Expanding the Reach of Monoclonal Antibodies: A Review of Synthetic Nucleic Acid Delivery in Immunotherapy
Abstract
:1. Introduction
2. Monoclonal Antibodies: From Hybridoma to Humanized Transgenic Mice
3. Challenges of Making Monoclonal Antibody Therapies More Accessible: Current Limitations and Future Directions
4. Approaches for Monoclonal Antibody Delivery: A Promising Alternative for Increased Accessibility and Efficiency
5. Different Delivery Platforms for Monoclonal Antibodies
AAV-Based Delivery | ||||
---|---|---|---|---|
Encoded mAb(s) | Modifications | Experimental Model | Mode of Delivery | Reference |
anti-HIV-1 gp160 (IgG1b12) | dual promoter (pCMV/HC/EF1a/LC) | Rag1 mice | rAAV, IM | [32] |
anti-human EGFR (14E1 and 14E1A, ablated CDR3) | nu/nu mice | AAV2/1, IM | [142] | |
anti-HIV gp41 (4E10) and anti-HIV gp120 (b12) | Rag2−/−γc−/−, NSG, B6, Balb/C | AAV2/8, IM | [7] | |
anti-Aβ | C57BL/6 mice | AAV1, IM | [29] | |
anti-ganglioside GM3(Neu5Gc) (14F7, mouse IgG1) | BALB/c mice | AAV2/9, IM, IV | [143] | |
anti-METH | scFv, self-complementary AAV | BALB/c mice | AAV8, IV | [30] |
anti-HIV-1 gp41 (10E8), anti-HIV-1 gp120 (3BNC117, 10-1074) | “LS mutation” (M428L (Leucine)/N434S (Serine)) to increase half-life, vectors included specific miRNAs to promote transcriptional cleavage of transgene’s mRNA in APCs | rhesus macaques | AAV1, IM | [27] |
anti-SIV gp120 and gp140 (5L7) | Mamu B*08-neg B*17-neg female Indian-origin rhesus macaque | AAV1, IM | [24] | |
anti-PD-1 (Nb11) | nanobody (VHH) | C57BL/6 mice | AAV8, IV | [28] |
anti-EBOV GP2 internal fusion loop (CA45) | F129L, Y445F, and Y731F mutations in the AAV6 capsid | BALB/c mice | AAV6.2FF, IM | [25] |
anti-MARV GP (MR78, MR82 and MR191) | bicistronic, CASI promoter | BALB/c mice, Dorset lambs | AAV6.2FF, IM | [144] |
DNA-Based Delivery | ||||
Encoded mAb(s) | Modifications | Experimental Model | Mode of Delivery | Reference |
anti-human thyroglobulin | tet-off, tet-on | C57BL/6 mice, C3H mice | IM + EP | [63] |
anti-I-Ed, anti-IgDa, anti-NIP | C57BL/6 mice, BALB/c mice, BALB.B mice, C.B-17 mice | IM + EP | [64] | |
anti-HIV Env (VRC01) | BALB/c mice | IM + EP | [65] | |
anti-DENV nAb | LALA mutation | Foxn1/NuJ mice | IM + EP | [72] |
anti-CHIKV envelope | B6.Cg-Foxn1nu/J mice | IM + EP | [74] | |
anti-HER2 | modification of VL sequence by replacing asparagine at amino acid 65 with serine to remove potential N-glycosylation site | BALB/c mice | IM + EP | [145] |
anti-Influenza (A and B) | BALB/c and CAnN.Cg-Foxn1Nu | IM + EP with hyaluronidase pretreatment | [71] | |
anti-PSMA | B6.Cg-Foxn1 nu/J and C57BL/6J mice | IM + EP | [75] | |
anti-CD4, anti-influenza, anti-Ebola | BALB/c mice | IM + EP, IM + EP with hyaluronidase pretx | [146] | |
anti-Zaire ebolavirus glycoprotein | modification of N terminus amino acids back to germline | BALB/c (anti-CD4 and anti-CD8 transient depletion) | IM + EP with hyaluronidase | [68] |
anti-CTLA-4 | Sequence modifications based on sequence alignment to the mouse germline sequence | C57Bl/6, BALB/c (anti-CD4 and anti-CD8 transient depletion) | IM + EP with hyaluronidase | [147] |
anti-HER2 | BALB/c, athymic nude, RAG2−/−gc−/− | IM + EP with hyaluronidase pretx | [73] | |
anti-ZIKV E protein DIII domain (DMAb-ZK190) | LALA mutation | C57BL/6 mice, Rhesus macaques | IM + EP with hyaluronidase pretreatment in mice, IM + EP only in rhesus macaques | [77] |
anti-OspA Lyme | framework modification of the WT variant | C3H mice | IM + EP with hyaluronidase | [148] |
anti-PCSK9 | C57BL/6J wild-type and nude B6.Cg-foxn1nu/J mice | IM + EP | [149] | |
anti-HER2 | Nu/J mice | IM + EP with hyaluronidase | [78] | |
anti-PD-1 | BALB/c mice | IM + EP | [150] | |
anti-human CEA, anti-human EGFR, anti-HER2 | Swifter sheep, C57BL/6J RAG1 ko mice | IM + EP with hyaluronidase pretx | [151] | |
multiple HIV-1-specific bNAbs | modification of the C- and N-terminus of the variable region to germline | BALB/c (anti-CD4 and anti-CD8 transient depletion), Rhesus macaques | IM + EP with hyaluronidase | [79] |
anti-HBV | athymic nude CAnN.Cg-Foxn1nu/Crl mice | IM + EP | [152] | |
anti-mCTLA-4 (9D9), anti-ratPD-1 | C57BL/6J mice | IM + EP with hyaluronidase pretx | [153] | |
Intratumoral + EP | ||||
anti-ZIKV envelope | B6.Cg-Foxn1nu/J mice | IM + EP | [154] | |
2C7, directed against a lipooligosaccharide glycan epitope, Neisseria gonorrhoeae | two complement enhancing variants, HC_E430G and HC_E345K, one complement abrogating variant HC_K322A/D270A | Jh mice, nude mice | IM + EP with hyaluronidase | [155] |
anti-HER2 | BALB/c mice | IM + EP with hyaluronidase pretx | [156] | |
anti-SARS-CoV2 spike | L234F/L235E/P331S; “TM” to ablate FcR and C1q binding, M252Y/S254T/T256E; “YTE” to promote FcRn-mediated recycling | BALB/c | IM + EP with hyaluronidase | [70] |
mAb clones CIS43, 317, and L9, which target a junctional epitope, major repeat, and minor repeat of the Plasmodium falciparum circumsporozoite protein (CSP), respectively | reverting specific, non-essential residues in the framework region back to germline configuration | BALB/cJ (anti-CD4 and anti-CD8 transient depletion) | IM + EP with hyaluronidase | [69] |
anti-human CEA | Swifter sheep | IM + EP with hyaluronidase | [157] | |
mRNA-Based delivery | ||||
Encoded mAb(s) | Modifications | Experimental Model | Mode of Delivery | Reference |
anti-CD3/anti-claudin 6 (CLDN6), anti-CD3/anti-caludin 18.2 (CLDN18.2), anti-CD3/anti-epithelial cell adhesion molecule (EpCAM), anti-CD3/(anti-CLDN6)2 | 1-methylpseudouridine | NOD.Cg-Prkdscid IL2rgtm1Wjl/SzJ (NSG) mice | Formulation with TransIT-mRNA Transfection kit, IV | [99] |
anti-HIV Env (VRC01) | 1-methylpseudouridine | BALB/c mice | LNP, IV | [97] |
anti-Rabies glycoprotein G, anti-Botulinum neurotoxin serotype A (VHH-based neutralizing agent, VNA), anti-CD20, anti-HIV gp120, anti-Influenza B HA, anti-Shiga toxin 2 (VNA) | two fused VHHs complemented by an albumin-binding peptide | Swiss-Albino mice (rabies and influenza b) CD1 mice (VNAs) | LNP, IV | [100] |
anti-Influenza A | 1-methylpseudouridine | cynomolgus monkeys | LNP, IV | [98] |
anti-CHIKV E2 glycoprotein (CHIKV-24) | cynomolgus monkeys | LNP, IV | [95] | |
anti-HER2 | C57BL/6 mice | cKK-E12 (also known as MD-1) lipid-like nanoparticles, IV | [127] | |
Anti-ZIKV Env (ZIKV-117) | alphavirus replicon (replicating viral RNA that amplifies) 1-methylpseudouridine | C57BL/6 mice | Nanostructured lipid carrier, IM | [129] |
anti-HIV GP120 (PGT121) | 1-methylpseudouridine | female Katahdin ewes | aerosol delivery of unformulated mRNA in water | [96] |
anti-Influenza A matrix protein 2/anti-mouse Fcγ receptor IV | 1-methylpseudouridine | DOTAP (1,2-dioleoyl-3-trimethylammonium-propane)/cholesterol nanoparticles delivered intratracheally | [158] | |
anti-CHIKV Env (mRNA-1944) | human | LNP, IV | [126] | |
Poxviruses: Mature virion, c7D11 (anti-L1); Enveloped virion, c8A (anti-B5) and c6C (anti-A33) | New Zealand White rabbits | LNP, IM jet injection | [159] | |
anti-PD-1 | 1-methylpseudouridine | C57BL/6 mice | LNP, IV | [128] |
anti-SARS-CoV-2 | LS mutation (M428L/N434S) and GPI anchor 1-methylpseudouridine | Golden Syrian hamster | poly-beta amino thio ester (PBATE), nebulizer | [133] |
6. Summary and Conclusions
7. Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Casadevall, A.; Dadachova, E.; Pirofski, L.-A. Passive antibody therapy for infectious diseases. Nat. Rev. Genet. 2004, 2, 695–703. [Google Scholar] [CrossRef]
- Kitasato, S. Ueber den Tetanusbacillus. Med. Microbiol. Immunol. 1889, 7, 225–234. [Google Scholar] [CrossRef]
- Behring, E.V. Ueber das Zustandekommen der Diphtherie-Immunität und der Tetanus-Immunität bei Thieren; Philipps-University Marburg: Marburg, Germany, 1890. [Google Scholar]
- Casadevall, A.; Scharff, M.D. Serum therapy revisited: Animal models of infection and development of passive antibody therapy. Antimicrob. Agents Chemother. 1994, 38, 1695–1702. [Google Scholar] [CrossRef] [Green Version]
- Wolff, J.A.; Malone, R.W.; Williams, P.; Chong, W.; Acsadi, G.; Jani, A.; Felgner, P.L. Direct gene transfer into mouse muscle in vivo. Science 1990, 247, 1465–1468. [Google Scholar] [CrossRef] [PubMed]
- Johnson, P.R.; Schnepp, B.C.; Zhang, J.; Connell, M.J.; Greene, S.M.; Yuste, E.; Desrosiers, R.C.; Clark, K.R. Vector-mediated gene transfer engenders long-lived neutralizing activity and protection against SIV infection in monkeys. Nat. Med. 2009, 15, 901–906. [Google Scholar] [CrossRef] [Green Version]
- Balazs, A.B.; Chen, J.; Hong, C.M.; Rao, D.S.; Yang, L.; Baltimore, D. Antibody-based protection against HIV infection by vectored immunoprophylaxis. Nature 2011, 481, 81–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Köhler, G.; Milstein, C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 1975, 256, 495–497. [Google Scholar] [CrossRef]
- Bradbury, A.R.M.; Sidhu, S.; Dübel, S.; McCafferty, J. Beyond natural antibodies: The power of in vitro display technologies. Nat. Biotechnol. 2011, 29, 245–254. [Google Scholar] [CrossRef] [Green Version]
- Voigt, A.; Semenova, T.; Yamamoto, J.; Etienne, V.; Nguyen, C.Q. Therapeutic Antibody Discovery in Infectious Diseases Using Single-Cell Analysis. Adv. Exp. Med. Biol. 2018, 1068, 89–102. [Google Scholar] [CrossRef]
- André, A.S.; Moutinho, I.; Dias, J.N.R.; Aires-Da-Silva, F. In vivo Phage Display: A promising selection strategy for the improvement of antibody targeting and drug delivery properties. Front. Microbiol. 2022, 13, 962124. [Google Scholar] [CrossRef]
- Nissim, A.; Chernajovsky, Y. Historical Development of Monoclonal Antibody Therapeutics. In Handbook of Experimental Pharmacology; Springer: Berlin/Heidelberg, Germany, 2008; pp. 3–18. [Google Scholar] [CrossRef]
- Birch, J.R.; Racher, A.J. Antibody production. Adv. Drug Deliv. Rev. 2006, 58, 671–685. [Google Scholar] [CrossRef] [PubMed]
- Arosio, P.; Barolo, G.; Müller-Späth, T.; Wu, H.; Morbidelli, M. Aggregation Stability of a Monoclonal Antibody during Downstream Processing. Pharm. Res. 2011, 28, 1884–1894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaughnessy, A.F. Monoclonal antibodies: Magic bullets with a hefty price tag. BMJ 2012, 345, e8346. [Google Scholar] [CrossRef] [PubMed]
- Merck & Co., Inc. COST INFO & FINANCIAL HELP. 2023. Available online: https://www.keytruda.com/financial-support/ (accessed on 3 May 2023).
- Sifniotis, V.; Cruz, E.; Eroglu, B.; Kayser, V. Current Advancements in Addressing Key Challenges of Therapeutic Antibody Design, Manufacture, and Formulation. Antibodies 2019, 8, 36. [Google Scholar] [CrossRef] [Green Version]
- Zhu, N.; Liggitt, D.; Liu, Y.; Debs, R. Systemic Gene Expression after Intravenous DNA Delivery into Adult Mice. Science 1993, 261, 209–211. [Google Scholar] [CrossRef]
- Daya, S.; Berns, K.I. Gene Therapy Using Adeno-Associated Virus Vectors. Clin. Microbiol. Rev. 2008, 21, 583–593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De, B.P.; Hackett, N.R.; Crystal, R.G.; Boyer, J.L. Rapid/Sustained Anti-anthrax Passive Immunity Mediated by Co-administration of Ad/AAV. Mol. Ther. 2008, 16, 203–209. [Google Scholar] [CrossRef]
- Fang, J.; Qian, J.-J.; Yi, S.; Harding, T.C.; Tu, G.H.; VanRoey, M.; Jooss, K. Stable antibody expression at therapeutic levels using the 2A peptide. Nat. Biotechnol. 2005, 23, 584–590. [Google Scholar] [CrossRef]
- McCarty, D.M. Self-complementary AAV Vectors; Advances and Applications. Mol. Ther. 2008, 16, 1648–1656. [Google Scholar] [CrossRef] [PubMed]
- Sakurai, H.; Kawabata, K.; Sakurai, F.; Nakagawa, S.; Mizuguchi, H. Innate immune response induced by gene delivery vectors. Int. J. Pharm. 2008, 354, 9–15. [Google Scholar] [CrossRef]
- Martinez-Navio, J.M.; Fuchs, S.P.; Mendes, D.E.; Rakasz, E.G.; Gao, G.; Lifson, J.D.; Desrosiers, R.C. Long-Term Delivery of an Anti-SIV Monoclonal Antibody with AAV. Front. Immunol. 2020, 11, 449. [Google Scholar] [CrossRef] [Green Version]
- van Lieshout, L.P.; Rghei, A.D.; Cao, W.; He, S.; Soule, G.; Zhu, W.; Thomas, S.P.; Sorensen, D.; Frost, K.; Tierney, K.; et al. AAV-monoclonal antibody expression protects mice from Ebola virus without impeding the endogenous antibody response to heterologous challenge. Mol. Ther.-Methods Clin. Dev. 2022, 26, 505–518. [Google Scholar] [CrossRef] [PubMed]
- Van Lieshout, L.P.; Soule, G.; Sorensen, D.; Frost, K.L.; He, S.; Tierney, K.; Safronetz, D.; Booth, S.A.; Kobinger, G.P.; Qiu, X.; et al. Intramuscular Adeno-Associated Virus–Mediated Expression of Monoclonal Antibodies Provides 100% Protection against Ebola Virus Infection in Mice. J. Infect. Dis. 2018, 217, 916–925. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Navio, J.M.; Fuchs, S.P.; Pantry, S.N.; Lauer, W.A.; Duggan, N.N.; Keele, B.F.; Rakasz, E.G.; Gao, G.; Lifson, J.D.; Desrosiers, R.C. Adeno-Associated Virus Delivery of Anti-HIV Monoclonal Antibodies Can Drive Long-Term Virologic Suppression. Immunity 2019, 50, 567–575.e5. [Google Scholar] [CrossRef] [Green Version]
- Silva-Pilipich, N.; Martisova, E.; Ballesteros-Briones, M.C.; Hervas-Stubbs, S.; Casares, N.; González-Sapienza, G.; Smerdou, C.; Vanrell, L. Long-Term Systemic Expression of a Novel PD-1 Blocking Nanobody from an AAV Vector Provides Antitumor Activity without Toxicity. Biomedicines 2020, 8, 562. [Google Scholar] [CrossRef] [PubMed]
- Shimada, M.; Abe, S.; Takahashi, T.; Shiozaki, K.; Okuda, M.; Mizukami, H.; Klinman, D.M.; Ozawa, K.; Okuda, K. Prophylaxis and Treatment of Alzheimer’s Disease by Delivery of an Adeno-Associated Virus Encoding a Monoclonal Antibody Targeting the Amyloid Beta Protein. PLoS ONE 2013, 8, e57606. [Google Scholar] [CrossRef] [PubMed]
- Hay, C.E.; Iii, G.A.G.; Ewing, L.E.; Reichard, E.E.; Hambuchen, M.D.; Nanaware-Kharade, N.; Alam, S.; Bolden, C.T.; Owens, S.M.; Margaritis, P.; et al. Development and testing of AAV-delivered single-chain variable fragments for the treatment of methamphetamine abuse. PLoS ONE 2018, 13, e0200060. [Google Scholar] [CrossRef] [Green Version]
- Balazs, A.B.; Bloom, J.D.; Hong, C.M.; Rao, D.S.; Baltimore, D. Broad protection against influenza infection by vectored immunoprophylaxis in mice. Nat. Biotechnol. 2013, 31, 647–652. [Google Scholar] [CrossRef]
- Lewis, A.D.; Chen, R.; Montefiori, D.C.; Johnson, P.R.; Clark, K.R. Generation of Neutralizing Activity against Human Immunodeficiency Virus Type 1 in Serum by Antibody Gene Transfer. J. Virol. 2002, 76, 8769–8775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rghei, A.D.; van Lieshout, L.P.; McLeod, B.M.; Pei, Y.; Lopes, J.A.; Zielinska, N.; Baracuhy, E.M.; Stevens, B.A.Y.; Thomas, S.P.; Yates, J.G.E.; et al. Safety and Tolerability of the Adeno-Associated Virus Vector, AAV6.2FF, Expressing a Monoclonal Antibody in Murine and Ovine Animal Models. Biomedicines 2021, 9, 1186. [Google Scholar] [CrossRef] [PubMed]
- Priddy, F.H.; Lewis, D.J.M.; Gelderblom, H.C.; Hassanin, H.; Streatfield, C.; LaBranche, C.; Hare, J.; Cox, J.H.; Dally, L.; Bendel, D.; et al. Adeno-associated virus vectored immunoprophylaxis to prevent HIV in healthy adults: A phase 1 randomised controlled trial. Lancet HIV 2019, 6, e230–e239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casazza, J.P.; Cale, E.M.; Narpala, S.; Yamshchikov, G.V.; Coates, E.E.; Hendel, C.S.; Novik, L.; Holman, L.A.; Widge, A.T.; Apte, P.; et al. Safety and tolerability of AAV8 delivery of a broadly neutralizing antibody in adults living with HIV: A phase 1, dose-escalation trial. Nat. Med. 2022, 28, 1022–1030. [Google Scholar] [CrossRef] [PubMed]
- Mahomed, S.; Garrett, N.; Capparelli, E.V.; Osman, F.; Harkoo, I.; Yende-Zuma, N.; Gengiah, T.N.; Archary, D.; Samsunder, N.; Baxter, C.; et al. Safety and Pharmacokinetics of Monoclonal Antibodies VRC07-523LS and PGT121 Administered Subcutaneously for Human Immunodeficiency Virus Prevention. J. Infect. Dis. 2022, 226, 510–520. [Google Scholar] [CrossRef]
- Fuchs, S.P.; Martinez-Navio, J.M.; Piatak, M., Jr.; Lifson, J.D.; Gao, G.; Desrosiers, R.C. AAV-Delivered Antibody Mediates Significant Protective Effects against SIVmac239 Challenge in the Absence of Neutralizing Activity. PLOS Pathog. 2015, 11, e1005090. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Navio, J.M.; Fuchs, S.P.; Pedreño-López, S.; Rakasz, E.G.; Gao, G.; Desrosiers, R.C. Host Anti-antibody Responses Following Adeno-associated Virus–mediated Delivery of Antibodies against HIV and SIV in Rhesus Monkeys. Mol. Ther. 2016, 24, 76–86. [Google Scholar] [CrossRef] [Green Version]
- Calne, R.Y.; Sells, R.A.; Pena, J.R.; Davis, D.R.; Millard, P.R.; Herbertson, B.M.; Binns, R.M.; Davies, D.A.L. Induction of Immunological Tolerance by Porcine Liver Allografts. Nature 1969, 223, 472–476. [Google Scholar] [CrossRef]
- Keeler, G.D.; Markusic, D.M.; Hoffman, B.E. Liver induced transgene tolerance with AAV vectors. Cell. Immunol. 2019, 342, 103728. [Google Scholar] [CrossRef]
- Markusic, D.M.; Hoffman, B.E.; Perrin, G.Q.; Nayak, S.; Wang, X.; LoDuca, P.A.; High, K.A.; Herzog, R.W. Effective gene therapy for haemophilic mice with pathogenic factor IX antibodies. EMBO Mol. Med. 2013, 5, 1698–1709. [Google Scholar] [CrossRef]
- Cao, O.; Dobrzynski, E.; Wang, L.; Nayak, S.; Mingle, B.; Terhorst, C.; Herzog, R.W. Induction and role of regulatory CD4+CD25+ T cells in tolerance to the transgene product following hepatic in vivo gene transfer. Blood 2007, 110, 1132–1140. [Google Scholar] [CrossRef] [Green Version]
- Breous, E.; Somanathan, S.; Vandenberghe, L.H.; Wilson, J.M. Hepatic regulatory T cells and Kupffer cells are crucial mediators of systemic T cell tolerance to antigens targeting murine liver. Hepatology 2009, 50, 612–621. [Google Scholar] [CrossRef] [Green Version]
- Martino, A.T.; Nayak, S.; Hoffman, B.E.; Cooper, M.; Liao, G.; Markusic, D.M.; Byrne, B.J.; Terhorst, C.; Herzog, R.W. Tolerance Induction to Cytoplasmic β-Galactosidase by Hepatic AAV Gene Transfer—Implications for Antigen Presentation and Immunotoxicity. PLoS ONE 2009, 4, e6376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dobrzynski, E.; Mingozzi, F.; Liu, Y.-L.; Bendo, E.; Cao, O.; Wang, L.; Herzog, R.W. Induction of antigen-specific CD4+ T-cell anergy and deletion by in vivo viral gene transfer. Blood 2004, 104, 969–977. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, S.P.; Martinez-Navio, J.M.; Rakasz, E.G.; Gao, G.; Desrosiers, R.C. Liver-Directed but Not Muscle-Directed AAV-Antibody Gene Transfer Limits Humoral Immune Responses in Rhesus Monkeys. Mol. Ther.-Methods Clin. Dev. 2019, 16, 94–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Welles, H.C.; Jennewein, M.F.; Mason, R.D.; Narpala, S.; Wang, L.; Cheng, C.; Zhang, Y.; Todd, J.-P.; Lifson, J.D.; Balazs, A.B.; et al. Vectored delivery of anti-SIV envelope targeting mAb via AAV8 protects rhesus macaques from repeated limiting dose intrarectal swarm SIVsmE660 challenge. PLOS Pathog. 2018, 14, e1007395. [Google Scholar] [CrossRef] [PubMed]
- Vandenberghe, L.H.; Wang, L.; Somanathan, S.; Zhi, Y.; Figueredo, J.; Calcedo, R.; Sanmiguel, J.; Desai, R.; Chen, C.; Johnston, J.; et al. Heparin binding directs activation of T cells against adeno-associated virus serotype 2 capsid. Nat. Med. 2006, 12, 967–971. [Google Scholar] [CrossRef]
- Tenenbaum, E.L.A.P.E.M.L.; Lehtonen, E.; Monahan, P.E. Evaluation of Risks Related to the Use of Adeno-Associated Virus-Based Vectors. Curr. Gene Ther. 2003, 3, 545–565. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, B.A.; Wright, J.F. Challenges Posed by Immune Responses to AAV Vectors: Addressing Root Causes. Front. Immunol. 2021, 12, 675897. [Google Scholar] [CrossRef]
- Davé, U.P.; Cornetta, K. AAV Joins the Rank of Genotoxic Vectors. Mol. Ther. 2021, 29, 418–419. [Google Scholar] [CrossRef]
- Nguyen, G.N.; Everett, J.K.; Kafle, S.; Roche, A.M.; Raymond, H.E.; Leiby, J.; Wood, C.; Assenmacher, C.-A.; Merricks, E.P.; Long, C.T.; et al. A long-term study of AAV gene therapy in dogs with hemophilia A identifies clonal expansions of transduced liver cells. Nat. Biotechnol. 2021, 39, 47–55. [Google Scholar] [CrossRef]
- Nault, J.-C.; Datta, S.; Imbeaud, S.; Franconi, A.; Mallet, M.; Couchy, G.; Letouzé, E.; Pilati, C.; Verret, B.; Blanc, J.-F.; et al. Recurrent AAV2-related insertional mutagenesis in human hepatocellular carcinomas. Nat. Genet. 2015, 47, 1187–1193. [Google Scholar] [CrossRef]
- Ulmer, J.B.; Donnelly, J.J.; Parker, S.E.; Rhodes, G.H.; Felgner, P.L.; Dwarki, V.J.; Gromkowski, S.H.; Deck, R.R.; DeWitt, C.M.; Friedman, A.; et al. Heterologous Protection against Influenza by Injection of DNA Encoding a Viral Protein. Science 1993, 259, 1745–1749. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Ugen, K.E.; Srikantan, V.; Agadjanyan, M.G.; Dang, K.; Refaeli, Y.; Sato, A.I.; Boyer, J.; Williams, W.V.; Weiner, D.B. Gene inoculation generates immune responses against human immunodeficiency virus type 1. Proc. Natl. Acad. Sci. USA 1993, 90, 4156–4160. [Google Scholar] [CrossRef]
- Le, T.P.; Coonan, K.M.; Hedstrom, R.C.; Charoenvit, Y.; Sedegah, M.; Epstein, J.E.; Kumar, S.; Wang, R.; Doolan, D.; Maguire, J.D.; et al. Safety, tolerability and humoral immune responses after intramuscular administration of a malaria DNA vaccine to healthy adult volunteers. Vaccine 2000, 18, 1893–1901. [Google Scholar] [CrossRef]
- MacGregor, R.R.; Boyer, J.D.; Ugen, K.E.; Lacy, K.E.; Gluckman, S.J.; Bagarazzi, M.L.; Chattergoon, M.A.; Baine, Y.; Higgins, T.J.; Ciccarelli, R.B.; et al. First Human Trial of a DNA-Based Vaccine for Treatment of Human Immunodeficiency Virus Type 1 Infection: Safety and Host Response. J. Infect. Dis. 1998, 178, 92–100. [Google Scholar] [CrossRef] [Green Version]
- MacGregor, R.R.; Boyer, J.D.; Ciccarelli, R.B.; Ginsberg, R.S.; Weiner, D.B. Safety and Immune Responses to a DNA-Based Human Immunodeficiency Virus (HIV) Type I Env/Rev Vaccine in HIV-Infected Recipients: Follow-up Data. J. Infect. Dis. 2000, 181, 406. [Google Scholar] [CrossRef] [PubMed]
- Calarota, S.A.; Leandersson, A.-C.; Bratt, G.; Hinkula, J.; Klinman, D.M.; Weinhold, K.J.; Sandström, E.; Wahren, B. Immune Responses in Asymptomatic HIV-1-Infected Patients After HIV-DNA Immunization Followed by Highly Active Antiretroviral Treatment. J. Immunol. 1999, 163, 2330–2338. [Google Scholar] [CrossRef] [PubMed]
- Ugen, K.E.; Nyland, S.B.; Boyer, J.D.; Vidal, C.; Lera, L.; Rasheid, S.; Chattergoon, M.; Bagarazzi, M.L.; Ciccarelli, R.; Higgins, T.; et al. DNA vaccination with HIV-1 expressing constructs elicits immune responses in humans. Vaccine 1998, 16, 1818–1821. [Google Scholar] [CrossRef]
- Calarota, S.A.; Kjerrström, A.; Islam, K.B.; Wahren, B.; Wen, J.; Hao, W.; Fan, Y.; Du, J.; Du, B.; Qian, M.; et al. Gene Combination Raises Broad Human Immunodeficiency Virus-Specific Cytotoxicity. Hum. Gene Ther. 2001, 12, 1623–1637. [Google Scholar] [CrossRef]
- Wang, R.; Epstein, J.; Baraceros, F.M.; Gorak, E.J.; Charoenvit, Y.; Carucci, D.J.; Hedstrom, R.C.; Rahardjo, N.; Gay, T.; Hobart, P.; et al. Induction of CD4+T cell-dependent CD8+type 1 responses in humans by a malaria DNA vaccine. Proc. Natl. Acad. Sci. USA 2001, 98, 10817–10822. [Google Scholar] [CrossRef]
- Perez, N.; Bigey, P.; Scherman, D.; Danos, O.; Piechaczyk, M.; Pelegrin, M. Regulatable systemic production of monoclonal antibodies by in vivo muscle electroporation. Genet. Vaccines Ther. 2004, 2, 2. [Google Scholar] [CrossRef] [Green Version]
- Tjelle, T.E.; Corthay, A.; Lunde, E.; Sandlie, I.E.; Michaelsen, T.; Mathiesen, I.; Bogen, B. Monoclonal Antibodies Produced by Muscle after Plasmid Injection and Electroporation. Mol. Ther. 2004, 9, 328–336. [Google Scholar] [CrossRef] [PubMed]
- Muthumani, K.; Flingai, S.; Wise, M.; Tingey, C.; Ugen, K.E.; Weiner, D.B. Optimized and enhanced DNA plasmid vector based in vivo construction of a neutralizing anti-HIV-1 envelope glycoprotein Fab. Hum. Vaccines Immunother. 2013, 9, 2253–2262. [Google Scholar] [CrossRef] [Green Version]
- Tebas, P.; Roberts, C.C.; Muthumani, K.; Reuschel, E.L.; Kudchodkar, S.B.; Zaidi, F.I.; White, S.; Khan, A.S.; Racine, T.; Choi, H.; et al. Safety and Immunogenicity of an Anti-Zika Virus DNA Vaccine—Preliminary Report. N. Engl. J. Med. 2021, 385, e35. [Google Scholar] [CrossRef] [PubMed]
- McMahon, J.M.; Signori, E.; Wells, K.E.; Fazio, V.M.; Wells, D.J. Optimisation of electrotransfer of plasmid into skeletal muscle by pretreatment with hyaluronidase-increased expression with reduced muscle damage. Gene Ther. 2001, 8, 1264–1270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, A.; Park, D.H.; Davis, C.W.; Smith, T.R.; Leung, A.; Tierney, K.; Bryan, A.; Davidson, E.; Yu, X.; Racine, T.; et al. In Vivo Delivery of Synthetic Human DNA-Encoded Monoclonal Antibodies Protect against Ebolavirus Infection in a Mouse Model. Cell Rep. 2018, 25, 1982–1993.e4. [Google Scholar] [CrossRef] [Green Version]
- Tursi, N.J.; Reeder, S.M.; Flores-Garcia, Y.; Bah, M.A.; Mathis-Torres, S.; Salgado-Jimenez, B.; Esquivel, R.; Xu, Z.; Chu, J.D.; Humeau, L.; et al. Engineered DNA-encoded monoclonal antibodies targeting Plasmodium falciparum circumsporozoite protein confer single dose protection in a murine malaria challenge model. Sci. Rep. 2022, 12, 14313. [Google Scholar] [CrossRef]
- Parzych, E.M.; Du, J.; Ali, A.R.; Schultheis, K.; Frase, D.; Smith, T.R.F.; Cui, J.; Chokkalingam, N.; Tursi, N.J.; Andrade, V.M.; et al. DNA-delivered antibody cocktail exhibits improved pharmacokinetics and confers prophylactic protection against SARS-CoV-2. Nat. Commun. 2022, 13, 5886. [Google Scholar] [CrossRef]
- Elliott, S.T.C.; Kallewaard, N.L.; Benjamin, E.; Wachter-Rosati, L.; McAuliffe, J.M.; Patel, A.; Smith, T.R.F.; Schultheis, K.; Park, D.H.; Flingai, S.; et al. DMAb inoculation of synthetic cross reactive antibodies protects against lethal influenza A and B infections. NPJ Vaccines 2017, 2, 18. [Google Scholar] [CrossRef] [Green Version]
- Flingai, S.; Plummer, E.M.; Patel, A.; Shresta, S.; Mendoza, J.M.; Broderick, K.E.; Sardesai, N.Y.; Muthumani, K.; Weiner, D.B. Protection against dengue disease by synthetic nucleic acid antibody prophylaxis/immunotherapy. Sci. Rep. 2015, 5, 12616. [Google Scholar] [CrossRef] [Green Version]
- Hollevoet, K.; De Smidt, E.; Geukens, N.; Declerck, P. Prolonged in vivo expression and anti-tumor response of DNA-based anti-HER2 antibodies. Oncotarget 2018, 9, 13623–13636. [Google Scholar] [CrossRef] [Green Version]
- Muthumani, K.; Block, P.; Flingai, S.; Muruganantham, N.; Chaaithanya, I.K.; Tingey, C.; Wise, M.; Reuschel, E.L.; Chung, C.; Muthumani, A.; et al. Rapid and Long-Term Immunity Elicited by DNA-Encoded Antibody Prophylaxis and DNA Vaccination against Chikungunya Virus. J. Infect. Dis. 2016, 214, 369–378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muthumani, K.; Marnin, L.; Kudchodkar, S.B.; Perales-Puchalt, A.; Choi, H.; Agarwal, S.; Scott, V.L.; Reuschel, E.L.; Zaidi, F.I.; Duperret, E.K.; et al. Novel prostate cancer immunotherapy with a DNA-encoded anti-prostate-specific membrane antigen monoclonal antibody. Cancer Immunol. Immunother. 2017, 66, 1577–1588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, A.; DiGiandomenico, A.; Keller, A.E.; Smith, T.R.F.; Park, D.H.; Ramos, S.; Schultheis, K.; Elliott, S.T.C.; Mendoza, J.; Broderick, K.E.; et al. An engineered bispecific DNA-encoded IgG antibody protects against Pseudomonas aeruginosa in a pneumonia challenge model. Nat. Commun. 2017, 8, 637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esquivel, R.N.; Patel, A.; Kudchodkar, S.B.; Park, D.H.; Stettler, K.; Beltramello, M.; Allen, J.W.; Mendoza, J.; Ramos, S.; Choi, H.; et al. In Vivo Delivery of a DNA-Encoded Monoclonal Antibody Protects Non-human Primates against Zika Virus. Mol. Ther. 2019, 27, 974–985. [Google Scholar] [CrossRef]
- Perales-Puchalt, A.; Duperret, E.K.; Yang, X.; Hernandez, P.; Wojtak, K.; Zhu, X.; Jung, S.-H.; Tello-Ruiz, E.; Wise, M.C.; Montaner, L.J.; et al. DNA-encoded bispecific T cell engagers and antibodies present long-term antitumor activity. J. Clin. Investig. 2019, 4, e126086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wise, M.C.; Xu, Z.; Tello-Ruiz, E.; Beck, C.; Trautz, A.; Patel, A.; Elliott, S.T.; Chokkalingam, N.; Kim, S.; Kerkau, M.G.; et al. In vivo delivery of synthetic DNA-encoded antibodies induces broad HIV-1-neutralizing activity. J. Clin. Investig. 2019, 130, 827–837. [Google Scholar] [CrossRef]
- Wallace, M.; Evans, B.; Woods, S.; Mogg, R.; Zhang, L.; Finnefrock, A.C.; Rabussay, D.; Fons, M.; Mallee, J.; Mehrotra, D.; et al. Tolerability of Two Sequential Electroporation Treatments Using MedPulser DNA Delivery System (DDS) in Healthy Adults. Mol. Ther. 2009, 17, 922–928. [Google Scholar] [CrossRef] [PubMed]
- Schultheis, K.; Smith, T.R.; Kiosses, W.B.; Kraynyak, K.A.; Wong, A.; Oh, J.; Broderick, K.E. Delineating the Cellular Mechanisms Associated with Skin Electroporation. Hum. Gene Ther. Methods 2018, 29, 177–188. [Google Scholar] [CrossRef]
- Lallow, E.O.; Jhumur, N.C.; Ahmed, I.; Kudchodkar, S.B.; Roberts, C.C.; Jeong, M.; Melnik, J.M.; Park, S.H.; Muthumani, K.; Shan, J.W.; et al. Novel suction-based in vivo cutaneous DNA transfection platform. Sci. Adv. 2021, 7, eabj0611. [Google Scholar] [CrossRef]
- Kitaguchi, K.; Toda, M.; Takekoshi, M.; Maeda, F.; Muramatsu, T.; Murai, A. Immune deficiency enhances expression of recombinant human antibody in mice after nonviral in vivo gene transfer. Int. J. Mol. Med. 2005, 16, 683–688. [Google Scholar]
- Wang, Z.; Troilo, P.J.; Wang, X.; Griffiths, T.G.; Pacchione, S.J.; Barnum, A.B.; Harper, L.B.; Pauley, C.J.; Niu, Z.; Denisova, L.; et al. Detection of integration of plasmid DNA into host genomic DNA following intramuscular injection and electroporation. Gene Ther. 2004, 11, 711–721. [Google Scholar] [CrossRef]
- Pardi, N.; Muramatsu, H.; Weissman, D.; Karikó, K. In Vitro Transcription of Long RNA Containing Modified Nucleosides. In Synthetic Messenger RNA and Cell Metabolism Modulation. Methods in Molecular Biology (Methods and Protocols); Rabinovich, P., Ed.; Humana Press: Totowa, NJ, USA, 2013; Volume 969. [Google Scholar] [CrossRef]
- Weissman, D.; Pardi, N.; Muramatsu, H.; Karikó, K. HPLC Purification of In Vitro Transcribed Long RNA. Methods Mol. Biol . 2012, 969, 43–54. [Google Scholar] [CrossRef]
- Baiersdörfer, M.; Boros, G.; Muramatsu, H.; Mahiny, A.; Vlatkovic, I.; Sahin, U.; Karikó, K. A Facile Method for the Removal of dsRNA Contaminant from In Vitro-Transcribed mRNA. Mol. Ther.-Nucleic Acids 2019, 15, 26–35. [Google Scholar] [CrossRef] [Green Version]
- Foster, J.B.; Choudhari, N.; Perazzelli, J.; Storm, J.; Hofmann, T.J.; Jain, P.; Storm, P.B.; Pardi, N.; Weissman, D.; Waanders, A.J.; et al. Purification of mRNA Encoding Chimeric Antigen Receptor Is Critical for Generation of a Robust T-Cell Response. Hum. Gene Ther. 2019, 30, 168–178. [Google Scholar] [CrossRef] [PubMed]
- Hajj, K.A.; Whitehead, K.A. Tools for translation: Non-viral materials for therapeutic mRNA delivery. Nat. Rev. Mater. 2017, 2, 17056. [Google Scholar] [CrossRef]
- Probst, J.; Weide, B.; Scheel, B.; Pichler, B.J.; Hoerr, I.; Rammensee, H.-G.; Pascolo, S. Spontaneous cellular uptake of exogenous messenger RNA in vivo is nucleic acid-specific, saturable and ion dependent. Gene Ther. 2007, 14, 1175–1180. [Google Scholar] [CrossRef] [Green Version]
- Deal, C.E.; Carfi, A.; Plante, O.J. Advancements in mRNA Encoded Antibodies for Passive Immunotherapy. Vaccines 2021, 9, 108. [Google Scholar] [CrossRef]
- Bhat, B.; Karve, S.; Anderson, D.G. mRNA therapeutics: Beyond vaccine applications. Trends Mol. Med. 2021, 27, 923–924. [Google Scholar] [CrossRef]
- Qin, S.; Tang, X.; Chen, Y.; Chen, K.; Na Fan, N.; Xiao, W.; Zheng, Q.; Li, G.; Teng, Y.; Wu, M.; et al. mRNA-based therapeutics: Powerful and versatile tools to combat diseases. Signal Transduct. Target. Ther. 2022, 7, 166. [Google Scholar] [CrossRef] [PubMed]
- Jia, L.; Qian, S.-B. Therapeutic mRNA Engineering from Head to Tail. Accounts Chem. Res. 2021, 54, 4272–4282. [Google Scholar] [CrossRef] [PubMed]
- Kose, N.; Fox, J.M.; Sapparapu, G.; Bombardi, R.; Tennekoon, R.N.; de Silva, A.D.; Elbashir, S.M.; Theisen, M.A.; Humphris-Narayanan, E.; Ciaramella, G.; et al. A lipid-encapsulated mRNA encoding a potently neutralizing human monoclonal antibody protects against chikungunya infection. Sci. Immunol. 2019, 4, eaaw6647. [Google Scholar] [CrossRef] [PubMed]
- Lindsay, K.E.; Vanover, D.; Thoresen, M.; King, H.; Xiao, P.; Badial, P.; Araínga, M.; Bin Park, S.; Tiwari, P.M.; Peck, H.E.; et al. Aerosol Delivery of Synthetic mRNA to Vaginal Mucosa Leads to Durable Expression of Broadly Neutralizing Antibodies against HIV. Mol. Ther. 2020, 28, 805–819. [Google Scholar] [CrossRef] [PubMed]
- Pardi, N.; Secreto, A.J.; Shan, X.; Debonera, F.; Glover, J.; Yi, Y.; Muramatsu, H.; Ni, H.; Mui, B.L.; Tam, Y.K.; et al. Administration of nucleoside-modified mRNA encoding broadly neutralizing antibody protects humanized mice from HIV-1 challenge. Nat. Commun. 2017, 8, 14630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sabnis, S.; Kumarasinghe, E.S.; Salerno, T.; Mihai, C.; Ketova, T.; Senn, J.J.; Lynn, A.; Bulychev, A.; McFadyen, I.; Chan, J.; et al. A Novel Amino Lipid Series for mRNA Delivery: Improved Endosomal Escape and Sustained Pharmacology and Safety in Non-human Primates. Mol. Ther. 2018, 26, 1509–1519. [Google Scholar] [CrossRef] [Green Version]
- Stadler, C.R.; Bähr-Mahmud, H.; Celik, L.; Hebich, B.; Roth, A.S.; Roth, R.P.; Karikó, K.; Türeci, Ö.; Sahin, U. Elimination of large tumors in mice by mRNA-encoded bispecific antibodies. Nat. Med. 2017, 23, 815–817. [Google Scholar] [CrossRef] [PubMed]
- Thran, M.; Mukherjee, J.; Pönisch, M.; Fiedler, K.; Thess, A.; Mui, B.L.; Hope, M.J.; Tam, Y.K.; Horscroft, N.; Heidenreich, R.; et al. mRNA mediates passive vaccination against infectious agents, toxins, and tumors. EMBO Mol. Med. 2017, 9, 1434–1447. [Google Scholar] [CrossRef]
- Pardi, N.; Tuyishime, S.; Muramatsu, H.; Kariko, K.; Mui, B.L.; Tam, Y.K.; Madden, T.D.; Hope, M.J.; Weissman, D. Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various routes. J. Control Release 2015, 217, 345–351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, J.; Russell, J.E. Structural and Functional Analysis of an mRNP Complex That Mediates the High Stability of Human beta-globin mRNA. Mol. Cell. Biol. 2001, 21, 5879–5888. [Google Scholar] [CrossRef] [Green Version]
- Kowalski, P.S.; Rudra, A.; Miao, L.; Anderson, D.G. Delivering the Messenger: Advances in Technologies for Therapeutic mRNA Delivery. Mol. Ther. 2019, 27, 710–728. [Google Scholar] [CrossRef] [Green Version]
- Wesselhoeft, R.A.; Kowalski, P.S.; Anderson, D.G. Engineering circular RNA for potent and stable translation in eukaryotic cells. Nat. Commun. 2018, 9, 2629. [Google Scholar] [CrossRef] [Green Version]
- Nelson, J.; Sorensen, E.W.; Mintri, S.; Rabideau, A.E.; Zheng, W.; Besin, G.; Khatwani, N.; Su, S.V.; Miracco, E.J.; Issa, W.J.; et al. Impact of mRNA chemistry and manufacturing process on innate immune activation. Sci. Adv. 2020, 6, eaaz6893. [Google Scholar] [CrossRef]
- Verbeke, R.; Hogan, M.J.; Loré, K.; Pardi, N. Innate immune mechanisms of mRNA vaccines. Immunity 2022, 55, 1993–2005. [Google Scholar] [CrossRef] [PubMed]
- Anderson, B.R.; Muramatsu, H.; Nallagatla, S.R.; Bevilacqua, P.C.; Sansing, L.H.; Weissman, D.; Karikó, K. Incorporation of pseudouridine into mRNA enhances translation by diminishing PKR activation. Nucleic Acids Res. 2010, 38, 5884–5892. [Google Scholar] [CrossRef] [Green Version]
- Karikó, K.; Buckstein, M.; Ni, H.; Weissman, D. Suppression of RNA Recognition by Toll-like Receptors: The Impact of Nucleoside Modification and the Evolutionary Origin of RNA. Immunity 2005, 23, 165–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karikó, K.; Muramatsu, H.; Welsh, F.A.; Ludwig, J.; Kato, H.; Akira, S.; Weissman, D. Incorporation of Pseudouridine Into mRNA Yields Superior Nonimmunogenic Vector with Increased Translational Capacity and Biological Stability. Mol. Ther. 2008, 16, 1833–1840. [Google Scholar] [CrossRef] [PubMed]
- Weng, Y.; Li, C.; Yang, T.; Hu, B.; Zhang, M.; Guo, S.; Xiao, H.; Liang, X.-J.; Huang, Y. The challenge and prospect of mRNA therapeutics landscape. Biotechnol. Adv. 2020, 40, 107534. [Google Scholar] [CrossRef]
- Kudla, G.; Lipinski, L.; Caffin, F.; Helwak, A.; Zylicz, M. High Guanine and Cytosine Content Increases mRNA Levels in Mammalian Cells. PLoS Biol. 2006, 4, e180. [Google Scholar] [CrossRef] [PubMed]
- Karikó, K.; Muramatsu, H.; Ludwig, J.; Weissman, D. Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleoside-modified, protein-encoding mRNA. Nucleic Acids Res. 2011, 39, e142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Zhang, Z.; Luo, J.; Han, X.; Wei, Y.; Wei, X. mRNA vaccine: A potential therapeutic strategy. Mol. Cancer 2021, 20, 33. [Google Scholar] [CrossRef]
- Kauffman, K.J.; Dorkin, J.R.; Yang, J.H.; Heartlein, M.W.; DeRosa, F.; Mir, F.F.; Fenton, O.S.; Anderson, D.G. Optimization of Lipid Nanoparticle Formulations for mRNA Delivery in Vivo with Fractional Factorial and Definitive Screening Designs. Nano Lett. 2015, 15, 7300–7306. [Google Scholar] [CrossRef]
- Hou, X.; Zaks, T.; Langer, R.; Dong, Y. Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater. 2021, 6, 1078–1094. [Google Scholar] [CrossRef]
- Akinc, A.; Querbes, W.; De, S.; Qin, J.; Frank-Kamenetsky, M.; Jayaprakash, K.N.; Jayaraman, M.; Rajeev, K.G.; Cantley, W.L.; Dorkin, J.R.; et al. Targeted Delivery of RNAi Therapeutics with Endogenous and Exogenous Ligand-Based Mechanisms. Mol. Ther. 2010, 18, 1357–1364. [Google Scholar] [CrossRef] [PubMed]
- Alameh, M.-G.; Tombácz, I.; Bettini, E.; Lederer, K.; Ndeupen, S.; Sittplangkoon, C.; Wilmore, J.R.; Gaudette, B.T.; Soliman, O.Y.; Pine, M.; et al. Lipid nanoparticles enhance the efficacy of mRNA and protein subunit vaccines by inducing robust T follicular helper cell and humoral responses. Immunity 2021, 54, 2877–2892.e7. [Google Scholar] [CrossRef]
- Ndeupen, S.; Qin, Z.; Jacobsen, S.; Bouteau, A.; Estanbouli, H.; Igyártó, B.Z. The mRNA-LNP platform’s lipid nanoparticle component used in preclinical vaccine studies is highly inflammatory. iScience 2021, 24, 103479. [Google Scholar] [CrossRef]
- Connors, J.; Joyner, D.; Mege, N.J.; Cusimano, G.M.; Bell, M.R.; Marcy, J.; Taramangalam, B.; Kim, K.M.; Lin, P.J.C.; Tam, Y.K.; et al. Lipid nanoparticles (LNP) induce activation and maturation of antigen presenting cells in young and aged individuals. Commun. Biol. 2023, 6, 188. [Google Scholar] [CrossRef]
- Brewer, J.M.; Tetley, L.; Richmond, J.; Liew, F.Y.; Alexander, J. Lipid Vesicle Size Determines the Th1 or Th2 Response to Entrapped Antigen. J. Immunol. 1998, 161, 4000–4007. [Google Scholar] [CrossRef]
- Mann, J.F.; Shakir, E.; Carter, K.C.; Mullen, A.B.; Alexander, J.; Ferro, V.A. Lipid vesicle size of an oral influenza vaccine delivery vehicle influences the Th1/Th2 bias in the immune response and protection against infection. Vaccine 2009, 27, 3643–3649. [Google Scholar] [CrossRef] [PubMed]
- Nakanishi, T.; Kunisawa, J.; Hayashi, A.; Tsutsumi, Y.; Kubo, K.; Nakagawa, S.; Fujiwara, H.; Hamaoka, T.; Mayumi, T. Positively Charged Liposome Functions as an Efficient Immunoadjuvant in Inducing Immune Responses to Soluble Proteins. Biochem. Biophys. Res. Commun. 1997, 240, 793–797. [Google Scholar] [CrossRef] [PubMed]
- Szebeni, J. Complement activation-related pseudoallergy: A new class of drug-induced acute immune toxicity. Toxicology 2005, 216, 106–121. [Google Scholar] [CrossRef]
- Van Hoecke, L.; Roose, K. How mRNA therapeutics are entering the monoclonal antibody field. J. Transl. Med. 2019, 17, 54. [Google Scholar] [CrossRef] [Green Version]
- Davies, N.; Hovdal, D.; Edmunds, N.; Nordberg, P.; Dahlén, A.; Dabkowska, A.; Arteta, M.Y.; Radulescu, A.; Kjellman, T.; Höijer, A.; et al. Functionalized lipid nanoparticles for subcutaneous administration of mRNA to achieve systemic exposures of a therapeutic protein. Mol. Ther.-Nucleic Acids 2021, 24, 369–384. [Google Scholar] [CrossRef]
- August, A.; Attarwala, H.Z.; Himansu, S.; Kalidindi, S.; Lu, S.; Pajon, R.; Han, S.; Lecerf, J.-M.; Tomassini, J.E.; Hard, M.; et al. A phase 1 trial of lipid-encapsulated mRNA encoding a monoclonal antibody with neutralizing activity against Chikungunya virus. Nat. Med. 2021, 27, 2224–2233. [Google Scholar] [CrossRef]
- Rybakova, Y.; Kowalski, P.S.; Huang, Y.; Gonzalez, J.T.; Heartlein, M.W.; DeRosa, F.; Delcassian, D.; Anderson, D.G. mRNA Delivery for Therapeutic Anti-HER2 Antibody Expression In Vivo. Mol. Ther. 2019, 27, 1415–1423. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Wang, W.; Tian, J.; Qi, C.; Cai, Z.; Yan, W.; Xuan, S.; Shang, A. Intravenous Delivery of RNA Encoding Anti-PD-1 Human Monoclonal Antibody for Treating Intestinal Cancer. J. Cancer 2022, 13, 579–588. [Google Scholar] [CrossRef] [PubMed]
- Erasmus, J.H.; Archer, J.; Fuerte-Stone, J.; Khandhar, A.P.; Voigt, E.; Granger, B.; Bombardi, R.G.; Govero, J.; Tan, Q.; Durnell, L.A.; et al. Intramuscular Delivery of Replicon RNA Encoding ZIKV-117 Human Monoclonal Antibody Protects against Zika Virus Infection. Mol. Ther.-Methods Clin. Dev. 2020, 18, 402–414. [Google Scholar] [CrossRef]
- Blakney, A.K.; Ip, S.; Geall, A.J. An Update on Self-Amplifying mRNA Vaccine Development. Vaccines 2021, 9, 97. [Google Scholar] [CrossRef] [PubMed]
- Laczkó, D.; Hogan, M.J.; Toulmin, S.A.; Hicks, P.; Lederer, K.; Gaudette, B.T.; Castaño, D.; Amanat, F.; Muramatsu, H.; Oguin, T.H.; et al. A Single Immunization with Nucleoside-Modified mRNA Vaccines Elicits Strong Cellular and Humoral Immune Responses against SARS-CoV-2 in Mice. Immunity 2020, 53, 724–732.e7. [Google Scholar] [CrossRef]
- Blakney, A.K.; McKay, P.F.; Christensen, D.; Yus, B.I.; Aldon, Y.; Follmann, F.; Shattock, R.J. Effects of cationic adjuvant formulation particle type, fluidity and immunomodulators on delivery and immunogenicity of saRNA. J. Control Release 2019, 304, 65–74. [Google Scholar] [CrossRef]
- Vanover, D.; Zurla, C.; Peck, H.E.; Orr-Burks, N.; Joo, J.Y.; Murray, J.; Holladay, N.; Hobbs, R.A.; Jung, Y.; Chaves, L.C.S.; et al. Nebulized mRNA-Encoded Antibodies Protect Hamsters from SARS-CoV-2 Infection. Adv. Sci. 2022, 9, e2202771. [Google Scholar] [CrossRef]
- Hamers-Casterman, C.; Atarhouch, T.; Muyldermans, S.; Robinson, G.; Hammers, C.; Songa, E.B.; Bendahman, N.; Hammers, R. Naturally occurring antibodies devoid of light chains. Nature 1993, 363, 446–448. [Google Scholar] [CrossRef]
- Sockolosky, J.T.; Dougan, M.; Ingram, J.R.; Ho, C.C.M.; Kauke, M.J.; Almo, S.C.; Ploegh, H.L.; Garcia, K.C. Durable antitumor responses to CD47 blockade require adaptive immune stimulation. Proc. Natl. Acad. Sci. USA 2016, 113, E2646–E2654. [Google Scholar] [CrossRef]
- Vuchelen, A.; O’day, E.; De Genst, E.; Pardon, E.; Wyns, L.; Dumoulin, M.; Dobson, C.M.; Christodoulou, J.; Hsu, S.-T.D. 1H, 13C and 15N assignments of a camelid nanobody directed against human α-synuclein. Biomol. NMR Assign. 2009, 3, 231–233. [Google Scholar] [CrossRef]
- Chapman, A.P.; Antoniw, P.; Spitali, M.; West, S.; Stephens, S.; King, D.J. Therapeutic antibody fragments with prolonged in vivo half-lives. Nat. Biotechnol. 1999, 17, 780–783. [Google Scholar] [CrossRef]
- Vosjan, M.J.; Vercammen, J.; Kolkman, J.A.; Walsum, M.S.-V.; Revets, H.; van Dongen, G.A. Nanobodies Targeting the Hepatocyte Growth Factor: Potential New Drugs for Molecular Cancer Therapy. Mol. Cancer Ther. 2012, 11, 1017–1025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vermeire, G.; De Smidt, E.; Casteels, P.; Geukens, N.; Declerck, P.; Hollevoet, K. DNA-based delivery of anti-DR5 Nanobodies improves exposure and anti-tumor efficacy over protein-based administration. Cancer Gene Ther. 2020, 28, 828–838. [Google Scholar] [CrossRef] [PubMed]
- Gondé, H.; Demeules, M.; Hardet, R.; Scarpitta, A.; Junge, M.; Pinto-Espinoza, C.; Varin, R.; Koch-Nolte, F.; Boyer, O.; Adriouch, S. A Methodological Approach Using rAAV Vectors Encoding Nanobody-Based Biologics to Evaluate ARTC2.2 and P2X7 In Vivo. Front. Immunol. 2021, 12, 704408. [Google Scholar] [CrossRef]
- Qu, L.; Yi, Z.; Shen, Y.; Lin, L.; Chen, F.; Xu, Y.; Wu, Z.; Tang, H.; Zhang, X.; Tian, F.; et al. Circular RNA vaccines against SARS-CoV-2 and emerging variants. Cell 2022, 185, 1728–1744.e16. [Google Scholar] [CrossRef] [PubMed]
- Ho, D.T.; Wykoff-Clary, S.; Gross, C.S.; Schneider, D.; Jin, F.; Kretschmer, P.J.; Hermiston, T.W. Growth inhibition of an established A431 xenograft tumor by a full-length anti-EGFR antibody following gene delivery by AAV. Cancer Gene Ther. 2008, 16, 184–194. [Google Scholar] [CrossRef] [Green Version]
- Piperno, G.M.; Requena, A.L.; Predonzani, A.; Dorvignit, D.; Labrada, M.; Zentilin, L.; Burrone, O.R.; Cescogaspere, M. Recombinant AAV-mediated in vivo long-term expression and antitumour activity of an anti-ganglioside GM3(Neu5Gc) antibody. Gene Ther. 2015, 22, 960–967. [Google Scholar] [CrossRef]
- Rghei, A.D.; van Lieshout, L.P.; Cao, W.; He, S.; Tierney, K.; Lopes, J.A.; Zielinska, N.; Baracuhy, E.M.; Campbell, E.S.B.; Minott, J.A.; et al. Adeno-associated virus mediated expression of monoclonal antibody MR191 protects mice against Marburg virus and provides long-term expression in sheep. Gene Ther. 2022. [Google Scholar] [CrossRef]
- Kim, H.; Danishmalik, S.N.; Hwang, H.; Sin, J.-I.; Oh, J.; Cho, Y.; Lee, H.; Jeong, M.; Kim, S.-H.; Hong, H.J. Gene therapy using plasmid DNA-encoded anti-HER2 antibody for cancers that overexpress HER2. Cancer Gene Ther. 2016, 23, 341–347. [Google Scholar] [CrossRef] [PubMed]
- Andrews, C.D.; Luo, Y.; Sun, M.; Yu, J.; Goff, A.J.; Glass, P.J.; Padte, N.N.; Huang, Y.; Ho, D.D. In Vivo Production of Monoclonal Antibodies by Gene Transfer via Electroporation Protects against Lethal Influenza and Ebola Infections. Mol. Ther.-Methods Clin. Dev. 2017, 7, 74–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duperret, E.K.; Trautz, A.; Stoltz, R.; Patel, A.; Wise, M.C.; Perales-Puchalt, A.; Smith, T.; Broderick, K.E.; Masteller, E.L.; Kim, J.J.; et al. Synthetic DNA-Encoded Monoclonal Antibody Delivery of Anti–CTLA-4 Antibodies Induces Tumor Shrinkage In Vivo. Cancer Res. 2018, 78, 6363–6370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Esquivel, R.; Flingai, S.; Schiller, Z.; Kern, A.; Agarwal, S.; Chu, J.; Patel, A.; Sullivan, K.; Wise, M.C.; et al. Anti-OspA DNA-Encoded Monoclonal Antibody Prevents Transmission of Spirochetes in Tick Challenge Providing Sterilizing Immunity in Mice. J. Infect. Dis. 2018, 219, 1146–1150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khoshnejad, M.; Patel, A.; Wojtak, K.; Kudchodkar, S.B.; Humeau, L.; Lyssenko, N.N.; Rader, D.J.; Muthumani, K.; Weiner, D.B. Development of Novel DNA-Encoded PCSK9 Monoclonal Antibodies as Lipid-Lowering Therapeutics. Mol. Ther. 2018, 27, 188–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perales-Puchalt, A.; Duperret, E.K.; Muthumani, K.; Weiner, D.B. Simplifying checkpoint inhibitor delivery through in vivo generation of synthetic DNA-encoded monoclonal antibodies (DMAbs). Oncotarget 2019, 10, 13–16. [Google Scholar] [CrossRef] [Green Version]
- Hollevoet, K.; De Vleeschauwer, S.; De Smidt, E.; Vermeire, G.; Geukens, N.; Declerck, P. Bridging the Clinical Gap for DNA-Based Antibody Therapy through Translational Studies in Sheep. Hum. Gene Ther. 2019, 30, 1431–1443. [Google Scholar] [CrossRef]
- Zankharia, U.S.; Kudchodkar, S.; Khoshnejad, M.; Perales-Puchalt, A.; Choi, H.; Ho, M.; Zaidi, F.; Ugen, K.E.; Kim, J.J.; Weiner, D.B.; et al. Neutralization of hepatitis B virus by a novel DNA-encoded monoclonal antibody. Hum. Vaccines Immunother. 2020, 16, 2156–2164. [Google Scholar] [CrossRef]
- Jacobs, L.; De Smidt, E.; Geukens, N.; Declerck, P.; Hollevoet, K. DNA-Based Delivery of Checkpoint Inhibitors in Muscle and Tumor Enables Long-Term Responses with Distinct Exposure. Mol. Ther. 2020, 28, 1068–1077. [Google Scholar] [CrossRef]
- Choi, H.; Kudchodkar, S.B.; Reuschel, E.L.; Asija, K.; Borole, P.; Agarwal, S.; Van Gorder, L.; Reed, C.C.; Gulendran, G.; Ramos, S.; et al. Synthetic nucleic acid antibody prophylaxis confers rapid and durable protective immunity against Zika virus challenge. Hum. Vaccines Immunother. 2019, 16, 907–918. [Google Scholar] [CrossRef] [Green Version]
- Parzych, E.M.; Gulati, S.; Zheng, B.; Bah, M.A.; Elliott, S.T.C.; Chu, J.D.; Nowak, N.; Reed, G.W.; Beurskens, F.J.; Schuurman, J.; et al. Synthetic DNA Delivery of an Optimized and Engineered Monoclonal Antibody Provides Rapid and Prolonged Protection against Experimental Gonococcal Infection. mBio 2021, 12, e00242-21. [Google Scholar] [CrossRef]
- Vermeire, G.; De Smidt, E.; Geukens, N.; Williams, J.A.; Declerck, P.; Hollevoet, K. Improved Potency and Safety of DNA-Encoded Antibody Therapeutics through Plasmid Backbone and Expression Cassette Engineering. Hum. Gene Ther. 2021, 32, 1200–1209. [Google Scholar] [CrossRef] [PubMed]
- Hollevoet, K.; Thomas, D.; Compernolle, G.; Vermeire, G.; De Smidt, E.; De Vleeschauwer, S.; Smith, T.R.F.; Fisher, P.D.; Dewilde, M.; Geukens, N.; et al. Clinically relevant dosing and pharmacokinetics of DNA-encoded antibody therapeutics in a sheep model. Front. Oncol. 2022, 12, 1017612. [Google Scholar] [CrossRef] [PubMed]
- Van Hoecke, L.; Verbeke, R.; De Vlieger, D.; Dewitte, H.; Roose, K.; Van Nevel, S.; Krysko, O.; Bachert, C.; Schepens, B.; Lentacker, I.; et al. mRNA Encoding a Bispecific Single Domain Antibody Construct Protects against Influenza A Virus Infection in Mice. Mol. Ther.-Nucleic Acids 2020, 20, 777–787. [Google Scholar] [CrossRef] [PubMed]
- Mucker, E.M.; Thiele-Suess, C.; Baumhof, P.; Hooper, J.W. Lipid nanoparticle delivery of unmodified mRNAs encoding multiple monoclonal antibodies targeting poxviruses in rabbits. Mol. Ther.-Nucleic Acids 2022, 28, 847–858. [Google Scholar] [CrossRef] [PubMed]
Mode of mAb Delivery | Advantages | Disadvantages |
---|---|---|
Adeno-Associated Virus (AAV) |
|
|
Deoxyribonucleic Acid (DNA) |
|
|
Messenger RNA (mRNA) |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chung, C.; Kudchodkar, S.B.; Chung, C.N.; Park, Y.K.; Xu, Z.; Pardi, N.; Abdel-Mohsen, M.; Muthumani, K. Expanding the Reach of Monoclonal Antibodies: A Review of Synthetic Nucleic Acid Delivery in Immunotherapy. Antibodies 2023, 12, 46. https://doi.org/10.3390/antib12030046
Chung C, Kudchodkar SB, Chung CN, Park YK, Xu Z, Pardi N, Abdel-Mohsen M, Muthumani K. Expanding the Reach of Monoclonal Antibodies: A Review of Synthetic Nucleic Acid Delivery in Immunotherapy. Antibodies. 2023; 12(3):46. https://doi.org/10.3390/antib12030046
Chicago/Turabian StyleChung, Christopher, Sagar B. Kudchodkar, Curtis N. Chung, Young K. Park, Ziyang Xu, Norbert Pardi, Mohamed Abdel-Mohsen, and Kar Muthumani. 2023. "Expanding the Reach of Monoclonal Antibodies: A Review of Synthetic Nucleic Acid Delivery in Immunotherapy" Antibodies 12, no. 3: 46. https://doi.org/10.3390/antib12030046
APA StyleChung, C., Kudchodkar, S. B., Chung, C. N., Park, Y. K., Xu, Z., Pardi, N., Abdel-Mohsen, M., & Muthumani, K. (2023). Expanding the Reach of Monoclonal Antibodies: A Review of Synthetic Nucleic Acid Delivery in Immunotherapy. Antibodies, 12(3), 46. https://doi.org/10.3390/antib12030046