T-Cell Receptor-Like Antibodies: Targeting the Intracellular Proteome Therapeutic Potential and Clinical Applications
Abstract
:1. T-Cell Epitopes as Targets for Immunotherapy
2. T-Cell Receptor-Like Antibodies
3. Generation of TCR-like Antibodies
3.1. Phage Display Libraries
3.1.2. Immunized Libraries
3.2. Hybridoma Technology
3.3. Phage Display vs. Hybridoma-Derived Antibodies: Pros and Cons
4. TCR-Like Antibodies as Therapeutic Agents
4.1. Naked TCR-Like Antibodies
4.2. Immunotoxins
4.3. TCR-Like Antibody-Toxin Fusion Molecule
4.4. TCR-Like Antibody-Toxin Fusion Molecules
5. Outstanding Research Questions and Future Clinical Development of TCR-Like Antibodies
References
- Boon, T.; van der Bruggen, P. Human tumor antigens recognized by T lymphocytes. J. Exp. Med. 1996, 183, 725–729. [Google Scholar] [CrossRef]
- Renkvist, N.; Castelli, C.; Robbins, P.F.; Parmiani, G. A listing of human tumor antigens recognized by T cells. Cancer Immunol. Immunother. 2001, 50, 3–15. [Google Scholar] [CrossRef]
- Rosenberg, S.A. Progress in human tumour immunology and immunotherapy. Nature 2001, 411, 380–384. [Google Scholar] [CrossRef]
- Anichini, A.; Maccalli, C.; Mortarini, R.; Salvi, S.; Mazzocchi, A.; Squarcina, P.; Herlyn, M.; Parmiani, G. Melanoma cells and normal melanocytes share antigens recognized by HLA-A2-restricted cytotoxic t cell clones from melanoma patients. J. Exp. Med. 1993, 177, 989–998. [Google Scholar] [CrossRef]
- Coulie, P.G.; Brichard, V.; Van Pel, A.; Wolfel, T.; Schneider, J.; Traversari, C.; Mattei, S.; De Plaen, E.; Lurquin, C.; Szikora, J.P.; et al. A new gene coding for a differentiation antigen recognized by autologous cytolytic T lymphocytes on HLA-A2 melanomas. J. Exp. Med. 1994, 180, 35–42. [Google Scholar] [CrossRef]
- Shetty, V.; Sinnathamby, G.; Nickens, Z.; Shah, P.; Hafner, J.; Mariello, L.; Kamal, S.; Vlahovic, G.; Lyerly, H.K.; Morse, M.A.; et al. MHC class I-presented lung cancer-associated tumor antigens identified by immunoproteomics analysis are targets for cancer-specific T cell response. J. Proteomics 2011, 74, 728–743. [Google Scholar] [CrossRef]
- Wang, Z.; Marincola, F.M.; Rivoltini, L.; Parmiani, G.; Ferrone, S. Selective histocompatibility leukocyte antigen (HLA)-A2 loss caused by aberrant pre-mRNA splicing in 624mel28 melanoma cells. J. Exp. Med. 1999, 190, 205–215. [Google Scholar] [CrossRef]
- Offringa, R.; van der Burg, S.H.; Ossendorp, F.; Toes, R.E.; Melief, C.J. Design and evaluation of antigen-specific vaccination strategies against cancer. Curr. Opin. Immunol. 2000, 12, 576–582. [Google Scholar] [CrossRef]
- Nagaraj, S.; Gabrilovich, D.I. Tumor escape mechanism governed by myeloid-derived suppressor cells. Cancer Res. 2008, 68, 2561–2563. [Google Scholar] [CrossRef]
- Klenerman, P.; Cerundolo, V.; Dunbar, P.R. Tracking T cells with tetramers: New tales from new tools. Nat. Rev. Immunol. 2002, 2, 263–272. [Google Scholar] [CrossRef]
- Novellino, L.; Castelli, C.; Parmiani, G. A listing of human tumor antigens recognized by T cells: March 2004 update. Cancer Immunol. Immunother. 2005, 54, 187–207. [Google Scholar] [CrossRef]
- Morin, P.J.; Sparks, A.B.; Korinek, V.; Barker, N.; Clevers, H.; Vogelstein, B.; Kinzler, K.W. Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science 1997, 275, 1787–1790. [Google Scholar] [CrossRef]
- de Vries, T.J.; Fourkour, A.; Wobbes, T.; Verkroost, G.; Ruiter, D.J.; van Muijen, G.N. Heterogeneous expression of immunotherapy candidate proteins gp100, mart-1, and tyrosinase in human melanoma cell lines and in human melanocytic lesions. Cancer Res. 1997, 57, 3223–3229. [Google Scholar]
- Nakada, T.; Noguchi, Y.; Satoh, S.; Ono, T.; Saika, T.; Kurashige, T.; Gnjatic, S.; Ritter, G.; Chen, Y.T.; Stockert, E.; et al. Ny-eso-1 mrna expression and immunogenicity in advanced prostate cancer. Cancer Immun. 2003, 3, 10. [Google Scholar]
- Sugita, Y.; Wada, H.; Fujita, S.; Nakata, T.; Sato, S.; Noguchi, Y.; Jungbluth, A.A.; Yamaguchi, M.; Chen, Y.T.; Stockert, E.; et al. Ny-eso-1 expression and immunogenicity in malignant and benign breast tumors. Cancer Res. 2004, 64, 2199–2204. [Google Scholar] [CrossRef]
- King, C.R.; Kraus, M.H.; Aaronson, S.A. Amplification of a novel v-erbB-related gene in a human mammary carcinoma. Science 1985, 229, 974–976. [Google Scholar]
- Schechter, A.L.; Stern, D.F.; Vaidyanathan, L.; Decker, S.J.; Drebin, J.A.; Greene, M.I.; Weinberg, R.A. The neu oncogene: An erb-B-related gene encoding a 185,000-Mr tumour antigen. Nature 1984, 312, 513–516. [Google Scholar] [CrossRef]
- Esche, C.; Shurin, M.R.; Lotze, M.T. The use of dendritic cells for cancer vaccination. Curr. Opin. Mol. Ther. 1999, 1, 72–81. [Google Scholar]
- Kugler, A.; Stuhler, G.; Walden, P.; Zoller, G.; Zobywalski, A.; Brossart, P.; Trefzer, U.; Ullrich, S.; Muller, C.A.; Becker, V.; et al. Regression of human metastatic renal cell carcinoma after vaccination with tumor cell-dendritic cell hybrids. Nat. Med. 2000, 6, 332–336. [Google Scholar] [CrossRef]
- Andersen, P.S.; Stryhn, A.; Hansen, B.E.; Fugger, L.; Engberg, J.; Buus, S. A recombinant antibody with the antigen-specific, major histocompatibility complex-restricted specificity of T cells. Proc. Natl. Acad. Sci. USA 1996, 93, 1820–1824. [Google Scholar] [CrossRef]
- Altman, J.D.; Moss, P.A.; Goulder, P.J.; Barouch, D.H.; McHeyzer-Williams, M.G.; Bell, J.I.; McMichael, A.J.; Davis, M.M. Phenotypic analysis of antigen-specific T lymphocytes. Science 1996, 274, 94–96. [Google Scholar] [CrossRef]
- Denkberg, G.; Cohen, C.J.; Segal, D.; Kirkin, A.F.; Reiter, Y. Recombinant human single-chain MHC-peptide complexes made from E. coli by in vitro refolding: Functional single-chain MHC-peptide complexes and tetramers with tumor associated antigens. Eur. J. Immunol. 2000, 30, 3522–3532. [Google Scholar] [CrossRef]
- Garboczi, D.N.; Hung, D.T.; Wiley, D.C. HLA-A2-peptide complexes: Refolding and crystallization of molecules expressed in Escherichia coli and complexed with single antigenic peptides. Proc. Natl. Acad. Sci. USA 1992, 89, 3429–3433. [Google Scholar] [CrossRef]
- Denkberg, G.; Cohen, C.J.; Reiter, Y. Critical role for CD8 in binding of mhc tetramers to TCR: CD8 antibodies block specific binding of human tumor-specific MHC-peptide tetramers to TCR. J. Immunol. 2001, 167, 270–276. [Google Scholar]
- Abastado, J.P.; Darche, S.; Jouin, H.; Delarbre, C.; Gachelin, G.; Kourilsky, P. A monoclonal antibody recognizes a subset of the H-2Dd mouse major class I antigens. Res. Immunol. 1989, 140, 581–594. [Google Scholar] [CrossRef]
- Aharoni, R.; Teitelbaum, D.; Arnon, R.; Puri, J. Immunomodulation of experimental allergic encephalomyelitis by antibodies to the antigen-Ia complex. Nature 1991, 351, 147–150. [Google Scholar] [CrossRef]
- Biddison, W.E.; Turner, R.V.; Gagnon, S.J.; Lev, A.; Cohen, C.J.; Reiter, Y. Tax and M1 peptide/HLA-A2-specific fabs and T cell receptors recognize nonidentical structural features on peptide/HLA-A2 complexes. J. Immunol. 2003, 171, 3064–3074. [Google Scholar]
- Catipovic, B.; Dal Porto, J.; Mage, M.; Johansen, T.E.; Schneck, J.P. Major histocompatibility complex conformational epitopes are peptide specific. J. Exp. Med. 1992, 176, 1611–1618. [Google Scholar] [CrossRef]
- Chames, P.; Hufton, S.E.; Coulie, P.G.; Uchanska-Ziegler, B.; Hoogenboom, H.R. Direct selection of a human antibody fragment directed against the tumor T-cell epitope HLA-A1-MAGE-A1 from a nonimmunized phage-Fab library. Proc. Natl. Acad. Sci. USA 2000, 97, 7969–7974. [Google Scholar] [CrossRef]
- Cohen, C.J.; Denkberg, G.; Lev, A.; Epel, M.; Reiter, Y. Recombinant antibodies with MHC-restricted, peptide-specific, T-cell receptor-like specificity: New tools to study antigen presentation and TCR-peptide-MHC interactions. J. Mol. Recognit. 2003, 16, 324–332. [Google Scholar] [CrossRef]
- Cohen, C.J.; Hoffmann, N.; Farago, M.; Hoogenboom, H.R.; Eisenbach, L.; Reiter, Y. Direct detection and quantitation of a distinct T-cell epitope derived from tumor-specific epithelial cell-associated mucin using human recombinant antibodies endowed with the antigen-specific, major histocompatibility complex-restricted specificity of T cells. Cancer Res. 2002, 62, 5835–5844. [Google Scholar]
- Cohen, C.J.; Sarig, O.; Yamano, Y.; Tomaru, U.; Jacobson, S.; Reiter, Y. Direct phenotypic analysis of human MHC class I antigen presentation: Visualization, quantitation, and in situ detection of human viral epitopes using peptide-specific, MHC-restricted human recombinant antibodies. J. Immunol. 2003, 170, 4349–4361. [Google Scholar]
- Dadaglio, G.; Nelson, C.A.; Deck, M.B.; Petzold, S.J.; Unanue, E.R. Characterization and quantitation of peptide-MHC complexes produced from hen egg lysozyme using a monoclonal antibody. Immunity 1997, 6, 727–738. [Google Scholar] [CrossRef]
- Day, P.M.; Yewdell, J.W.; Porgador, A.; Germain, R.N.; Bennink, J.R. Direct delivery of exogenous MHC class I molecule-binding oligopeptides to the endoplasmic reticulum of viable cells. Proc. Natl. Acad. Sci. USA 1997, 94, 8064–8069. [Google Scholar] [CrossRef]
- Denkberg, G.; Cohen, C.J.; Lev, A.; Chames, P.; Hoogenboom, H.R.; Reiter, Y. Direct visualization of distinct T cell epitopes derived from a melanoma tumor-associated antigen by using human recombinant antibodies with MHC- restricted T cell receptor-like specificity. Proc. Natl. Acad. Sci. USA 2002, 99, 9421–9426. [Google Scholar]
- Froscher, B.G.; Klinman, N.R. Immunization with SV40-transformed cells yields mainly MHC-restricted monoclonal antibodies. J. Exp. Med. 1986, 164, 196–210. [Google Scholar] [CrossRef]
- Held, G.; Matsuo, M.; Epel, M.; Gnjatic, S.; Ritter, G.; Lee, S.Y.; Tai, T.Y.; Cohen, C.J.; Old, L.J.; Pfreundschuh, M.; et al. Dissecting cytotoxic T cell responses towards the NY-ESO-1 protein by peptide/MHC-specific antibody fragments. Eur. J. Immunol. 2004, 34, 2919–2929. [Google Scholar] [CrossRef]
- Hogquist, K.A.; Grandea, A.G., 3rd; Bevan, M.J. Peptide variants reveal how antibodies recognize major histocompatibility complex class I. Eur. J. Immunol. 1993, 23, 3028–3036. [Google Scholar] [CrossRef]
- Krogsgaard, M.; Wucherpfennig, K.W.; Cannella, B.; Hansen, B.E.; Svejgaard, A.; Pyrdol, J.; Ditzel, H.; Raine, C.; Engberg, J.; Fugger, L. Visualization of myelin basic protein (MBP) T cell epitopes in multiple sclerosis lesions using a monoclonal antibody specific for the human histocompatibility leukocyte antigen (HLA)-DR2-MBP 85-99 complex. J. Exp. Med. 2000, 191, 1395–1412. [Google Scholar] [CrossRef]
- Lev, A.; Denkberg, G.; Cohen, C.J.; Tzukerman, M.; Skorecki, K.L.; Chames, P.; Hoogenboom, H.R.; Reiter, Y. Isolation and characterization of human recombinant antibodies endowed with the antigen-specific, major histocompatibility complex-restricted specificity of T cells directed toward the widely expressed tumor T-cell epitopes of the telomerase catalytic subunit. Cancer Res. 2002, 62, 3184–3194. [Google Scholar]
- Polakova, K.; Plaksin, D.; Chung, D.H.; Belyakov, I.M.; Berzofsky, J.A.; Margulies, D.H. Antibodies directed against the MHC-I molecule H-2Dd complexed with an antigenic peptide: Similarities to a t cell receptor with the same specificity. J. Immunol. 2000, 165, 5703–5712. [Google Scholar]
- Porgador, A.; Yewdell, J.W.; Deng, Y.; Bennink, J.R.; Germain, R.N. Localization, quantitation, and in situ detection of specific peptide-MHC class I complexes using a monoclonal antibody. Immunity 1997, 6, 715–726. [Google Scholar] [CrossRef]
- Reiter, Y.; Di Carlo, A.; Fugger, L.; Engberg, J.; Pastan, I. Peptide-specific killing of antigen-presenting cells by a recombinant antibody-toxin fusion protein targeted to major histocompatibility complex/peptide class I complexes with T cell receptor-like specificity. Proc. Natl. Acad. Sci. USA 1997, 94, 4631–4636. [Google Scholar] [CrossRef]
- Rubin, B.; Malissen, B.; Jorgensen, P.N.; Zeuthen, J. Recognition of insulin on MHC-class-II-expressing l929 cells by antibody and T cells. Res. Immunol. 1989, 140, 67–74. [Google Scholar] [CrossRef]
- Tamminen, W.L.; Wraith, D.; Barber, B.H. Searching for MHC-restricted anti-viral antibodies: Antibodies recognizing the nucleoprotein of influenza virus dominate the serological response of c57bl/6 mice to syngeneic influenza-infected cells. Eur. J. Immunol. 1987, 17, 999–1006. [Google Scholar] [CrossRef]
- Uchanska-Ziegler, B.; Nossner, E.; Schenk, A.; Ziegler, A.; Schendel, D.J. Soluble T cell receptor-like properties of an HLA-B35-specific monoclonal antibody (TU165). Eur. J. Immunol. 1993, 23, 734–738. [Google Scholar] [CrossRef]
- Wylie, D.E.; Sherman, L.A.; Klinman, N.R. Participation of the major histocompatibility complex in antibody recognition of viral antigens expressed on infected cells. J. Exp. Med. 1982, 155, 403–414. [Google Scholar] [CrossRef]
- Yamano, Y.; Cohen, C.J.; Takenouchi, N.; Yao, K.; Tomaru, U.; Li, H.C.; Reiter, Y.; Jacobson, S. Increased expression of human t lymphocyte virus type I (HTLV-I) Tax11-19 peptide-human histocompatibility leukocyte antigen A*201 complexes on CD4+ CD25+ T cells detected by peptide-specific, major histocompatibility complex-restricted antibodies in patients with HTLV-I-associated neurologic disease. J. Exp. Med. 2004, 199, 1367–1377. [Google Scholar] [CrossRef]
- Zehn, D.; Cohen, C.J.; Reiter, Y.; Walden, P. Extended presentation of specific MHC-peptide complexes by mature dendritic cells compared to other types of antigen-presenting cells. Eur. J. Immunol. 2004, 34, 1551–1560. [Google Scholar] [CrossRef]
- Zhong, G.; Reis e Sousa, C.; Germain, R.N. Production, specificity, and functionality of monoclonal antibodies to specific peptide-major histocompatibility complex class II complexes formed by processing of exogenous protein. Proc. Natl. Acad. Sci. USA 1997, 94, 13856–13861. [Google Scholar] [CrossRef]
- Benhar, I. Biotechnological applications of phage and cell display. Biotechnol. Adv. 2001, 19, 1–33. [Google Scholar] [CrossRef]
- de Haard, H.J.; van Neer, N.; Reurs, A.; Hufton, S.E.; Roovers, R.C.; Henderikx, P.; de Bruine, A.P.; Arends, J.W.; Hoogenboom, H.R. A large non-immunized human Fab fragment phage library that permits rapid isolation and kinetic analysis of high affinity antibodies. J. Biol. Chem. 1999, 274, 18218–18230. [Google Scholar] [CrossRef]
- Griffiths, A.D.; Williams, S.C.; Hartley, O.; Tomlinson, I.M.; Waterhouse, P.; Crosby, W.L.; Kontermann, R.E.; Jones, P.T.; Low, N.M.; Allison, T.J.; et al. Isolation of high affinity human antibodies directly from large synthetic repertoires. EMBO J. 1994, 13, 3245–3260. [Google Scholar]
- Hoogenboom, H.R. Selecting and screening recombinant antibody libraries. Nat. Biotech. 2005, 23, 1105–1116. [Google Scholar] [CrossRef]
- Chames, P.; Willemsen, R.A.; Rojas, G.; Dieckmann, D.; Rem, L.; Schuler, G.; Bolhuis, R.L.; Hoogenboom, H.R. TCR-like human antibodies expressed on human CTLs mediate antibody affinity-dependent cytolytic activity. J. Immunol. 2002, 169, 1110–1118. [Google Scholar]
- Stewart-Jones, G.; Wadle, A.; Hombach, A.; Shenderov, E.; Held, G.; Fischer, E.; Kleber, S.; Nuber, N.; Stenner-Liewen, F.; Bauer, S.; et al. Rational development of high-affinity T-cell receptor-like antibodies. Proc. Natl. Acad. Sci. USA 2009, 106, 5784–5788. [Google Scholar] [CrossRef]
- Michaeli, Y.; Denkberg, G.; Sinik, K.; Lantzy, L.; Chih-Sheng, C.; Beauverd, C.; Ziv, T.; Romero, P.; Reiter, Y. Expression hierarchy of T cell epitopes from melanoma differentiation antigens: Unexpected high level presentation of tyrosinase-HLA-A2 complexes revealed by peptide-specific, MHC-restricted, TCR-like antibodies. J. Immunol. 2009, 182, 6328–6341. [Google Scholar] [CrossRef]
- Denkberg, G.; Klechevsky, E.; Reiter, Y. Modification of a tumor-derived peptide at an HLA-A2 anchor residue can alter the conformation of the MHC-peptide complex: Probing with TCR-like recombinant antibodies. J. Immunol. 2002, 169, 4399–4407. [Google Scholar]
- Klechevsky, E.; Gallegos, M.; Denkberg, G.; Palucka, K.; Banchereau, J.; Cohen, C.; Reiter, Y. Antitumor activity of immunotoxins with T-cell receptor-like specificity against human melanoma xenografts. Cancer Res. 2008, 68, 6360–6367. [Google Scholar] [CrossRef]
- Cloutier, S.M.; Couty, S.; Terskikh, A.; Marguerat, L.; Crivelli, V.; Pugnieres, M.; Mani, J.C.; Leisinger, H.J.; Mach, J.P.; Deperthes, D. Streptabody, a high avidity molecule made by tetramerization of in vivo biotinylated, phage display-selected scFV fragments on streptavidin. Mol. Immunol. 2000, 37, 1067–1077. [Google Scholar] [CrossRef]
- Makler, O.; Oved, K.; Netzer, N.; Wolf, D.; Reiter, Y. Direct visualization of the dynamics of antigen presentation in human cells infected with cytomegalovirus revealed by antibodies mimicking TCR specificity. Eur. J. Immunol. 2010, 40, 1552–1565. [Google Scholar] [CrossRef]
- Denkberg, G.; Lev, A.; Eisenbach, L.; Benhar, I.; Reiter, Y. Selective targeting of melanoma and APCs using a recombinant antibody with TCR-like specificity directed toward a melanoma differentiation antigen. J. Immunol. 2003, 171, 2197–2207. [Google Scholar]
- Sergeeva, A.; Alatrash, G.; He, H.; Ruisaard, K.; Lu, S.; Wygant, J.; McIntyre, B.W.; Ma, Q.; Li, D.; St John, L.; et al. An anti-PR1/HLA-A2 T-cell receptor-like antibody mediates complement-dependent cytotoxicity against acute myeloid leukemia progenitor cells. Blood. 2011, 117, 4262–4272. [Google Scholar] [CrossRef]
- Wittman, V.P.; Woodburn, D.; Nguyen, T.; Neethling, F.A.; Wright, S.; Weidanz, J.A. Antibody targeting to a class I MHC-peptide epitope promotes tumor cell death. J. Immunol. 2006, 177, 4187–4195. [Google Scholar]
- Sastry, K.S.R.; Too, C.T.; Kaur, K.; Gehring, A.J.; Low, L.; Javiad, A.; Pollicino, T.; Li, L.; Kennedy, P.T.F.; Lopatin, U.; et al. Targeting hepatitis B virus-infected cells with a T-cell receptor-like antibody. J. Virol. 2011, 85, 1935–1942. [Google Scholar] [CrossRef]
- Herschhorn, A.; Marasco, W.A.; Hizi, A. Antibodies and lentiviruses that specifically recognize a T cell epitope derived from HIV-1 Nef protein and presented by HLA-C. J. Immunol. 2010, 185, 7623–7632. [Google Scholar] [CrossRef]
- Bernardeau, K.G.S.; David, G.; Ruellan, A.L.; Devys, A.; Barbet, J.; Bonneville, M.; Chérel, M.; Davodeau, F. Assessment of CD8 involvement in T cell clone avidity by direct measurement of HLA-A2/MAGE3 complex density using a high-affinity TCR like monoclonal antibody. Eur. J. Immunol. 2005, 35, 2864–2875. [Google Scholar] [CrossRef]
- Verma, B.; Neethling, F.A.; Caseltine, S.; Fabrizio, G.; Largo, S.; Duty, J.A.; Tabaczewski, P.; Weidanz, J.A. TCR mimic monoclonal antibody targets a specific peptide/hla class I complex and significantly impedes tumor growth in vivo using breast cancer models. J. Immunol. 2010, 184, 2156–2165. [Google Scholar] [CrossRef]
- Bronner, V.; Denkberg, G.; Peled, M.; Elbaz, Y.; Zahavi, E.; Kasoto, H.; Reiter, Y.; Notcovich, A.; Bravman, T. Therapeutic antibodies: Discovery and development using the ProteOn XPR3 biosensor interaction array system. Anal. Biochem. 2010, 406, 147–156. [Google Scholar] [CrossRef]
- Weiner, L.M.; Surana, R.; Wang, S. Monoclonal antibodies: Versatile platforms for cancer immunotherapy. Nat. Rev. Immunol. 2010, 10, 317–327. [Google Scholar] [CrossRef]
- Dahan, R.; Reiter, Y. T-cell-receptor-like antibodies—Generation, function and applications. Expert Rev. Mol. Med. 2012, 14, e6. [Google Scholar] [CrossRef]
- Cartron, G.; Dacheux, L.; Salles, G.; Solal-Celigny, P.; Bardos, P.; Colombat, P.; Watier, H. Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcgammaRIIIa gene. Blood 2002, 99, 754–758. [Google Scholar] [CrossRef]
- Clynes, R.A.; Towers, T.L.; Presta, L.G.; Ravetch, J.V. Inhibitory Fc receptors modulate in vivo cytotoxicity against tumor targets. Nat. Med. 2000, 6, 443–446. [Google Scholar] [CrossRef]
- Edwards, M.S.; Chadda, S.D.; Zhao, Z.; Barber, B.L.; Sykes, D.P. A systematic review of treatment guidelines for metastatic colorectal cancer. Colorectal Dis. 2012, 14, e31–e47. [Google Scholar] [CrossRef]
- Kreitman, R.J. Immunotoxins for targeted cancer therapy. AAPS J. 2006, 8, E532–E551. [Google Scholar] [CrossRef]
- Pastan, I.; Hassan, R.; FitzGerald, D.J.; Kreitman, R.J. Immunotoxin treatment of cancer. Annu. Rev. Med. 2007, 58, 221–237. [Google Scholar] [CrossRef]
- Shapira, A.; Benhar, I. Toxin-based therapeutic approaches. Toxins 2010, 2, 2519–2583. [Google Scholar] [CrossRef]
- Litvak-Greenfeld, D.; Benhar, I. Risks and untoward toxicities of antibody-based immunoconjugates. Adv. Drug Deliv. Rev. 2012, 64, 1782–1799. [Google Scholar] [CrossRef]
- Falnes, P.O.; Sandvig, K. Penetration of protein toxins into cells. Curr. Opin. Cell Biol. 2000, 12, 407–413. [Google Scholar] [CrossRef]
- Menestrina, G.; Schiavo, G.; Montecucco, C. Molecular mechanisms of action of bacterial protein toxins. Mol. Aspects Med. 1994, 15, 79–193. [Google Scholar] [CrossRef]
- Chiron, M.F.; Fryling, C.M.; FitzGerald, D. Furin-mediated cleavage of pseudomonas exotoxin-derived chimeric toxins. J. Biol. Chem. 1997, 272, 31707–31711. [Google Scholar]
- Williams, D.P.; Wen, Z.; Watson, R.S.; Boyd, J.; Strom, T.B.; Murphy, J.R. Cellular processing of the interleukin-2 fusion toxin DAB486-IL-2 and efficient delivery of diphtheria fragment A to the cytosol of target cells requires Arg194. J. Biol. Chem. 1990, 265, 20673–20677. [Google Scholar]
- Carroll, S.F.; Collier, R.J. Active site of pseudomonas aeruginosa exotoxin a. Glutamic acid 553 is photolabeled by nad and shows functional homology with glutamic acid 148 of diphtheria toxin. J. Biol. Chem. 1987, 262, 8707–8711. [Google Scholar]
- Van Ness, B.G.; Howard, J.B.; Bodley, J.W. Adp-ribosylation of elongation factor 2 by diphtheria toxin. Isolation and properties of the novel ribosyl-amino acid and its hydrolysis products. J. Biol. Chem. 1980, 255, 10717–10720. [Google Scholar]
- Kreitman, R.J. Recombinant immunotoxins containing truncated bacterial toxins for the treatment of hematologic malignancies. BioDrugs 2009, 23, 1–13. [Google Scholar] [CrossRef]
- Seetharam, S.; Chaudhary, V.K.; FitzGerald, D.; Pastan, I. Increased cytotoxic activity of pseudomonas exotoxin and two chimeric toxins ending in KDEL. J. Biol. Chem. 1991, 266, 17376–17381. [Google Scholar]
- Denkberg, G.; Lev, A.; Eisenbach, L.; Benhar, I.; Reiter, Y. Selective targeting of melanoma and APCs using a recombinant antibody with TCR-like specificity directed toward a melanoma differentiation antigen. J. Immunol. 2003, 171, 2197–2207. [Google Scholar]
- Epel, M.; Carmi, I.; Soueid-Baumgarten, S.; Oh, S.K.; Bera, T.; Pastan, I.; Berzofsky, J.; Reiter, Y. Targeting TARP, a novel breast and prostate tumor-associated antigen, with T cell receptor-like human recombinant antibodies. Eur. J. Immunol. 2008, 38, 1706–1720. [Google Scholar] [CrossRef]
- Cohen, C.J.; Denkberg, G.; Segal, D.; Reiter, Y. Generation of recombinant immunotoxins for specific targeting of tumor-related peptides presented by MHC molecules. Methods Mol. Biol. 2003, 207, 269–282. [Google Scholar]
- Ghetie, M.A.; Tucker, K.; Richardson, J.; Uhr, J.W.; Vitetta, E.S. The antitumor activity of an anti-CD22 immunotoxin in scid mice with disseminated Daudi lymphoma is enhanced by either an anti-CD19 antibody or an anti-CD19 immunotoxin. Blood 1992, 80, 2315–2320. [Google Scholar]
- Tsutsumi, Y.; Onda, M.; Nagata, S.; Lee, B.; Kreitman, R.J.; Pastan, I. Site-specific chemical modification with polyethylene glycol of recombinant immunotoxin anti-Tac(Fv)-PE38 (LMB-2) improves antitumor activity and reduces animal toxicity and immunogenicity. Proc. Natl. Acad. Sci. USA 2000, 97, 8548–8553. [Google Scholar] [CrossRef]
- Ji, C.; Sastry, K.S.; Tiefenthaler, G.; Cano, J.; Tang, T.; Ho, Z.Z.; Teoh, D.; Bohini, S.; Chen, A.; Sankuratri, S.; et al. Targeted delivery of interferon-α to hepatitis B virus-infected cells using T-cell receptor-like antibodies. Hepatology 2012, 56, 2027–2038. [Google Scholar] [CrossRef]
- Liddy, N.; Bossi, G.; Adams, K.J.; Lissina, A.; Mahon, T.M.; Hassan, N.J.; Gavarret, J.; Bianchi, F.C.; Pumphrey, N.J.; Ladell, K.; et al. Monoclonal TCR-redirected tumor cell killing. Nat. Med. 2012, 18, 980–987. [Google Scholar] [CrossRef]
- Molloy, P.E.; Sewell, A.K.; Jakobsen, B.K. Soluble T cell receptors: Novel immunotherapies. Curr. Opin. Pharmacol. 2005, 5, 438–443. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Cohen, M.; Reiter, Y. T-Cell Receptor-Like Antibodies: Targeting the Intracellular Proteome Therapeutic Potential and Clinical Applications. Antibodies 2013, 2, 517-534. https://doi.org/10.3390/antib2030517
Cohen M, Reiter Y. T-Cell Receptor-Like Antibodies: Targeting the Intracellular Proteome Therapeutic Potential and Clinical Applications. Antibodies. 2013; 2(3):517-534. https://doi.org/10.3390/antib2030517
Chicago/Turabian StyleCohen, Maya, and Yoram Reiter. 2013. "T-Cell Receptor-Like Antibodies: Targeting the Intracellular Proteome Therapeutic Potential and Clinical Applications" Antibodies 2, no. 3: 517-534. https://doi.org/10.3390/antib2030517
APA StyleCohen, M., & Reiter, Y. (2013). T-Cell Receptor-Like Antibodies: Targeting the Intracellular Proteome Therapeutic Potential and Clinical Applications. Antibodies, 2(3), 517-534. https://doi.org/10.3390/antib2030517