Organic Fertilizer Effects on Ecosystem Multifunctionality and Trade-Offs in Alpine Mine Reclamation
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design and Sampling
2.3. Determination of Plant and Soil Indexes
2.4. Calculation of Ecosystem Multifunctionality Index
2.5. Trade-Off Analysis Between Ecosystem Functions
2.6. Statistical Analysis
3. Results
3.1. The Effects of Organic Fertilizer Reclamation Measures on Single Ecosystem Functions
3.2. The Effects of Organic Fertilizer Reclamation Measures on EMF
3.3. The Effects of Organic Fertilizer Reclamation Measures on the Trade-Off Between Two Ecosystem Functions
3.4. The Effects of Organic Fertilizer Reclamation Measures on the Synergy and Trade-Offs Among Multiple Ecosystem Functions
3.5. Path Analysis of EMF Changes in Mining Area Ecosystems Under Organic Fertilizer Reclamation Measures
4. Discussion
4.1. The Impact of Organic Fertilizer Reclamation Measures on the EMF of Reclaimed Ecosystems in Alpine Mining Areas
4.2. Ecosystem Function Trade-Offs in Alpine Mining Areas Under Organic Fertilizer Reclamation Measures
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hou, X.Y.; Liu, S.L.; Zhao, S.; Dong, S.K.; Sun, Y.X.; Beazley, R. The alpine meadow around the mining areas on the Qinghai-Tibetan Plateau will degenerate as a result of the change of dominant species under the disturbance of open-pit mining. Environ. Pollut. 2019, 254, 113111. [Google Scholar] [CrossRef]
- Jin, L.Q.; Li, X.L.; Sun, H.F.; Zhang, J.; Zhang, Y.F.; Wang, R. Responses of soil microbial activities to soil overburden thickness in restoring a coal gangue mound in an alpine mining area. Ecol. Indic. 2023, 151, 110294. [Google Scholar] [CrossRef]
- Kong, L.; Zhang, L.; Wang, Y.; Huang, Z. Impact of Ecological Restoration on the Physicochemical Properties and Bacterial Communities in Alpine Mining Area Soils. Microorganisms 2023, 12, 41. [Google Scholar] [CrossRef] [PubMed]
- Yuan, C.Y.; Li, F.Y.; Yuan, Z.Q.; Li, G.Y.; Liang, X.Q. Response of bacterial communities to mining activity in the alpine area of the Tianshan Mountain region, China. Environ. Sci. Pollut. Res. 2021, 28, 15806–15818. [Google Scholar] [CrossRef]
- Sun, M.P.; Liu, S.Y.; Yao, X.J.; Guo, W.Q.; Xu, J.L. Glacier changes in the Qilian Mountains in the past half-century: Based on the revised First and Second Chinese Glacier Inventory. J. Geogr. Sci. 2018, 28, 206–220. [Google Scholar] [CrossRef]
- Yan, M.; Tian, X.; Li, Z.Y.; Chen, E.; Li, C.M.; Fan, W.W. A long-term simulation of forest carbon fluxes over the Qilian Mountains. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 515–526. [Google Scholar] [CrossRef]
- Wang, R.; Li, X.L.; Zhang, J.; Zhou, H.K. Effects of Artificial Grass planting on Surface Matrix Substrate on Open-pit Slag Hill in Alpine Mining Area. Acta Agrestia Sin. 2019, 27, 938–948. [Google Scholar] [CrossRef]
- Wang, R.; Li, X.L.; Yu, M.; Zhi, R.D.; Wang, C.Y.; Zhao, J.; Zhang, J. Effects of Coal Gangue Accumulation in Shengxiong Coal Mining of Qinghai on Vegetation and Soil of Surrounding Alpine Wetland. Soils 2020, 52, 386–393. [Google Scholar] [CrossRef]
- Wang, T.; Du, B.; Li, C.; Wang, H.; Zhou, W.; Lin, Z.; Zhao, X.; Xiong, T. Ecological environment rehabilitation management model and key technologies in plateau alpine coal mine. Meitan Xuebao/J. China Coal Soc. 2021, 46, 230–244. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, J.M.; Bai, Z.K.; Lv, C.J. Effects of vegetation on runoff and soil erosion on reclaimed land in an opencast coal-mine dump in a loess area. Catena 2015, 128, 44–53. [Google Scholar] [CrossRef]
- Yang, X.G.; Li, X.L.; Ma, P.P.; Zhang, J.; Zhou, W. Effects of fertilizer application rate on vegetation and soil restoration of coal mine spoils in an alpine mining area. Acta Prataculturae Sin. 2021, 30, 98–108. [Google Scholar] [CrossRef]
- Liu, W.J.; Jiang, F.Z.; Ma, L.L.; Li, Z.P. Effects of application amount of organic fertilizer and sowing methodson plant community growth and soil nutrients in alpine mining areas. Grassl. Turf 2023, 43, 116–125. [Google Scholar] [CrossRef]
- Chen, Y.; Jiang, Z.; Wu, D.; Wang, H.; Li, J.; Bi, M.; Zhang, Y. Development of a novel bio-organic fertilizer for the removal of atrazine in soil. J. Environ. Manag. 2019, 233, 553–560. [Google Scholar] [CrossRef]
- Liu, W.J.; Jiang, F.Z.; Qi, K.B.; Song, M.D.; Li, Z.P. Effects of different fertilization and sowingamounts on vegetation restoration andsoil quality in alpine mining areas andcomprehensive evaluation. Acta Prataculturae Sin. 2025, 34, 27–39. [Google Scholar] [CrossRef]
- Ma, L.L.; Jiang, F.Z.; Ma, Y.S.; Qi, K.B.; Jia, S.B.; Li, Z.P. Effect of particle size ratio, fertilizer application amount, and seeding rate combinations coal gangue matrix properties in restoration of a mining area. Acta Prataculturae Sin. 2025, 34, 71–84. [Google Scholar] [CrossRef]
- Ba, Y.; Li, X.L.; Ma, Y.Q.; Chai, Y.; Li, C.Y.; Ma, X.Y.; Yang, Y.X. A Study on the C, N, and P Contents and Stoichiometric Characteristics of Forage Leaves Based on Fertilizer-Reconstructed Soil in an Alpine Mining Area. Plants 2023, 12, 3838. [Google Scholar] [CrossRef] [PubMed]
- Manning, P.; Van der Plas, F.; Soliveres, S.; Allan, E.; Maestre, F.T.; Mace, G.; Whittingham, M.J.; Fischer, M. Redefining ecosystem multifunctionality. Nat. Ecol. Evol. 2018, 2, 427–436. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, B.Y.; Zhao, J.J.; Ye, C.C.; Wei, L.; Sun, J.; Chu, C.J.; Lee, T. Global patterns and abiotic drivers of ecosystem multifunctionality in dominant natural ecosystems. Environ. Int. 2022, 168, 107480. [Google Scholar] [CrossRef]
- Deng, X.H.; Xiong, K.N.; Yu, Y.H.; Zhang, S.H.; Kong, L.W.; Zhang, Y. A Review of Ecosystem Service Trade-Offs/Synergies: Enlightenment for the Optimization of Forest Ecosystem Functions in Karst Desertification Control. Forests 2023, 14, 88. [Google Scholar] [CrossRef]
- Rodríguez, J.; Beard, T.D.; Bennett, E.; Cumming, G.; Cork, S.; Agard, J.; Dobson, A.; Peterson, G. Trade-Offs Across Space, Time, and Ecosystem Services. Ecol. Soc. 2005, 11, 28. [Google Scholar] [CrossRef]
- Zhang, H.F.; Ou, Y.; Zhi, Y.; Zheng, H.W. Spatial scale characteristics of ecosystem services. Chin. J. Ecol. 2007, 26, 1432–1437. [Google Scholar]
- Chapin, F.S.; Walker, B.H.; Hobbs, R.J.; Hooper, D.U.; Lawton, J.H.; Sala, O.E.; Tilman, D. Biotic Control over the Functioning of Ecosystems. Science 1997, 277, 500–504. [Google Scholar] [CrossRef]
- Jing, G.H.; Cheng, J.M.; Su, J.; Wei, L.; Hu, T.M.; Li, W. Community-weighted mean traits play crucial roles in driving ecosystem functioning along long-term grassland restoration gradient on the Loess Plateau of China. J. Arid. Environ. 2019, 165, 97–105. [Google Scholar] [CrossRef]
- Wang, M.Y.; Lu, N.; An, N.N.; Fu, B.J. Plant Functional and Phylogenetic Diversity Regulate Ecosystem Multifunctionality in Semi-Arid Grassland During Succession. Front. Environ. Sci. 2022, 9, 791801. [Google Scholar] [CrossRef]
- Poorter, L.; Craven, D.; Jakovac, C.C.; van der Sande, M.T.; Amissah, L.; Bongers, F.; Chazdon, R.L.; Farrior, C.E.; Kambach, S.; Meave, J.A.; et al. Multidimensional tropical forest recovery. Science 2021, 374, 1370–1376. [Google Scholar] [CrossRef]
- Benayas, J.M.R.; Newton, A.C.; Diaz, A.; Bullock, J.M. Enhancement of biodiversity and ecosystem services by ecological restoration: A meta-analysis. Science 2009, 325, 1121–1124. [Google Scholar] [CrossRef]
- Shi, X.Z.; Wang, J.Q.; Lucas-Borja, M.E.; Wang, Z.Y.; Li, X.; Huang, Z.Q. Microbial diversity regulates ecosystem multifunctionality during natural secondary succession. J. Appl. Ecol. 2021, 58, 2833–2842. [Google Scholar] [CrossRef]
- Lucas-Borja, M.E.; Delgado-Baquerizo, M. Plant diversity and soil stoichiometry regulates the changes in multifunctionality during pine temperate forest secondary succession. Sci. Total Environ. 2019, 697, 134204. [Google Scholar] [CrossRef] [PubMed]
- Cao, W.; Sheng, Y.; Qin, Y.H.; Li, J.; Wu, J. Grey relation projection model for evaluating permafrost environment in the Muli coal mining area, China. Int. J. Min. 2010, 24, 363–374. [Google Scholar] [CrossRef]
- Liu, S.M.; Tan, F.R.; Huo, T.; Tang, S.H.; Zhao, W.X.; Chao, H.D. Origin of the hydrate bound gases in the Juhugeng Sag, Muli Basin, Tibetan Plateau. Int. J. Coal Sci. Technol. 2020, 7, 43–57. [Google Scholar] [CrossRef]
- Chandregowda, M.H.; Murthy, K.; Bagchi, S. Woody shrubs increase soil microbial functions and multifunctionality in a tropical semi-arid grazing ecosystem. J. Arid. Environ. 2018, 155, 65–72. [Google Scholar] [CrossRef]
- Garland, G.; Banerjee, S.; Edlinger, A.; Oliveira, E.; Herzog, C.; Wittwer, R.; Philippot, L.; Maestre, F.; Van der Heijden, M. A closer look at the functions behind ecosystem multifunctionality: A review. J. Ecol. 2020, 109, 600–613. [Google Scholar] [CrossRef]
- Jing, X.; Sanders, N.J.; Shi, Y.; Chu, H.; Classen, A.T.; Zhao, K.; Chen, L.; Shi, Y.; Jiang, Y.; He, J.-S. The links between ecosystem multifunctionality and above- and belowground biodiversity are mediated by climate. Nat. Commun. 2015, 6, 8159. [Google Scholar] [CrossRef]
- Duffy, J.; Macdonald, K.; Ward, J.; Parker, J. Grazer Diversity, Functional Redundancy, and Productivity in Seagrass Beds: An Experimental Test. Ecology 2001, 82, 2417–2434. [Google Scholar] [CrossRef]
- Wagg, C.; Bender, S.F.; Widmer, F.; van der Heijden, M.G.A. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc. Natl. Acad. Sci. USA 2014, 111, 5266–5270. [Google Scholar] [CrossRef]
- Bennett, E.; Peterson, G.; Gordon, L. Understanding relationships among ecosystem services. Ecol. Lett. 2009, 12, 054020. [Google Scholar] [CrossRef]
- Bradford, J.; D’Amato, A. Recognizing trade-offs in multi-objective land management. Front. Ecol. Environ. 2012, 10, 210–216. [Google Scholar] [CrossRef]
- Lu, N.; Fu, B.; Jin, T.T.; Chang, R.Y. Trade-Off analyses of multiple ecosystem services by plantations along a precipitation gradient across Loess Plateau landscapes. Landsc. Ecol. 2014, 29, 1697–1708. [Google Scholar] [CrossRef]
- Wanishsakpong, W.; Thaithanan, J.; Bright, E.; Mahama, T. Comparing the efficiency levels of Multiple Comparison Methods for Normal Distributed Observations. Int. J. Math. Comput. Sci. 2021, 17, 469–483. [Google Scholar]
- Xu, J.Y.; Liu, Q.M.; Huang, Z.G.; Li, D.J. Sustained Inoculation of a Synthetic Microbial Community Engineers the Rhizosphere Microbiome for Enhanced Pepper Productivity and Quality. Agronomy 2025, 15, 2888. [Google Scholar] [CrossRef]
- Slodowicz, D.; Durbecq, A.; Ladouceur, E.; Eschen, R.; Humbert, J.Y.; Arlettaz, R. The relative effectiveness of different grassland restoration methods: A systematic literature search and meta-analysis L’efficacité relative des différentes méthodes de restauration des prairies: Une recherche systématique de la littérature et une méta-analyse. Ecol. Solut. Evid. 2023, 4, 12221. [Google Scholar] [CrossRef]
- Alekseev, I.; Kraev, G.; Shein, A.; Petrov, P. Soil Organic Matter in Soils of Suburban Landscapes of Yamal Region: Humification Degree and Mineralizing Risks. Energies 2022, 15, 2301. [Google Scholar] [CrossRef]
- Leuther, F.; Wolff, M.; Kaiser, K.; Schumann, L.; Merbach, I.; Mikutta, R.; Schlüter, S. Response of subsoil organic matter contents and physical properties to long-term, high-rate farmyard manure application. Eur. J. Soil Sci. 2022, 73, e13233. [Google Scholar] [CrossRef]
- Philippot, L.; Chenu, C.; Kappler, A.; Rillig, M.C.; Fierer, N. The interplay between microbial communities and soil properties. Nat. Rev. Microbiol. 2024, 22, 226–239. [Google Scholar] [CrossRef]
- He, X.J.; Liu, F.B.; Ma, T.; Ma, A.; Wang, Y.Y.; Li, Y.; Gao, W.J.; Yang, Z.Y.; Ke, J.S.; Xiao, Y.; et al. Temperature and microbial metabolic limitations govern microbial carbon use efficiency in the Tibetan alpine grassland. Appl. Soil Ecol. 2025, 206, 105880. [Google Scholar] [CrossRef]
- Rui, J.P.; Li, J.B.; Wang, S.P.; An, J.X.; Liu, W.-T.; Lin, Q.Y.; Yang, Y.F.; He, Z.L.; Li, X.Z. Responses of Bacterial Communities to Simulated Climate Changes in Alpine Meadow Soil of the Qinghai-Tibet Plateau. Appl. Environ. Microbiol. 2015, 81, 6070–6077. [Google Scholar] [CrossRef]
- Shrestha, R.K.; Lal, R. Changes in physical and chemical properties of soil after surface mining and reclamation. Geoderma 2011, 161, 168–176. [Google Scholar] [CrossRef]
- Wang, J.M.; Jiao, Z.Z.; Bai, Z.K. Changes in carbon sink value based on RS and GIS in the Heidaigou opencast coal mine. Environ. Earth Sci. 2014, 71, 863–871. [Google Scholar] [CrossRef]
- Jones, H.; Jones, P.; Barbier, E.; Blackburn, R.; Benayas, J.; Holl, K.; McCrackin, M.; Meli, P.; Montoya, D.; Moreno Mateos, D. Restoration and repair of Earth’s damaged ecosystems. Proc. R. Soc. B Biol. Sci. 2018, 285, 20172577. [Google Scholar] [CrossRef]
- Cademus, R.; Escobedo, F.; McLaughlin, D.; Abd-Elrahman, A. Analyzing Trade-Offs, Synergies, and Drivers among Timber Production, Carbon Sequestration, and Water Yield in Pinus elliotii Forests in Southeastern USA. Forests 2014, 5, 1409–1431. [Google Scholar] [CrossRef]
- Wang, S.J.; Yang, L.; Duan, X.W.; Huang, Y.; Feng, Q.Y. Trade-off Effects of Soil Moisture and Soil Nutrients under Vegetation Restoration in a Small Watershed on the Loess Plateau, China. Chin. J. Soil Sci. 2022, 53, 356–365. [Google Scholar] [CrossRef]
- Delmotte, S.; Brunel, C.; Castanier, L.; Fevrier, A.; Brauman, A.; Versini, A. Organic fertilization improves soil multifunctionality in sugarcane agroecosystems. Agronomy 2024, 14, 2475. [Google Scholar] [CrossRef]
- Li, Q.S.; Yang, K.; Wang, Z.P.; Zhao, H.; Jiao, J.G.; Li, H.X. Effects of Organic Substitution on Soil Extracellular Enzyme Activity and Multi-functionality in Rice-Rapeseed Rotation System. J. Soil Water Conserv. 2021, 35, 345–352+60. [Google Scholar] [CrossRef]
- Liu, T.; Chen, X.Y.; Hu, F.; Ran, W.; Shen, Q.R.; Li, H.X.; Whalen, J.K. Carbon-rich organic fertilizers to increase soil biodiversity: Evidence from a meta-analysis of nematode communities. Agric. Ecosyst. Environ. 2016, 232, 199–207. [Google Scholar] [CrossRef]
- Fu, B.J.; Yu, D.D. Trade-Off analyses and synthetic integrated method of multiple ecosystem services. Resour. Sci. 2016, 38, 1–9. [Google Scholar] [CrossRef]
- Barral das Neves, M.d.N.; Gama, M.A.P.; Ishihara, J.H.; da Silva Filho, D.P.; Ferreira, G.C.; Noronha, N.C.; Sánchez, L.E.; Paschoal, J.P. Closure process of bauxite tailings facilities: The induction of ecological succession can enhance substrate quality in the initial phase of revegetation. Ecol. Eng. 2024, 209, 107400. [Google Scholar] [CrossRef]
- Castle, S.C.; Sullivan, B.W.; Knelman, J.; Hood, E.; Nemergut, D.R.; Schmidt, S.K.; Cleveland, C.C. Nutrient limitation of soil microbial activity during the earliest stages of ecosystem development. Oecologia 2017, 185, 513–524. [Google Scholar] [CrossRef]
- Harpole, W.S.; Sullivan, L.L.; Lind, E.M.; Firn, J.; Adler, P.B.; Borer, E.T.; Chase, J.; Fay, P.A.; Hautier, Y.; Hillebrand, H.; et al. Addition of multiple limiting resources reduces grassland diversity. Nature 2016, 537, 93–96. [Google Scholar] [CrossRef]
- Dinesh, R.; Srinivasan, V.; Hamza, S.; Manjusha, A. Short-Term incorporation of organic manures and biofertilizers influences biochemical and microbial characteristics of soils under an annual crop [Turmeric (Curcuma longa L.)]. Bioresour. Technol. 2010, 101, 4697–4702. [Google Scholar] [CrossRef]
- Huang, S.; Rui, W.Y.; Peng, X.X.; Huang, Q.R.; Zhang, W.J. Organic carbon fractions affected by long-term fertilization in a subtropical paddy soil. Nutr. Cycl. Agroecosystems 2010, 86, 153–160. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, Y.; Wang, X.; Wang, M.; Wei, Z.J.; Chen, J.Q.; Li, R.Q.; Dai, J.Z.; Zhao, C.L.; Man, Y.R.R.; et al. Effects of Root Cutting and Organic Fertilizer Application onAboveground Biomass and Soil Nutrients in the Mowing Ggrassland ofLeymus chinensis Meadow. Acta Agrestia Sin. 2022, 30, 220–228. [Google Scholar] [CrossRef]
- Li, Y.N. Analysis of the Relationship between Underground biomass of Alpine Meadow Plants and Meteorological Conditions and the turnover value. Chin. J. Agrometeorol. 1998, 19, 37–39+43. Available online: https://kns.cnki.net/kcms2/article/abstract?v=UsPV4INcYzjJrkiO3Y-R03_GCBv6P6iubepErfPcTFofT2Mj4ylB1DLqn-j8kcqCRo0RQZVmbOhlkJutNv1OQfJYQcip3kBIS3WA9SwIaebC2JPtaIaHjxsStfL68tnetwY4cmdfW_mLmYUgXY84WLc7scoxjZzi540VoissPkk&uniplatform=NZKPT&language=CHS&captchaId=95e717bf-ced8-475f-ab27-aa43b8cc54b6 (accessed on 3 December 2025).
- Piao, S.L.; Fang, J.Y.; He, J.S.; Xiao, Y. Spatial distribution of grassland biomass in china. Chin. J. Plant Ecol. 2004, 28, 491–498. [Google Scholar] [CrossRef]
- Wang, M.H.; Huang, L.M.; Chen, C.B. Difference in soil water holding capacity and the influencing factors under different land use types in the alpine region of Tibet, China. Chin. J. Appl. Ecol. 2022, 33, 3287–3293. [Google Scholar] [CrossRef]
- Zhao, J.M.; Zhang, D.G.; Liu, C.Z. The Effect of Land Use Patterns on Soil Moisture Retention Capacityand Soil lnfiltration Property in Eastern Qilian Mountains. J. Nat. Resour. 2012, 27, 422–429. [Google Scholar] [CrossRef]
- Guan, X.X.; Wang, C.Y.; Li, C.L.; Li, J.Y.; Xu, L.; Zhang, J.Y.; Zhang, J.J.; He, N.P. Soil Phosphorus Distribution and Its Influencing Factors in Different Grassland Types on the Qinghai-Tibet Plateau. J. Soil Water Conserv. 2022, 36, 351–359. [Google Scholar] [CrossRef]
- Lambers, H. Phosphorus Acquisition and Utilization in Plants. Annu. Rev. Plant Biol. 2022, 73, 17–42. [Google Scholar] [CrossRef]








| Coal Gangue | Sheep Manure | Commercial Organic Fertilizer | |
|---|---|---|---|
| Soil organic matter (g kg−1) | 127.84 | 400.80 | 354.73 |
| Total nitrogen (g kg−1) | 1.52 | 11.10 | 23.10 |
| Total phosphorus (g kg−1) | 0.73 | 3.74 | 12.34 |
| Total potassium (g kg−1) | 27.37 | 13.00 | 16.73 |
| Available nitrogen (mg kg−1) | 12.40 | - | - |
| Available phosphorus (mg kg−1) | 7.84 | - | - |
| Available potassium (mg kg−1) | 189.20 | - | - |
| pH | 8.73 | 7.93 | 6.07 |
| Ecosystem Functional Groups | Indicators |
|---|---|
| Primary productivity | AGB, BGB |
| Water conservation | SWC, MWHC, CWC, TP, CP |
| Carbon cycling | PCC, STC, SOC, DOC, MBC, CBH, BG |
| Nitrogen cycling | PNC, STN, NO3−-N, NH4+-N, MBN, NAG, LAP |
| Phosphorus cycling | PPC, STP, AvP, MBP, ALP |
| Treatment | Ecosystem Function | Primary Productivity | Water Conservation | Carbon Cycling | Nitrogen Cycling |
|---|---|---|---|---|---|
| CK | Water conservation | 0.08 ± 0.06 | |||
| Carbon cycling | 0.04 ± 0.01 | 0.05 ± 0.01 | |||
| Nitrogen cycling | 0.02 ± 0.01 | 0.03 ± 0.01 | 0.05 ± 0.01 | ||
| Phosphorus cycling | 0.05 ± 0.01 | 0.04 ± 0.01 | 0.01 ± 0.01 | 0.06 ± 0.01 | |
| LF | Water conservation | 0.13 ± 0.03 | |||
| Carbon cycling | 0.06 ± 0.01 | 0.11 ± 0.02 | |||
| Nitrogen cycling | 0.06 ± 0.03 | 0.09 ± 0.04 | 0.07 ± 0.03 | ||
| Phosphorus cycling | 0.04 ± 0.01 | 0.09 ± 0.03 | 0.03 ± 0.03 | 0.05 ± 0.03 | |
| MF | Water conservation | 0.06 ± 0.01 | |||
| Carbon cycling | 0.03 ± 0.04 | 0.07 ± 0.01 | |||
| Nitrogen cycling | 0.05 ± 0.02 | 0.12 ± 0.02 | 0.05 ± 0.05 | ||
| Phosphorus cycling | 0.04 ± 0.04 | 0.07 ± 0.01 | 0.01 ± 0.01 | 0.04 ± 0.01 | |
| HF | Water conservation | 0.05 ± 0.03 | |||
| Carbon cycling | 0.06 ± 0.02 | 0.13 ± 0.01 | |||
| Nitrogen cycling | 0.05 ± 0.03 | 0.05 ± 0.01 | 0.07 ± 0.01 | ||
| Phosphorus cycling | 0.10 ± 0.01 | 0.17 ± 0.03 | 0.06 ± 0.01 | 0.14 ± 0.04 | |
| NM | Water conservation | 0.29 ± 0.01 | |||
| Carbon cycling | 0.15 ± 0.03 | 0.24 ± 0.01 | |||
| Nitrogen cycling | 0.07 ± 0.07 | 0.26 ± 0.03 | 0.02 ± 0.01 | ||
| Phosphorus cycling | 0.14 ± 0.03 | 0.50 ± 0.04 | 0.28 ± 0.01 | 0.24 ± 0.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Ma, L.; Jiang, F.; Li, Z.; Qi, K.; Ma, Y. Organic Fertilizer Effects on Ecosystem Multifunctionality and Trade-Offs in Alpine Mine Reclamation. Land 2026, 15, 58. https://doi.org/10.3390/land15010058
Ma L, Jiang F, Li Z, Qi K, Ma Y. Organic Fertilizer Effects on Ecosystem Multifunctionality and Trade-Offs in Alpine Mine Reclamation. Land. 2026; 15(1):58. https://doi.org/10.3390/land15010058
Chicago/Turabian StyleMa, Lili, Fuzhen Jiang, Zhengpeng Li, Kaibin Qi, and Yushou Ma. 2026. "Organic Fertilizer Effects on Ecosystem Multifunctionality and Trade-Offs in Alpine Mine Reclamation" Land 15, no. 1: 58. https://doi.org/10.3390/land15010058
APA StyleMa, L., Jiang, F., Li, Z., Qi, K., & Ma, Y. (2026). Organic Fertilizer Effects on Ecosystem Multifunctionality and Trade-Offs in Alpine Mine Reclamation. Land, 15(1), 58. https://doi.org/10.3390/land15010058

