CrossRef] [PubMed]
- Braunschweig, D.; Ashwood, P.; Krakowiak, P.; Hertz-Picciotto, I.; Hansen, R.; Croen, L.A.; Pessah, I.N.; van de Water, J. Autism: Maternally derived antibodies specific for fetal brain proteins. Neurotoxicology 2008, 29, 226–231. [Google Scholar] [CrossRef] [PubMed]
- Braunschweig, D.; Duncanson, P.; Boyce, R.; Hansen, R.; Ashwood, P.; Pessah, I.N.; Hertz-Picciotto, I.; van de Water, J. Behavioral correlates of maternal antibody status among children with autism. J. Autism Dev. Disord. 2012, 42, 1435–1445. [Google Scholar] [CrossRef] [PubMed]
- Goines, P.; van de Water, J. The immune system’s role in the biology of autism. Curr. Opin. Neurol. 2010, 23, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Vargas, D.L.; Nascimbene, C.; Krishnan, C.; Zimmerman, A.W.; Pardo, C.A. Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann. Neurol. 2005, 57, 67–81. [Google Scholar] [CrossRef] [PubMed]
- Morris, C.M.; Zimmerman, A.W.; Singer, H.S. Childhood serum anti-fetal brain antibodies do not predict autism. Pediatr. Neurol. 2009, 41, 288–290. [Google Scholar] [CrossRef] [PubMed]
- Braunschweig, D.; Krakowiak, P.; Duncanson, P.; Boyce, R.; Hansen, R.L.; Ashwood, P.; Hertz-Picciotto, I.; Pessah, I.N.; van de Water, J. Autism-specific maternal autoantibodies recognize critical proteins in developing brain. Transl. Psychiatry 2013, 3. [Google Scholar] [CrossRef] [PubMed]
- Todd, R.D.; Hickok, J.M.; Anderson, G.M.; Cohen, D.J. Antibrain antibodies in infantile autism. Biol. Psychiatry 1988, 23, 644–647. [Google Scholar] [CrossRef]
- Singer, H.S.; Morris, C.M.; Williams, P.N.; Yoon, D.Y.; Hong, J.J.; Zimmerman, A.W. Antibrain antibodies in children with autism and their unaffected siblings. J. Neuroimmunol. 2006, 178, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Connolly, A.M.; Chez, M.G.; Pestronk, A.; Arnold, S.T.; Mehta, S.; Deuel, R.K. Serum autoantibodies to brain in landau-kleffner variant, autism, and other neurologic disorders. J. Pediatr. 1999, 134, 607–613. [Google Scholar] [CrossRef]
- Vojdani, A.; O'Bryan, T.; Green, J.A.; McCandless, J.; Woeller, K.N.; Vojdani, E.; Nourian, A.A.; Cooper, E.L. Immune response to dietary proteins, gliadin and cerebellar peptides in children with autism. Nutr. Neurosci. 2004, 7, 151–161. [Google Scholar] [CrossRef] [PubMed]
- Bashir, S.; Al-Ayadhi, L. Endothelial antibody levels in the sera of children with autism spectrum disorders. J. Chin. Med. Assoc. 2015, 78, 414–417. [Google Scholar] [CrossRef] [PubMed]
- Connolly, A.M.; Chez, M.; Streif, E.M.; Keeling, R.M.; Golumbek, P.T.; Kwon, J.M.; Riviello, J.J.; Robinson, R.G.; Neuman, R.J.; Deuel, R.M. Brain-derived neurotrophic factor and autoantibodies to neural antigens in sera of children with autistic spectrum disorders, landau-kleffner syndrome, and epilepsy. Biol. Psychiatry 2006, 59, 354–363. [Google Scholar] [CrossRef] [PubMed]
- Goines, P.; Haapanen, L.; Boyce, R.; Duncanson, P.; Braunschweig, D.; Delwiche, L.; Hansen, R.; Hertz-Picciotto, I.; Ashwood, P.; van de Water, J. Autoantibodies to cerebellum in children with autism associate with behavior. Brain Behav. Immunity 2011, 25, 514–523. [Google Scholar] [CrossRef] [PubMed]
- Wills, S.; Cabanlit, M.; Bennett, J.; Ashwood, P.; Amaral, D.G.; van de Water, J. Detection of autoantibodies to neural cells of the cerebellum in the plasma of subjects with autism spectrum disorders. Brain Behav. Immunity 2009, 23, 64–74. [Google Scholar] [CrossRef] [PubMed]
- Wills, S.; Rossi, C.C.; Bennett, J.; Martinez-Cerdeno, V.; Ashwood, P.; Amaral, D.G.; van de Water, J. Further characterization of autoantibodies to gabaergic neurons in the central nervous system produced by a subset of children with autism. Mol. Autism 2011, 2. [Google Scholar] [CrossRef] [PubMed]
- Rossi, C.C.; van de Water, J.; Rogers, S.J.; Amaral, D.G. Detection of plasma autoantibodies to brain tissue in young children with and without autism spectrum disorders. Brain Behav. Immunity 2011, 25, 1123–1135. [Google Scholar] [CrossRef] [PubMed]
- Ramaekers, V.T.; Quadros, E.V.; Sequeira, J.M. Role of folate receptor autoantibodies in infantile autism. Mol. Psychiatry 2013, 18, 270–271. [Google Scholar] [CrossRef] [PubMed]
- Polanczyk, G.; de Lima, M.S.; Horta, B.L.; Biederman, J.; Rohde, L.A. The worldwide prevalence of ADHD: A systematic review and metaregression analysis. Am. J. Psychiatry 2007, 164, 942–948. [Google Scholar] [CrossRef] [PubMed]
- Biederman, J.; Monuteaux, M.C.; Mick, E.; Spencer, T.; Wilens, T.E.; Silva, J.M.; Snyder, L.E.; Faraone, S.V. Young adult outcome of attention deficit hyperactivity disorder: A controlled 10-year follow-up study. Psychol. Med. 2006, 36, 167–179. [Google Scholar] [CrossRef] [PubMed]
- Swedo, S.E.; Leonard, H.L.; Garvey, M.; Mittleman, B.; Allen, A.J.; Perlmutter, S.; Lougee, L.; Dow, S.; Zamkoff, J.; Dubbert, B.K. Pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections: Clinical description of the first 50 cases. Am. J. Psychiatry 1998, 155, 264–271. [Google Scholar] [CrossRef] [PubMed]
- Mercadante, M.T.; Busatto, G.F.; Lombroso, P.J.; Prado, L.; Rosario-Campos, M.C.; do Valle, R.; Marques-Dias, M.J.; Kiss, M.H.; Leckman, J.F.; Miguel, E.C. The psychiatric symptoms of rheumatic fever. Am. J. Psychiatry 2000, 157, 2036–2038. [Google Scholar] [CrossRef] [PubMed]
- Swedo, S.E. Sydenham’s chorea: A model for childhood autoimmune neuropsychiatric disorders. JAMA 1994, 272, 1788–1791. [Google Scholar] [CrossRef] [PubMed]
- Yaddanapudi, K.; Hornig, M.; Serge, R.; De Miranda, J.; Baghban, A.; Villar, G.; Lipkin, W.I. Passive transfer of Streptococcus-induced antibodies reproduces behavioral disturbances in a mouse model of pediatric autoimmune neuropsychiatric disorders associated with streptococcal infection. Mol. Psychiatry 2010, 15, 712–726. [Google Scholar] [CrossRef] [PubMed]
- Perlmutter, S.J.; Leitman, S.F.; Garvey, M.A.; Hamburger, S.; Feldman, E.; Leonard, H.L.; Swedo, S.E. Therapeutic plasma exchange and intravenous immunoglobulin for obsessive-compulsive disorder and tic disorders in childhood. Lancet 1999, 354, 1153–1158. [Google Scholar] [CrossRef]
- Kirvan, C.A.; Swedo, S.E.; Snider, L.A.; Cunningham, M.W. Antibody-mediated neuronal cell signaling in behavior and movement disorders. J. Neuroimmunol. 2006, 179, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Brimberg, L.; Benhar, I.; Mascaro-Blanco, A.; Alvarez, K.; Lotan, D.; Winter, C.; Klein, J.; Moses, A.E.; Somnier, F.E.; Leckman, J.F.; et al. Behavioral, pharmacological, and immunological abnormalities after streptococcal exposure: A novel rat model of sydenham chorea and related neuropsychiatric disorders. Neuropsychopharmacology 2012, 37, 2076–2087. [Google Scholar] [CrossRef] [PubMed]
- Lotan, D.; Benhar, I.; Alvarez, K.; Mascaro-Blanco, A.; Brimberg, L.; Frenkel, D.; Cunningham, M.W.; Joel, D. Behavioral and neural effects of intra-striatal infusion of anti-streptococcal antibodies in rats. Brain Behav. Immunity 2014, 38, 249–262. [Google Scholar] [CrossRef] [PubMed]
- Hufner, K.; Frajo-Apor, B.; Hofer, A. Neurology issues in schizophrenia. Curr.Psychiatry Rep. 2015, 17, 32. [Google Scholar] [CrossRef] [PubMed]
- Steiner, J.; Bogerts, B. N-methyl-d-aspartate receptor autoantibodies in schizophrenia and affective disorders. Schizophr. Res. 2015, 162. [Google Scholar] [CrossRef] [PubMed]
- Malina, K.C.K.; Ganor, Y.; Levite, M.; Teichberg, I.V. Autoantibodies against an extracellular peptide of the GluR3 subtype of AMPA receptors activate both homomeric and heteromeric AMPA receptor channels. Neurochem. Res. 2006, 31, 1181–1190. [Google Scholar] [CrossRef] [PubMed]
- Lai, M.; Hughes, E.G.; Peng, X.; Zhou, L.; Gleichman, A.J.; Shu, H.; Matà, S.; Kremens, D.; Vitaliani, R.; Geschwind, M.D.; et al. AMPA receptor antibodies in limbic encephalitis alter synaptic receptor location. Ann. Neurol. 2009, 65, 424–434. [Google Scholar] [CrossRef] [PubMed]
- Ganor, Y.; Goldberg-Stern, H.; Cohen, R.; Teichberg, V.; Levite, M. Glutamate receptor antibodies directed against AMPA receptors subunit 3 peptide B (GluR3B) can be produced in DBA/2J mice, lower seizure threshold and induce abnormal behavior. Psychoneuroendocrinology 2014, 42, 106–117. [Google Scholar] [CrossRef] [PubMed]
- Ramaekers, V.T.; Thöny, B.; Sequeira, J.M.; Ansseau, M.; Philippe, P.; Boemer, F.; Bours, V.; Quadros, E.V. Folinic acid treatment for schizophrenia associated with folate receptor autoantibodies. Mol. Genet. Metabol. 2014, 113, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Ho, A.; Michelson, D.; Aaen, G.; Ashwal, S. Cerebral folate deficiency presenting as adolescent catatonic schizophrenia: A case report. J. Child Neurol. 2010, 25, 898–900. [Google Scholar] [CrossRef] [PubMed]
- Matus, S.; Burgos, P.V.; Bravo-Zehnder, M.; Kraft, R.; Porras, O.H.; Farías, P.; Barros, L.F.; Torrealba, F.; Massardo, L.; Jacobelli, S.; et al. Antiribosomal-P autoantibodies from psychiatric lupus target a novel neuronal surface protein causing calcium influx and apoptosis. J. Exp. Med. 2007, 204, 3221–3234. [Google Scholar] [CrossRef] [PubMed]
- Pearlman, D.M.; Vora, H.S.; Marquis, B.G.; Najjar, S.; Dudley, L.A. Anti-basal ganglia antibodies in primary obsessive-compulsive disorder: Systematic review and meta-analysis. Br. J. Psychiatry 2014, 205, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Maina, G.; Albert, U.; Bogetto, F.; Borghese, C.; Berro, A.C.; Mutani, R.; Rossi, F.; Vigliani, M.C. Anti-brain antibodies in adult patients with obsessive-compulsive disorder. J. Affect. Disord. 2009, 116, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Aguilera-Albesa, S.; Crespo-Eguilaz, N.; Del Pozo, J.L.; Villoslada, P.; Sanchez-Carpintero, R. Anti-basal ganglia antibodies and streptococcal infection in ADHD. J. Atten. Disord. 2015. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Carpintero, R.; Albesa, S.A.; Crespo, N.; Villoslada, P.; Narbona, J. A preliminary study of the frequency of anti-basal ganglia antibodies and streptococcal infection in attention deficit/hyperactivity disorder. J. Neurol. 2009, 256, 1103–1108. [Google Scholar] [CrossRef] [PubMed]
- Hegvik, T.-A.; Husebye, E.S.; Haavik, J. Autoantibodies targeting neurotransmitter biosynthetic enzymes in attention-deficit/hyperactivity disorder (ADHD). Eur. Child Adolesc. Psychiatry 2013, 23, 115–117. [Google Scholar] [CrossRef] [PubMed]
Disorder | Characteristics | Prevalence | Etiology |
---|---|---|---|
Psychotic disorders | Delusions, hallucinations, disorganized speech and behavior, and other symptoms. Social or occupational dysfunction. | Estimates of the prevalence vary greatly. The median European prevalence is ~5.3%, with interquartile range of 1.9%–14.4% [9]. | Environmental and genetic factors; about 80% of heritability [10,11,12,13]. |
Major depressive disorder (MDD) | Feelings of persistent sadness and anhedonia that affect thoughts and behavior. Leading to physical problems. Major cause of morbidity worldwide [14]. | Prevalence is up to 15% of the population. | Environmental and genetic factors; possibly autoantibody involvement [15,16,17,18,19]. |
Autism spectrum disorder (ASD) | Social communication deficit, restricted interest, repetitive behaviors with high sensitivity to changes in environment. Difficulty to establish human affective and interpersonal relationships [20]. | Prevalence of 1.47% in 2010 [21], increased over the time, males being 5 times more affected than females [22]. | Environmental and genetic factors; ~90% heritability [23]. |
Attention-deficit/hyperactivity disorder (ADHD) | Inattention, hyperactivity and impulsivity like excessive talking, fidgeting, or an inability to remain seated in appropriate situations. Incapability to focus and organize tasks and activities. | Most prevalent chronic neurodevelopmental disorder in school age children, affecting 2-18% [24,25] and being more frequent in males than in females. | Strong genetic link as well as environmental factors [25]; heritability ~76% [26]; post-infectious autoimmunity [27]. |
Obsessive-Compulsive disorder (OCD) | Anxiety, recurrent unwanted thoughts (obsessions) and repetitive behaviors (compulsions). | Affects 1%–3% of the worldwide population [28,29,30]. | Genetic and environmental factors [31]; heritability of ~50% in children [32] post-infectious autoimmunity [33,34]. |
Antigen Target | Subunit/Associated Protein | Related Disease | n+/n Patient | n+/n Control | Age Range * | Ig Type | Ref. |
---|---|---|---|---|---|---|---|
Autoantibodies to neuronal surface antigens ** | |||||||
VGKC complex | n.s. *** | Limbic encephalitis | 4/15 | n.t. *** | 47–69 | IgG | [113] |
NMDA-R | GluN1 | NMDA-R encephalitis with psychiatric symptoms | 50/485 | n.t | 17–44 | IgG | [114] |
100/100 | n.t | 5–76 | IgG | [115] | |||
250/250 | 0/100 | n/a | IgG | [116] | |||
6/505 | n.t | 18–35 | IgG | [117] | |||
NMDA-R encephalitis (isolated psychiatric episodes) | 571/571 | n.t | 12–62 | IgG | [8] | ||
NMDA-R encephalitis (schizophrenia, and autism) | 1/1 | n.t | 9 | IgG | [118] | ||
Autoimmune encephalitis in postpartum psychosis | 2/96 | 0/64 | 25, 31 | IgG | [119] | ||
GluN2a/2b | Progressive cognitive dysfunction of unclear etiology | 7/24 | n.t | 49–81 | IgA | [120] | |
Herpes simplex encephalitis | 5/44 9/44 9/44 | n.t | 24–79 | IgG IgM IgA | [121] | ||
Limbic encephalitis, narcolepsy | 3/5, 3/5 | n.t | 18–59, 24–61 | IgG | [122] | ||
GluN1/GluN2a/2b | NMDA-R encephalitis associate with ovarian teratoma | 12/12 | 0/200 | 14–44 | IgG | [123] | |
AMPA-R | GluA1, GluA2 | Limbic encephalitis | 22/62 | n.t | 23–81 | n/a | [124] |
GABA-R | Type B | Encephalitis with opsoclonus, Ataxia, Chorea and Seizures | 1/1 | n.t | 3 | IgG | [125] |
α1/β3 subunits | Encephalitis with refractory seizures, status epilepticus, | 6/140 | 0/75 | n/a | IgG | [125] | |
α1/β3 subunits | Encephalitis with thymoma | 1/1 | n.t | 45 | IgG | [126] | |
GlyR | α1 | Progressive encephalomyelitis with rigidity and myoclonus (PERM) | 52/779 | n.t | 1–75 | IgG | [102] |
mGluR | mGluR5 | Encephalitis (Hodgkin lymphoma, Ophelia syndrome) | 2/2 | n.t | 15, 46 | IgG | [127] |
Kv4.2 | DPPX | Encephalitis (subacute onset of neuropsychiatric symptoms) | 4/4 | 0/210 | 45–76 | IgG | [128] |
D2DR | D2 | Basal ganglia encephalitis **, Sydenham’s chorea **, Tourette’s syndrome ** | 12/17, 10/30, 4/44 | 0/67 | 1–15, 2–17, 2–13 | IgG | [129] |
Folate receptor | - | Cerebral folate deficiency syndrome | 25/28 | 0/28 | 2.5–19.3 | n/a | [130] |
Autoantibodies to (neuronal) intracellular antigens ** | |||||||
Rib-P | P1, P2, P3 | SLE with Depression | 22/100 | n.t | 23–36 | IgG | [105] |
GAD | n.s. | Non-paraneoplastic limbic encephalitis | 2/2 | n.t | 20,47 | IgG | [131] |
Antigen Target | Subunit/Associated Protein | Related Disorders (D) | n+/n Patient | n+/n Control | Ig Type | Age Range * | Ref. |
---|---|---|---|---|---|---|---|
Autoantibodies to neuronal surface antigens ** | |||||||
VGKC complex | LGI1, CASPR2 | Psychotic D | 3/125 | n/t *** | IgG | n/a *** | [144] |
n.s. *** | Psychotic D (schizophrenia) | 1/46 | n/t | IgG | 22 (pp) | [145] | |
NMDA-R | GluN1 | Psychotic D and major depressive D. (n.s.) | 81/1688 | 74/1703 | IgM | 26–56 (p) | [146] |
92/1688 | 76/1703 | IgA | |||||
14/1688 | 20/1703 | IgG | |||||
GluN2a/2b | Psychotic D (schizophrenia) | 4/51 | n/t | IgG | 26–53 (pp) | [122] | |
Psychotic D (schizophrenia) | 3/46 | n/t | IgG | 19–28 (pp) | [145] | ||
Muscarinic AChR | M1,M2 | Schizophrenia | (n/a)/21 | (n/a)/25 | IgG | 25–56 (p) | [147] |
Psychotic D, bipolar and depressive D | 42/122 | 0/52 | n/a | 24–63 (p) | [148] | ||
Nicotinic AChR | α7 | Schizophrenia | 5/21 | 0/17 | IgG | 46–61 (pp) | [149] |
D2DR | D2 | Bipolar and major depressive D | 6/122 | 0/52 | n/a | 30–63 (p) | [148] |
Opioid receptor | OPRM1 | Psychotic D, bipolar and major depressive D | 16/122 | 0/52 | n/a | 30–63 (p) | [148] |
Major depressive D | 2/27 | n/a | IgG | n/a | [150] | ||
5HT receptor | HTR1A | Psychotic D, Major depressive D | 9/63 | 0/52 | n/a | 30–63 (p) | [148] |
Autism spectrum D (Autism) | n/a | n/a | n/a | <10 (pp) | [151] | ||
FR | - | Autism spectrum D (Autism) | 70/93 | n/t | n/a | 3–18 (t) | [152] |
DAT | - | Attention-deficit/hyperactivity | n/a/46 | n/a/15 | IgG | 4–16 (t) | [153] |
Autoantibodies to (neuronal) intracellular antigens ** | |||||||
GAD | GAD 65 | Psychotic D (Schizophrenia) | 1/1 | n/t | n/a | 19 (pp) | [154] |
Autism spectrum D (Autism), Attention-deficit/hyperactivity D | 3/20, 4/15 | 0/14 | IgG | 8–11 (pp) | [155] |
Disorders | Targets of the Autoantibodies | Prevalence * | in Vitro * | in Vivo * | Immunotherapy * | ||||
---|---|---|---|---|---|---|---|---|---|
Psychotic | NMDA | +/− | [122,145,146] | + | [86,114,120] | + | [137] | + | [145] |
VGKC complex | +/− | [144,145] | + | [93] | n/a ** | + | [145] | ||
AMPA-R | − | [144,159] | + | [209,210] | + | [211] | n/a | ||
D2DR | + | [148,160] | + | [129] | n/a | n/a | |||
HTR-1A | + | [148] | n/a | n/a | n/a | ||||
mAChR | + | [147,148] | + | [147,164] | n/a | n/a | |||
nAChR | + | [149] | n/a | n/a | n/a | ||||
GAD | +/− | [144,154] | − | [99] | n/a | + | [154] | ||
FR | + | [202,212] | n/a | n/a | n/a | ||||
Major depressive | OPRM1 | + | [148,150] | n/a | n/a | n/a | |||
D2DR | + | [148] | n/a | n/a | n/a | ||||
HTR-1A | + | [148] | n/a | n/a | n/a | ||||
mAChR | + | [148] | n/a | n/a | n/a | ||||
NMDA-R | + | [146] | + | [86] | + | [137] | n/a | ||
Rib-p | n/a | + | [213] | + | [106] | n/a | |||
Autism | HTR-1A | + | [151] | n/a | n/a | n/a | |||
FR | + | [152] | n/a | n/a | n/a | ||||
GAD | + | [155] | n/a | n/a | n/a | ||||
Obsessive-compulsive | Basal ganglia | +/− | [34,214,215] | + | [204] | + | [202,206] | + | [203] |
D2DR | n/a | + | [216] | + | [205] | n/a | |||
Attention deficit hyperactivity | Basal ganglia | +/− | [217,218] | + | [204] | n/a | n/a | ||
GAD | +/− | [155,219] | n/a | n/a | n/a |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoffmann, C.; Zong, S.; Mané-Damas, M.; Molenaar, P.; Losen, M.; Martinez-Martinez, P. Autoantibodies in Neuropsychiatric Disorders. Antibodies 2016, 5, 9. https://doi.org/10.3390/antib5020009
Hoffmann C, Zong S, Mané-Damas M, Molenaar P, Losen M, Martinez-Martinez P. Autoantibodies in Neuropsychiatric Disorders. Antibodies. 2016; 5(2):9. https://doi.org/10.3390/antib5020009
Chicago/Turabian StyleHoffmann, Carolin, Shenghua Zong, Marina Mané-Damas, Peter Molenaar, Mario Losen, and Pilar Martinez-Martinez. 2016. "Autoantibodies in Neuropsychiatric Disorders" Antibodies 5, no. 2: 9. https://doi.org/10.3390/antib5020009
APA StyleHoffmann, C., Zong, S., Mané-Damas, M., Molenaar, P., Losen, M., & Martinez-Martinez, P. (2016). Autoantibodies in Neuropsychiatric Disorders. Antibodies, 5(2), 9. https://doi.org/10.3390/antib5020009