Conversion Factors to Compare Serum Concentrations of Anti-HBs, Anti-SARS-CoV-2 and Anti-Tetanus Toxin IgG
Abstract
1. Introduction
2. Materials and Methods
2.1. Antigens, Antibody Standards, Sera
2.2. Absorption Equivalence ELISA
2.3. Calculation of the Relative Antigen-Specific Antibody Concentration in the Standards
2.4. Antibody ELISA with Sera
3. Results
3.1. Equivalence Values and Conversion Factors for IgG Concentrations in Reference Sera
3.2. Comparison of Antibody Concentrations in Serum Samples
3.3. NP- and RBD IgG Concentrations in Sera from Infected and Vaccinated Individuals
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SARS-CoV-2 | Severe acute respiratory distress syndrome coronavirus-2 |
RBD | Receptor binding domain |
NP | Nucleoprotein |
BAU | Binding antibody units |
References
- Ferguson, M.; Yu, M.W.; Heath, A. Calibration of the second International Standard for hepatitis B immunoglobulin in an international collaborative study. Vox Sang. 2010, 99, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Mattiuzzo, G.; Bentley, E.M.; Hassall, M.; Routley, S.; Richardson, S.; Bernasconi, V.; Kristiansen, P.; Harvala, H.; Roberts, D.; Semple, M.G.; et al. Establishment of the WHO International Standard and Reference Panel for Anti-SARS-CoV-2 Antibody; World Health Organisation: Geneva, Switzerland, 2020. [Google Scholar]
- Kristiansen, P.A.; Page, M.; Bernasconi, V.; Mattiuzzo, G.; Dull, P.; Makar, K.; Plotkin, S.; Knezevic, I. WHO International Standard for anti-SARS-CoV-2 immunoglobulin. Lancet 2021, 397, 1347–1348. [Google Scholar] [CrossRef] [PubMed]
- Knezevic, I.; Mattiuzzo, G.; Page, M.; Nuebling, M.; Griffiths, E.; Minor, P. Complexity of serological assays and misunderstandings of WHO International Units. Clin. Chem. Lab. Med. 2022, 60, e223–e224. [Google Scholar] [CrossRef] [PubMed]
- Stickings, P.; Tierney, R.; Hockley, J.; Atkinson, E.; Rigsby, P.; Terao, E. Collaborative Study for the Establishment of a Replacement WHO International Standard for Tetanus Immunoglobulin (Human) and Assessment of Commutability; World Health Organization: Geneva, Switzerland, 2019; Available online: https://cdn.who.int/media/docs/default-source/biologicals/ecbs/reference-materials/bs-2019-2367-tetanus-immunoglobulin-2nd-is-stickings-ecbs.pdf?sfvrsn=e9725160_2 (accessed on 4 June 2025).
- Quataert, S.A.; Kirch, C.S.; Wiedl, L.J.; Phipps, D.C.; Strohmeyer, S.; Cimino, C.O.; Skuse, J.; Madore, D.V. Assignment of weight-based antibody units to a human antipneumococcal standard reference serum, lot 89-S. Clin. Diagn. Lab. Immunol. 1995, 2, 590–597. [Google Scholar] [CrossRef] [PubMed]
- Zollinger, W.D.; Boslego, J.W. A general approach to standardization of the solid-phase radioimmunoassay for quantitation of class-specific antibodies. J. Immunol. Methods 1981, 46, 129–140. [Google Scholar] [CrossRef] [PubMed]
- Concepcion, N.; Frasch, C.E. Evaluation of previously assigned antibody concentrations in pneumococcal polysaccharide reference serum 89SF by the method of cross-standardization. Clin. Diagn. Lab. Immunol. 1998, 5, 199–204. [Google Scholar] [CrossRef] [PubMed]
- Quataert, S.A.; Rittenhouse-Olson, K.; Kirch, C.S.; Hu, B.; Secor, S.; Strong, N.; Madore, D.V. Assignment of weight-based antibody units for 13 serotypes to a human antipneumococcal standard reference serum, lot 89-S(f). Clin. Diagn. Lab. Immunol. 2004, 11, 1064–1069. [Google Scholar] [CrossRef] [PubMed]
- Holder, P.K.; Maslanka, S.E.; Pais, L.B.; Dykes, J.; Plikaytis, B.D.; Carlone, G.M. Assignment of Neisseria meningitidis serogroup A and C class-specific anticapsular antibody concentrations to the new standard reference serum CDC1992. Clin. Diagn. Lab. Immunol. 1995, 2, 132–137. [Google Scholar] [CrossRef] [PubMed]
- Reiners, N.; Schnurra, C.; Trawinski, H.; Kannenberg, J.; Hermsdorf, T.; Aebischer, A.; Schoneberg, T.; Reiche, S.; Jassoy, C. Performance of a SARS CoV-2 antibody ELISA based on simultaneous measurement of antibodies against the viral nucleoprotein and receptor-binding domain. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 2645–2649. [Google Scholar] [CrossRef] [PubMed]
- Reiche, S.; Bussmann, B.M.; Dwai, Y.; Jassoy, C. Antibody-mediated binding of fluorescent HIV Gag and influenza nucleoprotein tetramers to blood cells. Immunobiology 2010, 215, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Bentley, E.M.; Atkinson, E.; Rigsby, P.; Elsley, W.; Bernasconi, V.; Kristiansen, P.; Harvala, H.; Turtle, L.C.; Dobson, S.; Wendel, S.; et al. Establishment of the 2nd WHO International Standard for Anti-SARS-CoV-2 Immunoglobulin and Reference Panel for Antibodies to SARS-CoV-2 Variants of Concern; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- Reiche, S.; Dwai, Y.; Bussmann, B.M.; Horn, S.; Sieg, M.; Jassoy, C. High Inter-Individual Diversity of Point Mutations, Insertions, and Deletions in Human Influenza Virus Nucleoprotein-Specific Memory B Cells. PLoS ONE 2015, 10, e0128684. [Google Scholar] [CrossRef] [PubMed]
- Kannenberg, J.; Schnurra, C.; Reiners, N.; Henschler, R.; Buhmann, R.; Kaiser, T.; Biemann, R.; Honemann, M.; Ackermann, G.; Trawinski, H.; et al. Sensitivity of SARS-CoV-2 antibody tests with late convalescent sera. J. Clin. Virol. Plus 2021, 1, 100038. [Google Scholar] [CrossRef] [PubMed]
- Mast, E.E.; Weinbaum, C.M.; Fiore, A.E.; Alter, M.J.; Bell, B.P.; Finelli, L.; Rodewald, L.E.; Douglas, J.M., Jr.; Janssen, R.S.; Ward, J.W.; et al. A comprehensive immunization strategy to eliminate transmission of hepatitis B virus infection in the United States: Recommendations of the Advisory Committee on Immunization Practices (ACIP) Part II: Immunization of adults. MMWR Recomm. Rep. 2006, 55, 1–33, quiz CE31-34. [Google Scholar] [PubMed]
- World Health Organisation. Tetanus vaccines: WHO position paper—February 2017. Wkly. Epidemiol. Rec. 2017, 92, 53–76. [Google Scholar]
- Feng, S.; Phillips, D.J.; White, T.; Sayal, H.; Aley, P.K.; Bibi, S.; Dold, C.; Fuskova, M.; Gilbert, S.C.; Hirsch, I.; et al. Correlates of protection against symptomatic and asymptomatic SARS-CoV-2 infection. Nat. Med. 2021, 27, 2032–2040. [Google Scholar] [CrossRef] [PubMed]
- Szczawinska-Poplonyk, A.; Breborowicz, A.; Samara, H.; Ossowska, L.; Dworacki, G. Impaired Antigen-Specific Immune Response to Vaccines in Children with Antibody Production Defects. Clin. Vaccine Immunol. 2015, 22, 875–882. [Google Scholar] [CrossRef] [PubMed]
- Rockstroh, C.; Hintz, K.; Kannenberg, J.; Jassoy, C. Measurement of the Memory B Cell Response via Antibodies from Activated Cells. Antibodies 2024, 13, 81. [Google Scholar] [CrossRef] [PubMed]
Anti-HBs IgG 07/164 1 (IU) | Anti-CoV-2 RBD IgG 20/136 1 (BAU) | Anti-CoV-2 NP IgG 20/136 1 (BAU) | Anti-Ttx IgG 13/240 1 (mIU/mL) | |
---|---|---|---|---|
Measurement | /µg SR2-NP66/67 equivalent | |||
1 | 5.18 | 125 | 33.2 | 63.5 |
2 | 4.7 | 110 | 31.6 | 68.2 |
3 | 5.43 | 130 | 32.7 | 78.7 |
4 | 4.45 | 117 | 38.4 | 65.4 |
Mean | 4.9 | 120.5 | 34.0 | 69.0 |
Standard deviation | 0.44 | 8.81 | 3.03 | 6.78 |
Coefficient of Variation | 0.090 | 0.073 | 0.089 | 0.098 |
Ratio 1 | Anti- | |||
---|---|---|---|---|
Anti- | HBs (IU) | CoV-2 RBD (BAU) | CoV-2 NP (BAU) | Ttx (mIU) |
HBs (IU) | 24.5 | 6.87 | 14.0 | |
CoV-2 RBD (BAU) | 0.041 1 | 0.28 | 0.57 | |
CoV-2 NP (BAU) | 0.145 | 3.55 | 2.03 | |
Ttx (mIU) | 0.072 | 1.75 | 0.49 |
Sample ID | Time Point | RBD BAU/mL | NP BAU/mL | RBD BAU/ NP BAU | RBD IgG/ NP IgG |
---|---|---|---|---|---|
CoV-001 | Early 1 | 556 | 269 | 2.1 | 0.59 |
6 months 2 | 123 | 35 | 3.5 | 0.99 | |
Vaccinated 3 | 2486 | 18 | 135.2 | 38.53 | |
CoV-003 | early | 465 | 306 | 1.5 | 0.43 |
6 months | 234 | 149 | 1.6 | 0.45 | |
vaccinated | 557 | 87 | 6.4 | 1.83 | |
CoV-006 | early | 402 | 163 | 2.5 | 0.70 |
6 months | 107 | 48 | 2.2 | 0.64 | |
vaccinated | 1443 | 8 | 179 | 50.94 | |
CV220/003 | early | 45 | 23 | 2.0 | 0.56 |
6 months | 11 | 4 | 2.8 | 0.78 | |
vaccinated | 10 | 2 | 5.6 | 1.59 | |
CV220/008 | early | 104 | 45 | 2.3 | 0.66 |
6 months | 50 | 33 | 1.5 | 0.44 | |
vaccinated | 420 | 8 | 53.1 | 15.14 | |
CV220/010 | early | 3208 | 1500 | 2.1 | 0.61 |
6 months | 320 | 204 | 1.6 | 0.45 | |
vaccinated | 6842 | 97 | 70.5 | 20.08 | |
CV220/024 | early | 121 | 83 | 1.5 | 0.42 |
6 months | 193 | 31 | 6.3 | 1.80 | |
vaccinated | 6313 | 10 | 656.4 | 187.07 | |
CV220/035 | early | 94 | 467 | 0.2 | 0.06 |
6 months | 101 | 73 | 1.4 | 0.40 | |
vaccinated | 2210 | 12 | 186.1 | 53.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Knispel, A.; Jassoy, C. Conversion Factors to Compare Serum Concentrations of Anti-HBs, Anti-SARS-CoV-2 and Anti-Tetanus Toxin IgG. Antibodies 2025, 14, 69. https://doi.org/10.3390/antib14030069
Knispel A, Jassoy C. Conversion Factors to Compare Serum Concentrations of Anti-HBs, Anti-SARS-CoV-2 and Anti-Tetanus Toxin IgG. Antibodies. 2025; 14(3):69. https://doi.org/10.3390/antib14030069
Chicago/Turabian StyleKnispel, Aurelia, and Christian Jassoy. 2025. "Conversion Factors to Compare Serum Concentrations of Anti-HBs, Anti-SARS-CoV-2 and Anti-Tetanus Toxin IgG" Antibodies 14, no. 3: 69. https://doi.org/10.3390/antib14030069
APA StyleKnispel, A., & Jassoy, C. (2025). Conversion Factors to Compare Serum Concentrations of Anti-HBs, Anti-SARS-CoV-2 and Anti-Tetanus Toxin IgG. Antibodies, 14(3), 69. https://doi.org/10.3390/antib14030069