Factors Governing B Cell Recognition of Autoantigen and Function in Type 1 Diabetes
Abstract
:1. Introduction
2. T1D Prevalence, Staging, and Clinical Challenges
3. Murine B Lymphocytes Present Islet Autoantigens to T Cells in T1D
4. BCR Signaling and B Cell Tolerance Break in T1D
5. The Impact of Somatic Hypermutation and Affinity Maturation on BCR Autoantigen Recognition in T1D
6. B-Cell-Targeted Immunotherapy in Human T1D
7. Antigen-Specific Therapy in T1D
8. T-Cell-Targeted Therapies in T1D
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Atkinson, M.A.; Eisenbarth, G.S. Type 1 diabetes: New perspectives on disease pathogenesis and treatment. Lancet 2001, 358, 221–229. [Google Scholar] [CrossRef]
- Atkinson, M.A.; Eisenbarth, G.S.; Michels, A.W. Type 1 diabetes. Lancet 2014, 383, 69–82. [Google Scholar] [CrossRef]
- Eisenbarth, G.S. Type I diabetes mellitus. A chronic autoimmune disease. N. Engl. J. Med. 1986, 314, 1360–1368. [Google Scholar] [CrossRef] [PubMed]
- Insel, R.A.; Dunne, J.L.; Atkinson, M.A.; Chiang, J.L.; Dabelea, D.; Gottlieb, P.A.; Greenbaum, C.J.; Herold, K.C.; Krischer, J.P.; Lernmark, A.; et al. Staging presymptomatic type 1 diabetes: A scientific statement of JDRF, the Endocrine Society, and the American Diabetes Association. Diabetes Care 2015, 38, 1964–1974. [Google Scholar] [CrossRef]
- Raz, E.; Brezis, M.; Rosenmann, E.; Eilat, D. Anti-DNA antibodies bind directly to renal antigens and induce kidney dysfunction in the isolated perfused rat kidney. J. Immunol. 1989, 142, 3076–3082. [Google Scholar] [CrossRef] [PubMed]
- Korganow, A.S.; Ji, H.; Mangialaio, S.; Duchatelle, V.; Pelanda, R.; Martin, T.; Degott, C.; Kikutani, H.; Rajewsky, K.; Pasquali, J.L.; et al. From systemic T cell self-reactivity to organ-specific autoimmune disease via immunoglobulins. Immunity 1999, 10, 451–461. [Google Scholar] [CrossRef]
- Serreze, D.V.; Fleming, S.A.; Chapman, H.D.; Richard, S.D.; Leiter, E.H.; Tisch, R.M. B lymphocytes are critical antigen-presenting cells for the initiation of T cell-mediated autoimmune diabetes in nonobese diabetic mice. J. Immunol. 1998, 161, 3912–3918. [Google Scholar] [CrossRef] [PubMed]
- Silveira, P.A.; Johnson, E.; Chapman, H.D.; Bui, T.; Tisch, R.M.; Serreze, D.V. The preferential ability of B lymphocytes to act as diabetogenic APC in NOD mice depends on expression of self-antigen-specific immunoglobulin receptors. Eur. J. Immunol. 2002, 32, 3657–3666. [Google Scholar] [CrossRef]
- Mobasseri, M.; Shirmohammadi, M.; Amiri, T.; Vahed, N.; Hosseini Fard, H.; Ghojazadeh, M. Prevalence and incidence of type 1 diabetes in the world: A systematic review and meta-analysis. Health Promot. Perspect. 2020, 10, 98–115. [Google Scholar] [CrossRef]
- Gregory, G.A.; Robinson, T.I.G.; Linklater, S.E.; Wang, F.; Colagiuri, S.; de Beaufort, C.; Donaghue, K.C.; International Diabetes Federation Diabetes Atlas Type 1 Diabetes in Adults Special Interest Group; Magliano, D.J.; Maniam, J.; et al. Global incidence, prevalence, and mortality of type 1 diabetes in 2021 with projection to 2040: A modelling study. Lancet Diabetes Endocrinol. 2022, 10, 741–760. [Google Scholar] [CrossRef]
- Sussman, M.; Benner, J.; Haller, M.J.; Rewers, M.; Griffiths, R. Estimated Lifetime Economic Burden of Type 1 Diabetes. Diabetes Technol. Ther. 2020, 22, 121–130. [Google Scholar] [CrossRef]
- Secrest, A.M.; Washington, R.E.; Orchard, T.J. Mortality in Type 1 Diabetes. In Diabetes in America, 3rd ed.; Cowie, C.C., Casagrande, S.S., Menke, A., Cissell, M.A., Eberhardt, M.S., Meigs, J.B., Gregg, E.W., Knowler, W.C., Barrett-Connor, E., Becker, D.J., et al., Eds.; National Institute of Diabetes and Digestive and Kidney Diseases (US): Bethesda, MD, USA, 2018. [Google Scholar]
- Pines Corrales, P.J.; Sastre Marcos, J.; Lopez Gallardo, G.; Moreno Fernandez, J.; Herranz Antolin, S.; Quiroga Lopez, I.; Del Val Zaballos, F.; Gonzalez Lopez, J.; Alfaro Martinez, J.J.; In representation of the DIACAM1 2010–2020 Group. All-cause mortality and risk factors in patients with type 1 diabetes in Castilla-La Mancha, Spain. DIACAM1 2010–2020 study. Prim. Care Diabetes 2023, 18, 59–64. [Google Scholar] [CrossRef]
- Lee, Y.B.; Han, K.; Kim, B.; Lee, S.E.; Jun, J.E.; Ahn, J.; Kim, G.; Jin, S.M.; Kim, J.H. Risk of early mortality and cardiovascular disease in type 1 diabetes: A comparison with type 2 diabetes, a nationwide study. Cardiovasc. Diabetol. 2019, 18, 157. [Google Scholar] [CrossRef]
- Reed, J.C.; Herold, K.C. Thinking bedside at the bench: The NOD mouse model of T1DM. Nat. Rev. Endocrinol. 2015, 11, 308–314. [Google Scholar] [CrossRef] [PubMed]
- Makino, S.; Kunimoto, K.; Muraoka, Y.; Mizushima, Y.; Katagiri, K.; Tochino, Y. Breeding of a non-obese, diabetic strain of mice. Exp. Anim. 1980, 29, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Blohme, G.; Nystrom, L.; Arnqvist, H.J.; Lithner, F.; Littorin, B.; Olsson, P.O.; Schersten, B.; Wibell, L.; Ostman, J. Male predominance of type 1 (insulin-dependent) diabetes mellitus in young adults: Results from a 5-year prospective nationwide study of the 15–34-year age group in Sweden. Diabetologia 1992, 35, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Ostman, J.; Lonnberg, G.; Arnqvist, H.J.; Blohme, G.; Bolinder, J.; Ekbom Schnell, A.; Eriksson, J.W.; Gudbjornsdottir, S.; Sundkvist, G.; Nystrom, L. Gender differences and temporal variation in the incidence of type 1 diabetes: Results of 8012 cases in the nationwide Diabetes Incidence Study in Sweden 1983–2002. J. Intern. Med. 2008, 263, 386–394. [Google Scholar] [CrossRef]
- Diaz-Valencia, P.A.; Bougneres, P.; Valleron, A.J. Global epidemiology of type 1 diabetes in young adults and adults: A systematic review. BMC Public Health 2015, 15, 255. [Google Scholar] [CrossRef]
- Danchenko, N.; Satia, J.A.; Anthony, M.S. Epidemiology of systemic lupus erythematosus: A comparison of worldwide disease burden. Lupus 2006, 15, 308–318. [Google Scholar] [CrossRef]
- Type 1 Diabetes TrialNet. 2018. Available online: https://www.trialnet.org/ (accessed on 19 March 2024).
- Juvenile Diabetes Research Foundation. JDRF. Available online: https://www.jdrf.org/t1d-resources/t1detect/ (accessed on 19 March 2024).
- Campbell-Thompson, M.; Wasserfall, C.; Kaddis, J.; Albanese-O’Neill, A.; Staeva, T.; Nierras, C.; Moraski, J.; Rowe, P.; Gianani, R.; Eisenbarth, G.; et al. Network for Pancreatic Organ Donors with Diabetes (nPOD): Developing a tissue biobank for type 1 diabetes. Diabetes/Metab. Res. Rev. 2012, 28, 608–617. [Google Scholar] [CrossRef]
- Ziegler, A.G.; Rewers, M.; Simell, O.; Simell, T.; Lempainen, J.; Steck, A.; Winkler, C.; Ilonen, J.; Veijola, R.; Knip, M.; et al. Seroconversion to multiple islet autoantibodies and risk of progression to diabetes in children. JAMA 2013, 309, 2473–2479. [Google Scholar] [CrossRef] [PubMed]
- Foster, N.C.; Beck, R.W.; Miller, K.M.; Clements, M.A.; Rickels, M.R.; DiMeglio, L.A.; Maahs, D.M.; Tamborlane, W.V.; Bergenstal, R.; Smith, E.; et al. State of Type 1 Diabetes Management and Outcomes from the T1D Exchange in 2016–2018. Diabetes Technol. Ther. 2019, 21, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Leete, P.; Willcox, A.; Krogvold, L.; Dahl-Jorgensen, K.; Foulis, A.K.; Richardson, S.J.; Morgan, N.G. Differential Insulitic Profiles Determine the Extent of beta-Cell Destruction and the Age at Onset of Type 1 Diabetes. Diabetes 2016, 65, 1362–1369. [Google Scholar] [CrossRef] [PubMed]
- Redondo, M.J.; Morgan, N.G. Heterogeneity and endotypes in type 1 diabetes mellitus. Nat. Rev. Endocrinol. 2023, 19, 542–554. [Google Scholar] [CrossRef] [PubMed]
- Pollanen, P.M.; Ryhanen, S.J.; Toppari, J.; Ilonen, J.; Vahasalo, P.; Veijola, R.; Siljander, H.; Knip, M. Dynamics of Islet Autoantibodies During Prospective Follow-Up from Birth to Age 15 Years. J. Clin. Endocrinol. Metab. 2020, 105, e4638–e4651. [Google Scholar] [CrossRef] [PubMed]
- Barker, J.M.; Barriga, K.J.; Yu, L.; Miao, D.; Erlich, H.A.; Norris, J.M.; Eisenbarth, G.S.; Rewers, M. Prediction of autoantibody positivity and progression to type 1 diabetes: Diabetes Autoimmunity Study in the Young (DAISY). J. Clin. Endocrinol. Metab. 2004, 89, 3896–3902. [Google Scholar] [CrossRef]
- Rojas, M.; Hulbert, C.; Thomas, J.W. Anergy and not clonal ignorance determines the fate of B cells that recognize a physiological autoantigen. J. Immunol. 2001, 166, 3194–3200. [Google Scholar] [CrossRef] [PubMed]
- Felton, J.L.; Maseda, D.; Bonami, R.H.; Hulbert, C.; Thomas, J.W. Anti-Insulin B Cells Are Poised for Antigen Presentation in Type 1 Diabetes. J. Immunol. 2018, 201, 861–873. [Google Scholar] [CrossRef] [PubMed]
- Serreze, D.V.; Chapman, H.D.; Varnum, D.S.; Hanson, M.S.; Reifsnyder, P.C.; Richard, S.D.; Fleming, S.A.; Leiter, E.H.; Shultz, L.D. B lymphocytes are essential for the initiation of T cell-mediated autoimmune diabetes: Analysis of a new “speed congenic” stock of NOD.Ig mu null mice. J. Exp. Med. 1996, 184, 2049–2053. [Google Scholar] [CrossRef]
- Noorchashm, H.; Lieu, Y.K.; Noorchashm, N.; Rostami, S.Y.; Greeley, S.A.; Schlachterman, A.; Song, H.K.; Noto, L.E.; Jevnikar, A.M.; Barker, C.F.; et al. I-Ag7-mediated antigen presentation by B lymphocytes is critical in overcoming a checkpoint in T cell tolerance to islet beta cells of nonobese diabetic mice. J. Immunol. 1999, 163, 743–750. [Google Scholar] [CrossRef]
- Hulbert, C.; Riseili, B.; Rojas, M.; Thomas, J.W. B cell specificity contributes to the outcome of diabetes in nonobese diabetic mice. J. Immunol. 2001, 167, 5535–5538. [Google Scholar] [CrossRef] [PubMed]
- McNitt, D.H.; Joosse, B.A.; Thomas, J.W.; Bonami, R.H. Productive Germinal Center Responses Depend on the Nature of Stimuli Received by Anti-Insulin B Cells in Type 1 Diabetes-Prone Mice. Immunohorizons 2023, 7, 384–397. [Google Scholar] [CrossRef] [PubMed]
- Bonami, R.H.; Sullivan, A.M.; Case, J.B.; Steinberg, H.E.; Hoek, K.L.; Khan, W.N.; Kendall, P.L. Bruton’s tyrosine kinase promotes persistence of mature anti-insulin B cells. J. Immunol. 2014, 192, 1459–1470. [Google Scholar] [CrossRef] [PubMed]
- Kendall, P.L.; Moore, D.J.; Hulbert, C.; Hoek, K.L.; Khan, W.N.; Thomas, J.W. Reduced diabetes in btk-deficient nonobese diabetic mice and restoration of diabetes with provision of an anti-insulin IgH chain transgene. J. Immunol. 2009, 183, 6403–6412. [Google Scholar] [CrossRef] [PubMed]
- Leeth, C.M.; Racine, J.; Chapman, H.D.; Arpa, B.; Carrillo, J.; Carrascal, J.; Wang, Q.; Ratiu, J.; Egia-Mendikute, L.; Rosell-Mases, E.; et al. B-lymphocytes expressing an Ig specificity recognizing the pancreatic beta-cell autoantigen peripherin are potent contributors to type 1 diabetes development in NOD mice. Diabetes 2016, 65, 1977–1987. [Google Scholar] [CrossRef] [PubMed]
- Carrascal, J.; Carrillo, J.; Arpa, B.; Egia-Mendikute, L.; Rosell-Mases, E.; Pujol-Autonell, I.; Planas, R.; Mora, C.; Mauricio, D.; Ampudia, R.M.; et al. B-cell anergy induces a Th17 shift in a novel B lymphocyte transgenic NOD mouse model, the 116C-NOD mouse. Eur. J. Immunol. 2016, 46, 593–608. [Google Scholar] [CrossRef]
- Tan, Q.; Tai, N.; Li, Y.; Pearson, J.; Pennetti, S.; Zhou, Z.; Wong, F.S.; Wen, L. Activation-induced cytidine deaminase deficiency accelerates autoimmune diabetes in NOD mice. JCI Insight 2018, 3, e95882. [Google Scholar] [CrossRef] [PubMed]
- Ratiu, J.J.; Racine, J.J.; Hasham, M.G.; Wang, Q.; Branca, J.A.; Chapman, H.D.; Zhu, J.; Donghia, N.; Philip, V.; Schott, W.H.; et al. Genetic and Small Molecule Disruption of the AID/RAD51 Axis Similarly Protects Nonobese Diabetic Mice from Type 1 Diabetes through Expansion of Regulatory B Lymphocytes. J. Immunol. 2017, 198, 4255–4267. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Peng, J.; Pearson, J.A.; Efthimiou, G.; Hu, Y.; Tai, N.; Xing, Y.; Zhang, L.; Gu, J.; Jiang, J.; et al. Toll-like receptor 7 deficiency suppresses type 1 diabetes development by modulating B-cell differentiation and function. Cell. Mol. Immunol. 2021, 18, 328–338. [Google Scholar] [CrossRef]
- Noorchashm, H.; Moore, D.J.; Noto, L.E.; Noorchashm, N.; Reed, A.J.; Reed, A.L.; Song, H.K.; Mozaffari, R.; Jevnikar, A.M.; Barker, C.F.; et al. Impaired CD4 T cell activation due to reliance upon B cell-mediated costimulation in nonobese diabetic (NOD) mice. J. Immunol. 2000, 165, 4685–4696. [Google Scholar] [CrossRef]
- Greeley, S.A.; Moore, D.J.; Noorchashm, H.; Noto, L.E.; Rostami, S.Y.; Schlachterman, A.; Song, H.K.; Koeberlein, B.; Barker, C.F.; Naji, A. Impaired activation of islet-reactive CD4 T cells in pancreatic lymph nodes of B cell-deficient nonobese diabetic mice. J. Immunol. 2001, 167, 4351–4357. [Google Scholar] [CrossRef] [PubMed]
- Kendall, P.L.; Case, J.B.; Sullivan, A.M.; Holderness, J.S.; Wells, K.S.; Liu, E.; Thomas, J.W. Tolerant anti-insulin B cells are effective APCs. J. Immunol. 2013, 190, 2519–2526. [Google Scholar] [CrossRef] [PubMed]
- Wan, X.; Thomas, J.W.; Unanue, E.R. Class-switched anti-insulin antibodies originate from unconventional antigen presentation in multiple lymphoid sites. J. Exp. Med. 2016, 213, 967–978. [Google Scholar] [CrossRef]
- Bender, C.; Rajendran, S.; von Herrath, M.G. New Insights into the Role of Autoreactive CD8 T Cells and Cytokines in Human Type 1 Diabetes. Front. Endocrinol. 2020, 11, 606434. [Google Scholar] [CrossRef] [PubMed]
- Pugliese, A. Autoreactive T cells in type 1 diabetes. J. Clin. Investig. 2017, 127, 2881–2891. [Google Scholar] [CrossRef]
- Vandamme, C.; Kinnunen, T. B cell helper T cells and type 1 diabetes. Scand. J. Immunol. 2020, 92, e12943. [Google Scholar] [CrossRef] [PubMed]
- Egia-Mendikute, L.; Arpa, B.; Rosell-Mases, E.; Corral-Pujol, M.; Carrascal, J.; Carrillo, J.; Mora, C.; Chapman, H.; Panosa, A.; Vives-Pi, M.; et al. B-Lymphocyte Phenotype Determines T-Lymphocyte Subset Differentiation in Autoimmune Diabetes. Front. Immunol. 2019, 10, 1732. [Google Scholar] [CrossRef]
- Leonard, D.G.; Gorham, J.D.; Cole, P.; Greene, L.A.; Ziff, E.B. A nerve growth factor-regulated messenger RNA encodes a new intermediate filament protein. J. Cell Biol. 1988, 106, 181–193. [Google Scholar] [CrossRef]
- Barclay, M.; Noakes, P.G.; Ryan, A.F.; Julien, J.P.; Housley, G.D. Neuronal expression of peripherin, a type III intermediate filament protein, in the mouse hindbrain. Histochem. Cell Biol. 2007, 128, 541–550. [Google Scholar] [CrossRef] [PubMed]
- Durant, S.; Geutskens, S.; Van Blokland, S.C.; Coulaud, J.; Alves, V.; Pleau, J.M.; Versnel, M.; Drexhage, H.A.; Homo-Delarche, F. Proapoptosis and antiapoptosis-related molecules during postnatal pancreas development in control and nonobese diabetic mice: Relationship with innervation. Lab. Investig. 2003, 83, 227–239. [Google Scholar] [CrossRef]
- Kraus, M.; Alimzhanov, M.B.; Rajewsky, N.; Rajewsky, K. Survival of resting mature B lymphocytes depends on BCR signaling via the Igalpha/beta heterodimer. Cell 2004, 117, 787–800. [Google Scholar] [CrossRef]
- Lam, K.P.; Kuhn, R.; Rajewsky, K. In vivo ablation of surface immunoglobulin on mature B cells by inducible gene targeting results in rapid cell death. Cell 1997, 90, 1073–1083. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, L.; Sasaki, Y.; Calado, D.P.; Zhang, B.; Paik, J.H.; DePinho, R.A.; Kutok, J.L.; Kearney, J.F.; Otipoby, K.L.; Rajewsky, K. PI3 kinase signals BCR-dependent mature B cell survival. Cell 2009, 139, 573–586. [Google Scholar] [CrossRef]
- Gong, S.; Nussenzweig, M.C. Regulation of an early developmental checkpoint in the B cell pathway by Ig beta. Science 1996, 272, 411–414. [Google Scholar] [CrossRef] [PubMed]
- Torres, R.M.; Flaswinkel, H.; Reth, M.; Rajewsky, K. Aberrant B cell development and immune response in mice with a compromised BCR complex. Science 1996, 272, 1804–1808. [Google Scholar] [CrossRef] [PubMed]
- Keren, Z.; Diamant, E.; Ostrovsky, O.; Bengal, E.; Melamed, D. Modification of ligand-independent B cell receptor tonic signals activates receptor editing in immature B lymphocytes. J. Biol. Chem. 2004, 279, 13418–13424. [Google Scholar] [CrossRef] [PubMed]
- Kitamura, D.; Roes, J.; Kuhn, R.; Rajewsky, K. A B cell-deficient mouse by targeted disruption of the membrane exon of the immunoglobulin mu chain gene. Nature 1991, 350, 423–426. [Google Scholar] [CrossRef] [PubMed]
- Bannish, G.; Fuentes-Panana, E.M.; Cambier, J.C.; Pear, W.S.; Monroe, J.G. Ligand-independent signaling functions for the B lymphocyte antigen receptor and their role in positive selection during B lymphopoiesis. J. Exp. Med. 2001, 194, 1583–1596. [Google Scholar] [CrossRef] [PubMed]
- Hartley, S.B.; Crosbie, J.; Brink, R.; Kantor, A.B.; Basten, A.; Goodnow, C.C. Elimination from peripheral lymphoid tissues of self-reactive B lymphocytes recognizing membrane-bound antigens. Nature 1991, 353, 765–769. [Google Scholar] [CrossRef]
- Gay, D.; Saunders, T.; Camper, S.; Weigert, M. Receptor editing: An approach by autoreactive B cells to escape tolerance. J. Exp. Med. 1993, 177, 999–1008. [Google Scholar] [CrossRef]
- Tiegs, S.L.; Russell, D.M.; Nemazee, D. Receptor editing in self-reactive bone marrow B cells. J. Exp. Med. 1993, 177, 1009–1020. [Google Scholar] [CrossRef] [PubMed]
- Wardemann, H.; Yurasov, S.; Schaefer, A.; Young, J.W.; Meffre, E.; Nussenzweig, M.C. Predominant autoantibody production by early human B cell precursors. Science 2003, 301, 1374–1377. [Google Scholar] [CrossRef]
- Bretscher, P.; Cohn, M. A theory of self-nonself discrimination. Science 1970, 169, 1042–1049. [Google Scholar] [CrossRef] [PubMed]
- Fulcher, D.A.; Lyons, A.B.; Korn, S.L.; Cook, M.C.; Koleda, C.; Parish, C.; Fazekas de St Groth, B.; Basten, A. The fate of self-reactive B cells depends primarily on the degree of antigen receptor engagement and availability of T cell help. J. Exp. Med. 1996, 183, 2313–2328. [Google Scholar] [CrossRef] [PubMed]
- Yarkoni, Y.; Getahun, A.; Cambier, J.C. Molecular underpinning of B-cell anergy. Immunol. Rev. 2010, 237, 249–263. [Google Scholar] [CrossRef] [PubMed]
- Akkaya, M.; Traba, J.; Roesler, A.S.; Miozzo, P.; Akkaya, B.; Theall, B.P.; Sohn, H.; Pena, M.; Smelkinson, M.; Kabat, J.; et al. Second signals rescue B cells from activation-induced mitochondrial dysfunction and death. Nat. Immunol. 2018, 19, 871–884. [Google Scholar] [CrossRef] [PubMed]
- Cooke, M.P.; Heath, A.W.; Shokat, K.M.; Zeng, Y.; Finkelman, F.D.; Linsley, P.S.; Howard, M.; Goodnow, C.C. Immunoglobulin signal transduction guides the specificity of B cell-T cell interactions and is blocked in tolerant self-reactive B cells. J. Exp. Med. 1994, 179, 425–438. [Google Scholar] [CrossRef] [PubMed]
- Goodnow, C.C.; Crosbie, J.; Adelstein, S.; Lavoie, T.B.; Smith-Gill, S.J.; Brink, R.A.; Pritchard-Briscoe, H.; Wotherspoon, J.S.; Loblay, R.H.; Raphael, K.; et al. Altered immunoglobulin expression and functional silencing of self-reactive B lymphocytes in transgenic mice. Nature 1988, 334, 676–682. [Google Scholar] [CrossRef]
- Goodnow, C.C.; Crosbie, J.; Jorgensen, H.; Brink, R.A.; Basten, A. Induction of self-tolerance in mature peripheral B lymphocytes. Nature 1989, 342, 385–391. [Google Scholar] [CrossRef]
- Goodnow, C.C.; Brink, R.; Adams, E. Breakdown of self-tolerance in anergic B lymphocytes. Nature 1991, 352, 532–536. [Google Scholar] [CrossRef]
- Ubelhart, R.; Hug, E.; Bach, M.P.; Wossning, T.; Duhren-von Minden, M.; Horn, A.H.; Tsiantoulas, D.; Kometani, K.; Kurosaki, T.; Binder, C.J.; et al. Responsiveness of B cells is regulated by the hinge region of IgD. Nat. Immunol. 2015, 16, 534–543. [Google Scholar] [CrossRef] [PubMed]
- Benschop, R.J.; Aviszus, K.; Zhang, X.; Manser, T.; Cambier, J.C.; Wysocki, L.J. Activation and anergy in bone marrow B cells of a novel immunoglobulin transgenic mouse that is both hapten specific and autoreactive. Immunity 2001, 14, 33–43. [Google Scholar] [CrossRef] [PubMed]
- Acevedo-Suarez, C.A.; Hulbert, C.; Woodward, E.J.; Thomas, J.W. Uncoupling of anergy from developmental arrest in anti-insulin B cells supports the development of autoimmune diabetes. J. Immunol. 2005, 174, 827–833. [Google Scholar] [CrossRef] [PubMed]
- Acevedo-Suarez, C.A.; Kilkenny, D.M.; Reich, M.B.; Thomas, J.W. Impaired intracellular calcium mobilization and NFATc1 availability in tolerant anti-insulin B cells. J. Immunol. 2006, 177, 2234–2241. [Google Scholar] [CrossRef]
- Smith, M.J.; Hinman, R.M.; Getahun, A.; Kim, S.; Packard, T.A.; Cambier, J.C. Silencing of high-affinity insulin-reactive B lymphocytes by anergy and impact of the NOD genetic background in mice. Diabetologia 2018, 61, 2621–2632. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, S.K.; Veselits, M.L.; Zhang, M.; Labno, C.; Cao, Y.; Finnegan, A.; Uccellini, M.; Alegre, M.L.; Cambier, J.C.; Clark, M.R. Endocytic sequestration of the B cell antigen receptor and toll-like receptor 9 in anergic cells. Proc. Natl. Acad. Sci. USA 2009, 106, 6262–6267. [Google Scholar] [CrossRef] [PubMed]
- Henry, R.A.; Kendall, P.L.; Thomas, J.W. Autoantigen-specific B-cell depletion overcomes failed immune tolerance in type 1 diabetes. Diabetes 2012, 61, 2037–2044. [Google Scholar] [CrossRef] [PubMed]
- Daniel, D.; Gill, R.G.; Schloot, N.; Wegmann, D. Epitope specificity, cytokine production profile and diabetogenic activity of insulin-specific T cell clones isolated from NOD mice. Eur. J. Immunol. 1995, 25, 1056–1062. [Google Scholar] [CrossRef] [PubMed]
- Michels, A.W.; Landry, L.G.; McDaniel, K.A.; Yu, L.; Campbell-Thompson, M.; Kwok, W.W.; Jones, K.L.; Gottlieb, P.A.; Kappler, J.W.; Tang, Q.; et al. Islet-Derived CD4 T Cells Targeting Proinsulin in Human Autoimmune Diabetes. Diabetes 2017, 66, 722–734. [Google Scholar] [CrossRef]
- Smith, M.J.; Packard, T.A.; O’Neill, S.K.; Henry Dunand, C.J.; Huang, M.; Fitzgerald-Miller, L.; Stowell, D.; Hinman, R.M.; Wilson, P.C.; Gottlieb, P.A.; et al. Loss of anergic B cells in prediabetic and new-onset type 1 diabetic patients. Diabetes 2015, 64, 1703–1712. [Google Scholar] [CrossRef]
- Stensland, Z.C.; Magera, C.A.; Broncucia, H.; Gomez, B.D.; Rios-Guzman, N.M.; Wells, K.L.; Nicholas, C.A.; Rihanek, M.; Hunter, M.J.; Toole, K.P.; et al. Identification of an anergic BND cell-derived activated B cell population (BND2) in young-onset type 1 diabetes patients. J. Exp. Med. 2023, 220, e20221604. [Google Scholar] [CrossRef]
- Zikherman, J.; Parameswaran, R.; Weiss, A. Endogenous antigen tunes the responsiveness of naive B cells but not T cells. Nature 2012, 489, 160–164. [Google Scholar] [CrossRef]
- Casola, S.; Otipoby, K.L.; Alimzhanov, M.; Humme, S.; Uyttersprot, N.; Kutok, J.L.; Carroll, M.C.; Rajewsky, K. B cell receptor signal strength determines B cell fate. Nat. Immunol. 2004, 5, 317–327. [Google Scholar] [CrossRef]
- Lechouane, F.; Bonaud, A.; Delpy, L.; Casola, S.; Oruc, Z.; Chemin, G.; Cogne, M.; Sirac, C. B-cell receptor signal strength influences terminal differentiation. Eur. J. Immunol. 2013, 43, 619–628. [Google Scholar] [CrossRef]
- Tsourkas, P.K.; Liu, W.; Das, S.C.; Pierce, S.K.; Raychaudhuri, S. Discrimination of membrane antigen affinity by B cells requires dominance of kinetic proofreading over serial engagement. Cell. Mol. Immunol. 2012, 9, 62–74. [Google Scholar] [CrossRef]
- Tsourkas, P.K.; Somkanya, C.D.; Yu-Yang, P.; Liu, W.; Pierce, S.K.; Raychaudhuri, S. Formation of BCR oligomers provides a mechanism for B cell affinity discrimination. J. Theor. Biol. 2012, 307, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Meckel, T.; Tolar, P.; Sohn, H.W.; Pierce, S.K. Antigen affinity discrimination is an intrinsic function of the B cell receptor. J. Exp. Med. 2010, 207, 1095–1111. [Google Scholar] [CrossRef]
- Sohn, H.W.; Tolar, P.; Pierce, S.K. Membrane heterogeneities in the formation of B cell receptor-Lyn kinase microclusters and the immune synapse. J. Cell Biol. 2008, 182, 367–379. [Google Scholar] [CrossRef] [PubMed]
- Natkanski, E.; Lee, W.Y.; Mistry, B.; Casal, A.; Molloy, J.E.; Tolar, P. B cells use mechanical energy to discriminate antigen affinities. Science 2013, 340, 1587–1590. [Google Scholar] [CrossRef] [PubMed]
- Kwak, K.; Akkaya, M.; Pierce, S.K. B cell signaling in context. Nat. Immunol. 2019, 20, 963–969. [Google Scholar] [CrossRef]
- Zekavat, G.; Rostami, S.Y.; Badkerhanian, A.; Parsons, R.F.; Koeberlein, B.; Yu, M.; Ward, C.D.; Migone, T.S.; Yu, L.; Eisenbarth, G.S.; et al. In vivo BLyS/BAFF neutralization ameliorates islet-directed autoimmunity in nonobese diabetic mice. J. Immunol. 2008, 181, 8133–8144. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Racine, J.J.; Ratiu, J.J.; Wang, S.; Ettinger, R.; Wasserfall, C.; Atkinson, M.A.; Serreze, D.V. Transient BAFF Blockade Inhibits Type 1 Diabetes Development in Nonobese Diabetic Mice by Enriching Immunoregulatory B Lymphocytes Sensitive to Deletion by Anti-CD20 Cotherapy. J. Immunol. 2017, 199, 3757–3770. [Google Scholar] [CrossRef]
- Parackova, Z.; Klocperk, A.; Rataj, M.; Kayserova, J.; Zentsova, I.; Sumnik, Z.; Kolouskova, S.; Sklenarova, J.; Pruhova, S.; Obermannova, B.; et al. Alteration of B cell subsets and the receptor for B cell activating factor (BAFF) in paediatric patients with type 1 diabetes. Immunol. Lett. 2017, 189, 94–100. [Google Scholar] [CrossRef]
- Balasa, B.; Krahl, T.; Patstone, G.; Lee, J.; Tisch, R.; McDevitt, H.O.; Sarvetnick, N. CD40 ligand-CD40 interactions are necessary for the initiation of insulitis and diabetes in nonobese diabetic mice. J. Immunol. 1997, 159, 4620–4627. [Google Scholar] [CrossRef]
- Vaitaitis, G.M.; Olmstead, M.H.; Waid, D.M.; Carter, J.R.; Wagner, D.H., Jr. A CD40-targeted peptide controls and reverses type 1 diabetes in NOD mice. Diabetologia 2014, 57, 2366–2373. [Google Scholar] [CrossRef]
- Buchta, C.M.; Bishop, G.A. Toll-like receptors and B cells: Functions and mechanisms. Immunol. Res. 2014, 59, 12–22. [Google Scholar] [CrossRef]
- Antony, P.; Petro, J.B.; Carlesso, G.; Shinners, N.P.; Lowe, J.; Khan, W.N. B cell receptor directs the activation of NFAT and NF-kappaB via distinct molecular mechanisms. Exp. Cell Res. 2003, 291, 11–24. [Google Scholar] [CrossRef]
- Petro, J.B.; Castro, I.; Lowe, J.; Khan, W.N. Bruton’s tyrosine kinase targets NF-kappaB to the bcl-x promoter via a mechanism involving phospholipase C-gamma2 following B cell antigen receptor engagement. FEBS Lett. 2002, 532, 57–60. [Google Scholar] [CrossRef] [PubMed]
- Petro, J.B.; Khan, W.N. Phospholipase C-gamma 2 couples Bruton’s tyrosine kinase to the NF-kappaB signaling pathway in B lymphocytes. J. Biol. Chem. 2001, 276, 1715–1719. [Google Scholar] [CrossRef]
- Petro, J.B.; Rahman, S.M.; Ballard, D.W.; Khan, W.N. Bruton’s tyrosine kinase is required for activation of IkappaB kinase and nuclear factor kappaB in response to B cell receptor engagement. J. Exp. Med. 2000, 191, 1745–1754. [Google Scholar] [CrossRef]
- Shinners, N.P.; Carlesso, G.; Castro, I.; Hoek, K.L.; Corn, R.A.; Woodland, R.T.; Scott, M.L.; Wang, D.; Khan, W.N. Bruton’s tyrosine kinase mediates NF-kappa B activation and B cell survival by B cell-activating factor receptor of the TNF-R family. J. Immunol. 2007, 179, 3872–3880. [Google Scholar] [CrossRef]
- Khan, W.N. Regulation of B lymphocyte development and activation by Bruton’s tyrosine kinase. Immunol. Res. 2001, 23, 147–156. [Google Scholar] [CrossRef]
- Antony, P.; Petro, J.B.; Carlesso, G.; Shinners, N.P.; Lowe, J.; Khan, W.N. B-cell antigen receptor activates transcription factors NFAT (nuclear factor of activated T-cells) and NF-kappaB (nuclear factor kappaB) via a mechanism that involves diacylglycerol. Biochem. Soc. Trans. 2004, 32, 113–115. [Google Scholar] [CrossRef]
- Konigsberger, S.; Prodohl, J.; Stegner, D.; Weis, V.; Andreas, M.; Stehling, M.; Schumacher, T.; Bohmer, R.; Thielmann, I.; van Eeuwijk, J.M.; et al. Altered BCR signalling quality predisposes to autoimmune disease and a pre-diabetic state. EMBO J. 2012, 31, 3363–3374. [Google Scholar] [CrossRef]
- Packard, T.A.; Smith, M.J.; Conrad, F.J.; Johnson, S.A.; Getahun, A.; Lindsay, R.S.; Hinman, R.M.; Friedman, R.S.; Thomas, J.W.; Cambier, J.C. B Cell Receptor Affinity for Insulin Dictates Autoantigen Acquisition and B Cell Functionality in Autoimmune Diabetes. J. Clin. Med. 2016, 5, 98. [Google Scholar] [CrossRef]
- Bonami, R.H.; Thomas, J.W. Targeting Anti-Insulin B Cell Receptors Improves Receptor Editing in Type 1 Diabetes-Prone Mice. J. Immunol. 2015, 195, 4730–4741. [Google Scholar] [CrossRef]
- Reed, J.H.; Jackson, J.; Christ, D.; Goodnow, C.C. Clonal redemption of autoantibodies by somatic hypermutation away from self-reactivity during human immunization. J. Exp. Med. 2016, 213, 1255–1265. [Google Scholar] [CrossRef]
- Schroer, J.A.; Bender, T.; Feldmann, R.J.; Kim, K.J. Mapping epitopes on the insulin molecule using monoclonal antibodies. Eur. J. Immunol. 1983, 13, 693–700. [Google Scholar] [CrossRef]
- Thomas, J.W.; Hulbert, C. Somatically mutated B cell pool provides precursors for insulin antibodies. J. Immunol. 1996, 157, 763–771. [Google Scholar] [CrossRef]
- Carrillo, J.; Puertas, M.C.; Planas, R.; Pastor, X.; Alba, A.; Stratmann, T.; Pujol-Borrell, R.; Ampudia, R.M.; Vives-Pi, M.; Verdaguer, J. Anti-peripherin B lymphocytes are positively selected during diabetogenesis. Mol. Immunol. 2008, 45, 3152–3162. [Google Scholar] [CrossRef]
- Kendall, P.L.; Yu, G.; Woodward, E.J.; Thomas, J.W. Tertiary lymphoid structures in the pancreas promote selection of B lymphocytes in autoimmune diabetes. J. Immunol. 2007, 178, 5643–5651. [Google Scholar] [CrossRef]
- Henry-Bonami, R.A.; Williams, J.M.; Rachakonda, A.B.; Karamali, M.; Kendall, P.L.; Thomas, J.W. B lymphocyte “original sin” in the bone marrow enhances islet autoreactivity in type 1 diabetes-prone nonobese diabetic mice. J. Immunol. 2013, 190, 5992–6003. [Google Scholar] [CrossRef]
- Banach, M.; Harley, I.T.W.; Getahun, A.; Cambier, J.C. Comparative analysis of the repertoire of insulin-reactive B cells in type 1 diabetes-prone and resistant mice. Front. Immunol. 2022, 13, 961209. [Google Scholar] [CrossRef]
- Henry, R.A.; Kendall, P.L.; Woodward, E.J.; Hulbert, C.; Thomas, J.W. Vkappa polymorphisms in NOD mice are spread throughout the entire immunoglobulin kappa locus and are shared by other autoimmune strains. Immunogenetics 2010, 62, 507–520. [Google Scholar] [CrossRef]
- Williams, J.M.; Bonami, R.H.; Hulbert, C.; Thomas, J.W. Reversing Tolerance in Isotype Switch-Competent Anti-Insulin B Lymphocytes. J. Immunol. 2015, 195, 853–864. [Google Scholar] [CrossRef]
- Bonami, R.H.; Nyhoff, L.E.; McNitt, D.H.; Hulbert, C.; Felton, J.L.; Kendall, P.L.; Thomas, J.W. T-B Lymphocyte Interactions Promote Type 1 Diabetes Independently of SLAM-Associated Protein. J. Immunol. 2020, 205, 3263–3276. [Google Scholar] [CrossRef]
- Pleau, J.M.; Marche, P.N.; Serrano, M.P.; Boitard, C.; Bach, J.F. Evidence for antigen driven selection in two monoclonal auto-antibodies derived from nonobese diabetic mice. Mol. Immunol. 1993, 30, 1257–1264. [Google Scholar] [CrossRef]
- Thomas, J.W.; Kendall, P.L.; Mitchell, H.G. The natural autoantibody repertoire of nonobese diabetic mice is highly active. J. Immunol. 2002, 169, 6617–6624. [Google Scholar] [CrossRef]
- Koehli, S.; Naeher, D.; Galati-Fournier, V.; Zehn, D.; Palmer, E. Optimal T-cell receptor affinity for inducing autoimmunity. Proc. Natl. Acad. Sci. USA 2014, 111, 17248–17253. [Google Scholar] [CrossRef]
- Macdonald, P.J.; Schaub, J.M.; Ruan, Q.; Williams, C.L.; Prostko, J.C.; Tetin, S.Y. Affinity of anti-spike antibodies to three major SARS-CoV-2 variants in recipients of three major vaccines. Commun. Med. 2022, 2, 109. [Google Scholar] [CrossRef]
- Thomas, J.W. V region diversity in human anti-insulin antibodies. Preferential use of a VHIII gene subset. J. Immunol. 1993, 150, 1375–1382. [Google Scholar] [CrossRef] [PubMed]
- Ichiyoshi, Y.; Zhou, M.; Casali, P. A human anti-insulin IgG autoantibody apparently arises through clonal selection from an insulin-specific “germ-line” natural antibody template. Analysis by V gene segment reassortment and site-directed mutagenesis. J. Immunol. 1995, 154, 226–238. [Google Scholar] [CrossRef] [PubMed]
- Fineberg, S.E.; Galloway, J.A.; Fineberg, N.S.; Rathbun, M.J.; Hufferd, S. Immunogenicity of recombinant DNA human insulin. Diabetologia 1983, 25, 465–469. [Google Scholar] [CrossRef]
- Jury, K.M.; Loeffler, D.; Eiermann, T.H.; Ziegler, B.; Boehm, B.O.; Richter, W. Evidence for somatic mutation and affinity maturation of diabetes associated human autoantibodies to glutamate decarboxylase. J. Autoimmun. 1996, 9, 371–377. [Google Scholar] [CrossRef]
- Achenbach, P.; Koczwara, K.; Knopff, A.; Naserke, H.; Ziegler, A.G.; Bonifacio, E. Mature high-affinity immune responses to (pro)insulin anticipate the autoimmune cascade that leads to type 1 diabetes. J. Clin. Investig. 2004, 114, 589–597. [Google Scholar] [CrossRef] [PubMed]
- Siljander, H.; Harkonen, T.; Hermann, R.; Simell, S.; Hekkala, A.; Salonsaari, R.T.; Simell, T.; Simell, O.; Ilonen, J.; Veijola, R.; et al. Role of insulin autoantibody affinity as a predictive marker for type 1 diabetes in young children with HLA-conferred disease susceptibility. Diabetes Metab. Res. Rev. 2009, 25, 615–622. [Google Scholar] [CrossRef]
- Ramos-Casals, M.; Brito-Zeron, P.; Bombardieri, S.; Bootsma, H.; De Vita, S.; Dorner, T.; Fisher, B.A.; Gottenberg, J.E.; Hernandez-Molina, G.; Kocher, A.; et al. EULAR recommendations for the management of Sjogren’s syndrome with topical and systemic therapies. Ann. Rheum. Dis. 2020, 79, 3–18. [Google Scholar] [CrossRef]
- Fanouriakis, A.; Kostopoulou, M.; Andersen, J.; Aringer, M.; Arnaud, L.; Bae, S.C.; Boletis, J.; Bruce, I.N.; Cervera, R.; Doria, A.; et al. EULAR recommendations for the management of systemic lupus erythematosus: 2023 update. Ann. Rheum. Dis. 2024, 83, 15–29. [Google Scholar] [CrossRef]
- Smolen, J.S.; Landewe, R.B.M.; Bergstra, S.A.; Kerschbaumer, A.; Sepriano, A.; Aletaha, D.; Caporali, R.; Edwards, C.J.; Hyrich, K.L.; Pope, J.E.; et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2022 update. Ann. Rheum. Dis. 2023, 82, 3–18. [Google Scholar] [CrossRef]
- Rovin, B.H.; Furie, R.; Latinis, K.; Looney, R.J.; Fervenza, F.C.; Sanchez-Guerrero, J.; Maciuca, R.; Zhang, D.; Garg, J.P.; Brunetta, P.; et al. Efficacy and safety of rituximab in patients with active proliferative lupus nephritis: The Lupus Nephritis Assessment with Rituximab study. Arthritis Rheum. 2012, 64, 1215–1226. [Google Scholar] [CrossRef]
- Cohen, S.B.; Emery, P.; Greenwald, M.W.; Dougados, M.; Furie, R.A.; Genovese, M.C.; Keystone, E.C.; Loveless, J.E.; Burmester, G.R.; Cravets, M.W.; et al. Rituximab for rheumatoid arthritis refractory to anti-tumor necrosis factor therapy: Results of a multicenter, randomized, double-blind, placebo-controlled, phase III trial evaluating primary efficacy and safety at twenty-four weeks. Arthritis Rheum. 2006, 54, 2793–2806. [Google Scholar] [CrossRef]
- Pescovitz, M.D.; Greenbaum, C.J.; Bundy, B.; Becker, D.J.; Gitelman, S.E.; Goland, R.; Gottlieb, P.A.; Marks, J.B.; Moran, A.; Raskin, P.; et al. B-lymphocyte depletion with rituximab and beta-cell function: Two-year results. Diabetes Care 2014, 37, 453–459. [Google Scholar] [CrossRef] [PubMed]
- Pescovitz, M.D.; Greenbaum, C.J.; Krause-Steinrauf, H.; Becker, D.J.; Gitelman, S.E.; Goland, R.; Gottlieb, P.A.; Marks, J.B.; McGee, P.F.; Moran, A.M.; et al. Rituximab, B-lymphocyte depletion, and preservation of beta-cell function. N. Engl. J. Med. 2009, 361, 2143–2152. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Herold, K.; Krause-Steinrauf, H.; McGee, P.L.; Bundy, B.; Pugliese, A.; Krischer, J.; Eisenbarth, G.S.; for the Type 1 Diabetes TrialNet Anti-CD20 Study Group. Rituximab selectively suppresses specific islet antibodies. Diabetes 2011, 60, 2560–2565. [Google Scholar] [CrossRef] [PubMed]
- Chamberlain, N.; Massad, C.; Oe, T.; Cantaert, T.; Herold, K.C.; Meffre, E. Rituximab does not reset defective early B cell tolerance checkpoints. J. Clin. Investig. 2016, 126, 282–287. [Google Scholar] [CrossRef] [PubMed]
- Herold, K.C.; Pescovitz, M.D.; McGee, P.; Krause-Steinrauf, H.; Spain, L.M.; Bourcier, K.; Asare, A.; Liu, Z.; Lachin, J.M.; Dosch, H.M.; et al. Increased T cell proliferative responses to islet antigens identify clinical responders to anti-CD20 monoclonal antibody (rituximab) therapy in type 1 diabetes. J. Immunol. 2011, 187, 1998–2005. [Google Scholar] [CrossRef]
- Herold, K.C.; Bundy, B.N.; Long, S.A.; Bluestone, J.A.; DiMeglio, L.A.; Dufort, M.J.; Gitelman, S.E.; Gottlieb, P.A.; Krischer, J.P.; Linsley, P.S.; et al. An Anti-CD3 Antibody, Teplizumab, in Relatives at Risk for Type 1 Diabetes. N. Engl. J. Med. 2019, 381, 603–613. [Google Scholar] [CrossRef]
- Sims, E.K.; Bundy, B.N.; Stier, K.; Serti, E.; Lim, N.; Long, S.A.; Geyer, S.M.; Moran, A.; Greenbaum, C.J.; Evans-Molina, C.; et al. Teplizumab improves and stabilizes beta cell function in antibody-positive high-risk individuals. Sci. Transl. Med. 2021, 13, eabc8980. [Google Scholar] [CrossRef]
- Tooley, J.E.; Vudattu, N.; Choi, J.; Cotsapas, C.; Devine, L.; Raddassi, K.; Ehlers, M.R.; McNamara, J.G.; Harris, K.M.; Kanaparthi, S.; et al. Changes in T-cell subsets identify responders to FcR-nonbinding anti-CD3 mAb (teplizumab) in patients with type 1 diabetes. Eur. J. Immunol. 2016, 46, 230–241. [Google Scholar] [CrossRef]
- Herold, K.C.; Gitelman, S.E.; Ehlers, M.R.; Gottlieb, P.A.; Greenbaum, C.J.; Hagopian, W.; Boyle, K.D.; Keyes-Elstein, L.; Aggarwal, S.; Phippard, D.; et al. Teplizumab (anti-CD3 mAb) treatment preserves C-peptide responses in patients with new-onset type 1 diabetes in a randomized controlled trial: Metabolic and immunologic features at baseline identify a subgroup of responders. Diabetes 2013, 62, 3766–3774. [Google Scholar] [CrossRef]
- Orban, T.; Bundy, B.; Becker, D.J.; DiMeglio, L.A.; Gitelman, S.E.; Goland, R.; Gottlieb, P.A.; Greenbaum, C.J.; Marks, J.B.; Monzavi, R.; et al. Co-stimulation modulation with abatacept in patients with recent-onset type 1 diabetes: A randomised, double-blind, placebo-controlled trial. Lancet 2011, 378, 412–419. [Google Scholar] [CrossRef] [PubMed]
- Linsley, P.S.; Greenbaum, C.J.; Speake, C.; Long, S.A.; Dufort, M.J. B lymphocyte alterations accompany abatacept resistance in new-onset type 1 diabetes. JCI Insight 2019, 4, e126136. [Google Scholar] [CrossRef] [PubMed]
- Edner, N.M.; Heuts, F.; Thomas, N.; Wang, C.J.; Petersone, L.; Kenefeck, R.; Kogimtzis, A.; Ovcinnikovs, V.; Ross, E.M.; Ntavli, E.; et al. Follicular helper T cell profiles predict response to costimulation blockade in type 1 diabetes. Nat. Immunol. 2020, 21, 1244–1255. [Google Scholar] [CrossRef] [PubMed]
- Zielinski, M.; Zalinska, M.; Iwaszkiewicz-Grzes, D.; Gliwinski, M.; Hennig, M.; Jazwinska-Curyllo, A.; Kaminska, H.; Sakowska, J.; Woloszyn-Durkiewicz, A.; Owczuk, R.; et al. Combined therapy with CD4(+) CD25highCD127(-) T regulatory cells and anti-CD20 antibody in recent-onset type 1 diabetes is superior to monotherapy: Randomized phase I/II trial. Diabetes Obes. Metab. 2022, 24, 1534–1543. [Google Scholar] [CrossRef] [PubMed]
- Mathieu, C.; Wiedeman, A.; Cerosaletti, K.; Long, S.A.; Serti, E.; Cooney, L.; Vermeiren, J.; Caluwaerts, S.; Van Huynegem, K.; Steidler, L.; et al. A first-in-human, open-label Phase 1b and a randomised, double-blind Phase 2a clinical trial in recent-onset type 1 diabetes with AG019 as monotherapy and in combination with teplizumab. Diabetologia 2024, 67, 27–41. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Dong, Y.; Liu, D.; Yang, L.; Xu, J.; Wang, Q. Antigen-specific immunotherapies in type 1 diabetes. J. Trace Elem. Med. Biol. 2022, 73, 127040. [Google Scholar] [CrossRef] [PubMed]
- Writing Committee for the Type 1 Diabetes TrialNet Oral Insulin Study Group; Krischer, J.P.; Schatz, D.A.; Bundy, B.; Skyler, J.S.; Greenbaum, C.J. Effect of Oral Insulin on Prevention of Diabetes in Relatives of Patients with Type 1 Diabetes: A Randomized Clinical Trial. JAMA 2017, 318, 1891–1902. [Google Scholar] [CrossRef] [PubMed]
- Assfalg, R.; Knoop, J.; Hoffman, K.L.; Pfirrmann, M.; Zapardiel-Gonzalo, J.M.; Hofelich, A.; Eugster, A.; Weigelt, M.; Matzke, C.; Reinhardt, J.; et al. Oral insulin immunotherapy in children at risk for type 1 diabetes in a randomised controlled trial. Diabetologia 2021, 64, 1079–1092. [Google Scholar] [CrossRef] [PubMed]
- Roep, B.O.; Solvason, N.; Gottlieb, P.A.; Abreu, J.R.F.; Harrison, L.C.; Eisenbarth, G.S.; Yu, L.; Leviten, M.; Hagopian, W.A.; Buse, J.B.; et al. Plasmid-encoded proinsulin preserves C-peptide while specifically reducing proinsulin-specific CD8(+) T cells in type 1 diabetes. Sci. Transl. Med. 2013, 5, 191ra182. [Google Scholar] [CrossRef]
- Leon, M.A.; Wemlinger, S.M.; Larson, N.R.; Ruffalo, J.K.; Sestak, J.O.; Middaugh, C.R.; Cambier, J.C.; Berkland, C. Soluble Antigen Arrays for Selective Desensitization of Insulin-Reactive B Cells. Mol. Pharm. 2019, 16, 1563–1572. [Google Scholar] [CrossRef]
- Firdessa-Fite, R.; Johnson, S.N.; Leon, M.A.; Khosravi-Maharlooei, M.; Baker, R.L.; Sestak, J.O.; Berkland, C.; Creusot, R.J. Soluble Antigen Arrays Efficiently Deliver Peptides and Arrest Spontaneous Autoimmune Diabetes. Diabetes 2021, 70, 1334–1346. [Google Scholar] [CrossRef]
- Wilson, C.S.; Chhabra, P.; Marshall, A.F.; Morr, C.V.; Stocks, B.T.; Hoopes, E.M.; Bonami, R.H.; Poffenberger, G.; Brayman, K.L.; Moore, D.J. Healthy Donor Polyclonal IgMs Diminish B-Lymphocyte Autoreactivity, Enhance Regulatory T-Cell Generation, and Reverse Type 1 Diabetes in NOD Mice. Diabetes 2018, 67, 2349–2360. [Google Scholar] [CrossRef]
- Apley, K.D.; Griffith, A.S.; Downes, G.M.; Ross, P.; Farrell, M.P.; Kendall, P.; Berkland, C.J. CD22L Conjugation to Insulin Attenuates Insulin-Specific B Cell Activation. Bioconjug. Chem. 2023, 34, 2077–2088. [Google Scholar] [CrossRef]
- Alleva, D.; Delpero, A.; Sathiyaseelan, T.; Sylaja Murikipudi, S.; Lancaster, T.; Mark Atkinson, M.; Wasserfall, C.; Yu, L.; Ragupathy, R.; Bonami, R.; et al. An antigen-specific immunotherapeutic, AKS-107, deletes insulin-specific B cells and prevents murine autoimmune diabetes. Front. Immunol. 2024, 15, 1367514. [Google Scholar] [CrossRef]
- Pescovitz, M.D.; Torgerson, T.R.; Ochs, H.D.; Ocheltree, E.; McGee, P.; Krause-Steinrauf, H.; Lachin, J.M.; Canniff, J.; Greenbaum, C.; Herold, K.C.; et al. Effect of rituximab on human in vivo antibody immune responses. J. Allergy Clin. Immunol. 2011, 128, 1295–1302.e5. [Google Scholar] [CrossRef] [PubMed]
- Serreze, D.V.; Chapman, H.D.; Niens, M.; Dunn, R.; Kehry, M.R.; Driver, J.P.; Haller, M.; Wasserfall, C.; Atkinson, M.A. Loss of intra-islet CD20 expression may complicate efficacy of B-cell-directed type 1 diabetes therapies. Diabetes 2011, 60, 2914–2921. [Google Scholar] [CrossRef] [PubMed]
- Deng, C.; Xiang, Y.; Tan, T.; Ren, Z.; Cao, C.; Huang, G.; Wen, L.; Zhou, Z. Altered Peripheral B-Lymphocyte Subsets in Type 1 Diabetes and Latent Autoimmune Diabetes in Adults. Diabetes Care 2016, 39, 434–440. [Google Scholar] [CrossRef]
- Hussain, S.; Delovitch, T.L. Intravenous transfusion of BCR-activated B cells protects NOD mice from type 1 diabetes in an IL-10-dependent manner. J. Immunol. 2007, 179, 7225–7232. [Google Scholar] [CrossRef]
- Kleffel, S.; Vergani, A.; Tezza, S.; Ben Nasr, M.; Niewczas, M.A.; Wong, S.; Bassi, R.; D’Addio, F.; Schatton, T.; Abdi, R.; et al. Interleukin-10+ regulatory B cells arise within antigen-experienced CD40+ B cells to maintain tolerance to islet autoantigens. Diabetes 2015, 64, 158–171. [Google Scholar] [CrossRef] [PubMed]
- Wilson, C.S.; Hoopes, E.M.; Falk, A.C.; Moore, D.J. A human IgM enriched immunoglobulin preparation, Pentaglobin, reverses autoimmune diabetes without immune suppression in NOD mice. Sci. Rep. 2022, 12, 11731. [Google Scholar] [CrossRef]
- Bluestone, J.A.; Buckner, J.H.; Herold, K.C. Immunotherapy: Building a bridge to a cure for type 1 diabetes. Science 2021, 373, 510–516. [Google Scholar] [CrossRef] [PubMed]
- Linsley, P.S.; Brady, W.; Urnes, M.; Grosmaire, L.S.; Damle, N.K.; Ledbetter, J.A. CTLA-4 is a second receptor for the B cell activation antigen B7. J. Exp. Med. 1991, 174, 561–569. [Google Scholar] [CrossRef] [PubMed]
Name | Description/Major Findings | T1D? | Reference(s) |
---|---|---|---|
NOD |
| Develops | [16] |
NOD.Igμ |
| Protected | [7,32] |
NOD BCIID |
| Protected | [33] |
NOD.125Tg |
| Develops | [30] |
NOD.VH125Tg |
| Accelerated | [34] |
NOD.VH281Tg |
| Protected | [34] |
NOD.VH125SD |
| Accelerated | [31,35] |
NOD.VH125Tg.VΚ125SD |
| Not reported | [36] |
NOD.Btk−/− |
| Protected | [37] |
NOD.VH125Tg. Btk−/− |
| Develops | [37] |
NOD.PerIg |
| Accelerated | [38] |
NOD.scid.PerIg |
| Accelerated (with T cell transfer) | [38] |
NOD.IgHEL |
| Delayed | [8] |
NOD.IgHEL.Igμ |
| Protected | [8] |
NOD.SCID |
| Protected | [38] |
NOD.116C |
| Protected | [39] |
NOD.Aicda−/− |
| Accelerated | [40] |
NOD.Aicda−/− |
| Protected | [41] |
NOD.Tlr7−/− |
| Protected | [42] |
Therapy | Target | T1D Outcomes | Reference(s) |
---|---|---|---|
In Human | |||
Rituximab | CD20+ B lymphocytes | Temporary preservation of beta-cell function in new-onset T1D individuals | [135,136,137,138,139] |
Teplizumab | CD3+ T lymphocytes | Preservation of beta-cell function in new-onset T1D individuals over 2-year follow-up period, prevents progression from stage 2 to stage 3 | [140,141,142,143] |
Abatacept | CD80/86+ APCs | Preservation of beta-cell function in recent-onset T1D over 2-year treatment period | [144,145,146] |
Treg and rituximab combination therapy | Tregs suppress immune response, rituximab targets CD20+ B lymphocytes | Preservation of beta-cell function in pediatric new-onset T1D individuals over 2-year follow-up period | [147] |
AG019 bacteria and teplizumab combination therapy | AG019 bacteria genetically modified to express human proinsulin and IL-10 to promote tolerance, teplizumab targets T lymphocytes | Preservation of beta-cell function in new-onset T1D individuals over 12-month follow-up period | [148] |
GAD peptide immunization | GAD-specific B and T lymphocytes | Variable impact on beta-cell function | [149] |
Oral insulin | Insulin-specific B and T lymphocytes | Variable immune responses | [149,150,151] |
Proinsulin-encoding plasmid DNA immunization | (Pro)insulin-specific T lymphocytes | Preservation of beta-cell function in adult T1D individuals over 15-week follow-up period | [152] |
In Mouse | |||
mAb123 | Insulin-bound B lymphocytes | Protects from T1D | [80] |
Soluble antigen array | Autoantigen-specific B and T lymphocytes | Protects from T1D | [153,154] |
Healthy polyclonal IgM | Insulin-binding B lymphocytes | Reverses T1D | [155] |
Insulin-CD22L conjugate | Insulin-binding B lymphocyte | Reduced anti-insulin B cell proliferation with anti-CD40 stimulation in vitro | [156] |
AKS-107 | Insulin-binding B lymphocytes | Protects from T1D | [157] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bass, L.E.; Bonami, R.H. Factors Governing B Cell Recognition of Autoantigen and Function in Type 1 Diabetes. Antibodies 2024, 13, 27. https://doi.org/10.3390/antib13020027
Bass LE, Bonami RH. Factors Governing B Cell Recognition of Autoantigen and Function in Type 1 Diabetes. Antibodies. 2024; 13(2):27. https://doi.org/10.3390/antib13020027
Chicago/Turabian StyleBass, Lindsay E., and Rachel H. Bonami. 2024. "Factors Governing B Cell Recognition of Autoantigen and Function in Type 1 Diabetes" Antibodies 13, no. 2: 27. https://doi.org/10.3390/antib13020027
APA StyleBass, L. E., & Bonami, R. H. (2024). Factors Governing B Cell Recognition of Autoantigen and Function in Type 1 Diabetes. Antibodies, 13(2), 27. https://doi.org/10.3390/antib13020027