Effects of Biochar-Based Fertilizer on Root Zeta Potential, Nutrient Leaching and Yield in an Intensive Protected Cropping System
Abstract
1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimental Design, Treatments and Establishment
2.3. Sample Collection and Analysis
2.4. Statistical Analysis
3. Results
3.1. FTIR Analysis of Biochar Mineral Complex and Potting Media
3.2. Plant Root and Rhizosphere Electrochemistry, Cation Exchange Capacity and Balance and Concentration of Cations in Leachates
3.3. Biomass Yield and Economic Value of Ginger Rhizomes
4. Discussion
4.1. Effects of Fertilizer Treatments on Electrochemistry of Plant Roots and Potting Media
4.2. Effects of Fertilizer Treatments on Ginger Yield
4.3. Practical Implications and Benefits of This Research
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BMC | Biochar mineral complex |
CEC | Cation exchange capacity |
FTIR | Fourier transform infrared |
ZP | Zeta potential |
References
- Van Dijk, M.; Morley, T.; Rau, M.L.; Saghai, Y. A meta-analysis of projected global food demand and population at risk of hunger for the period 2010–2050. Nature Food 2021, 2, 494–501. [Google Scholar] [CrossRef]
- Aksoy, E.; Gregor, M.; Schröder, C.; Löhnertz, M.; Louwagie, G. Assessing and analysing the impact of land take pressures on arable land. Solid Earth 2017, 8, 683–695. [Google Scholar] [CrossRef]
- Purakayastha, T.; Bera, T.; Bhaduri, D.; Sarkar, B.; Mandal, S.; Wade, P.; Kumari, S.; Biswas, S.; Menon, M.; Pathak, H. A review on biochar modulated soil condition improvements and nutrient dynamics concerning crop yields: Pathways to climate change mitigation and global food security. Chemosphere 2019, 227, 345–365. [Google Scholar] [CrossRef]
- Menegat, S.; Ledo, A.; Tirado, R. Greenhouse gas emissions from global production and use of nitrogen synthetic fertilisers in agriculture. Sci. Rep. 2022, 12, 1–13. [Google Scholar]
- Garratt, M.; Wright, D.; Leather, S. The effects of farming system and fertilisers on pests and natural enemies: A synthesis of current research. Agric. Ecosyst. Environ. 2011, 141, 261–270. [Google Scholar] [CrossRef]
- Tripathi, S.; Srivastava, P.; Devi, R.S.; Bhadouria, R. Influence of synthetic fertilizers and pesticides on soil health and soil microbiology. In Agrochemicals Detection, Treatment and Remediation; Elsevier: Amsterdam, The Netherlands, 2020; pp. 25–54. [Google Scholar]
- Vonk, W.J.; Hijbeek, R.; Glendining, M.J.; Powlson, D.S.; Bhogal, A.; Merbach, I.; Silva, J.V.; Poffenbarger, H.J.; Dhillon, J.; Sieling, K. The legacy effect of synthetic N fertiliser. Eur. J. Soil Sci. 2022, 73, e13238. [Google Scholar] [CrossRef] [PubMed]
- Chia, C.; Munroe, P.; Joseph, S.D.; Lin, Y.; Lehmann, J.; Muller, D.A.; Xin, H.; Neves, E. Analytical electron microscopy of black carbon and microaggregated mineral matter in Amazonian dark Earth. J. Microsc. 2012, 245, 129–139. [Google Scholar] [CrossRef]
- Farrar, M.B.; Wallace, H.M.; Xu, C.-Y.; Joseph, S.; Nguyen, T.T.N.; Dunn, P.K.; Bai, S.H. Biochar compound fertilisers increase plant potassium uptake 2 years after application without additional organic fertiliser. Envoron. Sci. Pollut. Res. 2021, 29, 7170–7184. [Google Scholar] [CrossRef] [PubMed]
- Chew, J.; Joseph, S.; Chen, G.; Zhang, Y.; Zhu, L.; Liu, M.; Taherymoosavi, S.; Munroe, P.; Mitchell, D.R.; Pan, G. Biochar-based fertiliser enhances nutrient uptake and transport in rice seedlings. Sci. Total Environ. 2022, 826, 154174. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Hartemink, A.E. Soil and environmental issues in sandy soils. Earth-Science Rev. 2020, 208, 103295. [Google Scholar] [CrossRef]
- Jing, F.; Sun, Y.; Liu, Y.; Wan, Z.; Chen, J.; Tsang, D.C. Interactions between biochar and clay minerals in changing biochar carbon stability. Sci. Total Environ. 2022, 809, 151124. [Google Scholar]
- Joseph, S.; Cowie, A.L.; Van Zwieten, L.; Bolan, N.; Budai, A.; Buss, W.; Cayuela, M.L.; Graber, E.R.; Ippolito, J.A.; Kuzyakov, Y. How biochar works, and when it doesn’t: A review of mechanisms controlling soil and plant responses to biochar. Glob. Change Biol. Bioenergy 2021, 13, 1731–1764. [Google Scholar]
- Khan, Z.; Yang, X.-J.; Fu, Y.; Joseph, S.; Khan, M.N.; Khan, M.A.; Alam, I.; Shen, H. Engineered biochar improves nitrogen use efficiency via stabilizing soil water-stable macroaggregates and enhancing nitrogen transformation. Biochar 2023, 5, 52. [Google Scholar] [CrossRef]
- Khan, H.A.; Naqvi, S.R.; Mehran, M.T.; Khoja, A.H.; Niazi, M.B.K.; Juchelková, D.; Atabani, A. A performance evaluation study of nano-biochar as a potential slow-release nano-fertilizer from wheat straw residue for sustainable agriculture. Chemosphere 2021, 285, 131382. [Google Scholar]
- Farhangi-Abriz, S.; Ghassemi-Golezani, K. Improving electrochemical characteristics of plant roots by biochar is an efficient mechanism in increasing cations uptake by plants. Chemosphere 2023, 313, 137365. [Google Scholar] [CrossRef] [PubMed]
- Chacón, F.J.; Cayuela, M.L.; Roig, A.; Sánchez-Monedero, M.A. Understanding, measuring and tuning the electrochemical properties of biochar for environmental applications. Rev. Environ. Sci. Technol. 2017, 16, 695–715. [Google Scholar] [CrossRef]
- Lu, H.-l.; Liu, Z.-d.; Zhou, Q.; Xu, R.-k. Zeta potential of roots determined by the streaming potential method in relation to their Mn (II) sorption in 17 crops. Plant Soil 2018, 428, 241–251. [Google Scholar] [CrossRef]
- Dukhin, A.S.; Xu, R. Zeta-potential measurements. In Characterization of Nanoparticles; Elsevier: Amsterdam, The Netherlands, 2020; pp. 213–224. [Google Scholar]
- Hong, M.; Zhang, L.; Tan, Z.; Huang, Q. Effect mechanism of biochar’s zeta potential on farmland soil’s cadmium immobilization. Envoron. Sci. Pollut. Res. 2019, 26, 19738–19748. [Google Scholar] [CrossRef] [PubMed]
- Blum, W.E.; Schad, P.; Nortcliff, S. Essentials of Soil Science: Soil Formation, Functions, Use and Classification (World Reference Base, WRB); Gebr. Borntraeger Science Publishers: Stuttgart, Germany, 2017. [Google Scholar]
- Ulhassan, Z.; Khan, A.R.; Hamid, Y.; Azhar, W.; Hussain, S.; Sheteiwy, M.S.; Salam, A.; Hakeem, K.R.; Zhou, W. Interaction of nanoparticles with soil–plant system and their usage in remediation strategies. In Metals Metalloids Soil Plant Water Systems; Elsevier: Amsterdam, The Netherlands, 2022; pp. 287–308. [Google Scholar]
- Suliman, W.; Harsh, J.B.; Abu-Lail, N.I.; Fortuna, A.-M.; Dallmeyer, I.; Garcia-Perez, M. Influence of feedstock source and pyrolysis temperature on biochar bulk and surface properties. Biomass Bioenergy 2016, 84, 37–48. [Google Scholar] [CrossRef]
- Domingues, R.R.; Sánchez-Monedero, M.A.; Spokas, K.A.; Melo, L.C.; Trugilho, P.F.; Valenciano, M.N.; Silva, C.A. Enhancing cation exchange capacity of weathered soils using biochar: Feedstock, pyrolysis conditions and addition rate. Agronomy 2020, 10, 824. [Google Scholar] [CrossRef]
- Solly, E.F.; Weber, V.; Zimmermann, S.; Walthert, L.; Hagedorn, F.; Schmidt, M.W. A critical evaluation of the relationship between the effective cation exchange capacity and soil organic carbon content in Swiss forest soils. Front. For. Glob. Change 2020, 3, 98. [Google Scholar]
- Henry E Camacho, A.B. The Australian Ginger Industry: Overview of Market Trends and Opportunities; Queensland Department of Primary Industries: Brisbane, Australia, 2009. [Google Scholar]
- Nair, K. The Agronomy and Economy of Turmeric and Ginger—The Invaluable Medicine Spice Crops; Elsevier: London, UK, 2013. [Google Scholar]
- BOM. Climate Data Online. Available online: http://www.bom.gov.au/climate/data/ (accessed on 1 April 2025).
- Omidvar, N.; Joseph, S.; Dissanayake, L.; Farrar, M.B.; Reverchon, F.; Burnett, R.; Rezaei Rashti, M.; Amarasinghe, A.; Tahery, S.; Xu, Z. Combination of biochar-based fertilisers and reactive barriers improved soil carbon storage, soil moisture retention, and crop yield in short term. Glob. Change Biol. Bioenergy 2025, 17, e70021. [Google Scholar] [CrossRef]
- de Campos Bernardi, A.C.; Polidoro, J.C.; de Melo Monte, M.B.; Pereira, E.I.; de Oliveira, C.R.; Ramesh, K. Enhancing nutrient use efficiency using zeolites minerals—A review. Adv. Chem. Eng. Sci. 2016, 6, 295–304. [Google Scholar] [CrossRef]
- Brito, C.; Dinis, L.T.; Moutinho-Pereira, J.; Correia, C. Kaolin, an emerging tool to alleviate the effects of abiotic stresses on crop performance. Sci. Hortic. 2019, 250, 310–316. [Google Scholar] [CrossRef]
- Liu, R.; Lal, R. Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (Glycine max). Sci. Rep. 2014, 4, 5686. [Google Scholar] [CrossRef]
- Divyashree, N.; Poojashree, S.; Venukumar, S.; Vishwanath, Y.C. Sustainable ginger production through integrated nutrient management. In Ginger—Cultivation and Use; IntechOpen: London, UK, 2022. [Google Scholar]
- Sarathambal, C.; Srinivasan, V.; Jeevalatha, A.; Sivaranjani, R.; Alagupalamuthirsolai, M.; Peeran, M.F.; Sankar, M.; George, P.; Dilkush, F. Unravelling the synergistic effects of arbuscular mycorrhizal fungi and vermicompost on improving plant growth, nutrient absorption, and secondary metabolite production in ginger (Zingiber officinale Rosc.). Front. Sustain. Food Syst. 2024, 8, 1412610. [Google Scholar] [CrossRef]
- Halder, N.K.; Shill, N.C.; Siddiky, M.A.; Gomes, R.; Sarkar, J. Response of ginger to zinc and boron fertilization. Asian J. Plant Sci. 2007, 6, 394–398. [Google Scholar] [CrossRef]
- Farrar, M.B.; Wallace, H.M.; Xu, C.-Y.; Joseph, S.; Dunn, P.K.; Nguyen, T.T.N.; Bai, S.H. Biochar co-applied with organic amendments increased soil-plant potassium and root biomass but not crop yield. J. Soils Sed. 2021, 21, 784–798. [Google Scholar]
- Vetterlein, D.; Doussan, C. Root age distribution: How does it matter in plant processes? A focus on water uptake. Plant Soil 2016, 407, 145–160. [Google Scholar] [CrossRef]
- Liao, W.; Drake, J.; Thomas, S.C. Biochar granulation, particle size, and vegetation effects on leachate water quality from a green roof substrate. J. Environ. Manage. 2022, 318, 115506. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.-y.; Liu, Y.; Zheng, Y.-y.; Xu, R.-k. Zeta potential at the root surfaces of rice characterized by streaming potential measurements. Plant Soil 2015, 386, 237–250. [Google Scholar] [CrossRef]
- Leege, P.B.; Thompson, W.H. Test Methods for the Examination of Composting and Compost. Springer: Dordrecht, The Netherlands, 1997. [Google Scholar]
- Gillman, G.P.; Sumpter, E.A. Modification to the compulsive exchange method for measuring exchange characteristics of soils. Soil Res. 1986, 24, 61–66. [Google Scholar] [CrossRef]
- Jain, A.; Taylor, R.W. Determination of cation exchange capacity of calcareous soils: Comparison of summation method and direct replacement method. Commun. Soil Sci. Plant Anal. 2023, 54, 743–748. [Google Scholar] [CrossRef]
- Kang, N.-Q.; Hu, Y.-Y.; Zhang, Z.-W.; Lü, X.-T. Changes of mineral nutrition (K, Ca, and Mg) in soil and plants following historical nitrogen inputs in a temperate steppe: The implications for grass tetany. Plant Soil 2023, 491, 57–68. [Google Scholar] [CrossRef]
- Anton Paar. Instruction Manual and Safety Information: SurPASS 3; Anton Paar GmbH: Graz, Austria, 2023; pp. 1–42. Available online: https://cruscenter.mse.utah.edu/wp-content/uploads/2024/02/D85IB016EN-F_SurPASS_3_IMSI.pdf (accessed on 8 October 2025).
- Tomczyk, A.; Sokołowska, Z.; Boguta, P. Biochar physicochemical properties: Pyrolysis temperature and feedstock kind effects. Rev. Environ. Sci. Biotechnol. 2020, 19, 191–215. [Google Scholar] [CrossRef]
- Leng, L.; Huang, H.; Li, H.; Li, J.; Zhou, W. Biochar stability assessment methods: A review. Sci. Total Environ. 2019, 647, 210–222. [Google Scholar] [CrossRef]
- Darby, I.; Xu, C.-Y.; Wallace, H.M.; Joseph, S.; Pace, B.; Bai, S.H. Short-term dynamics of carbon and nitrogen using compost, compost-biochar mixture and organo-mineral biochar. Envoron. Sci. Pollut. Res. 2016, 23, 11267–11278. [Google Scholar] [CrossRef]
- Soares, M.R.; Alleoni, L.R.F. Contribution of soil organic carbon to the ion exchange capacity of tropical soils. J. Sustainable Agric. 2008, 32, 439–462. [Google Scholar] [CrossRef]
- Joseph, S.D.; Camps-Arbestain, M.; Lin, Y.; Munroe, P.; Chia, C.; Hook, J.; Van Zwieten, L.; Kimber, S.; Cowie, A.; Singh, B. An investigation into the reactions of biochar in soil. Soil Res. 2010, 48, 501–515. [Google Scholar] [CrossRef]
- Chia, C.H.; Singh, B.P.; Joseph, S.; Graber, E.R.; Munroe, P. Characterization of an enriched biochar. J. Anal. Appl. Pyrolysis 2014, 108, 26–34. [Google Scholar] [CrossRef]
- Joseph, S.; Anawar, H.M.; Storer, P.; Blackwell, P.; Chee, C.; Yun, L.; Munroe, P.; Donne, S.; Horvat, J.; Jianli, W. Effects of enriched biochars containing magnetic iron nanoparticles on mycorrhizal colonisation, plant growth, nutrient uptake and soil quality improvement. Pedosphere 2015, 25, 749–760. [Google Scholar] [CrossRef]
- Gaskin, J.; Steiner, C.; Harris, K.; Das, K.; Bibens, B. Effect of low-temperature pyrolysis conditions on biochar for agricultural use. Trans. ASABE 2008, 51, 2061–2069. [Google Scholar]
- Mukherjee, A.; Zimmerman, A.R.; Harris, W. Surface chemistry variations among a series of laboratory-produced biochars. Geoderma 2011, 163, 247–255. [Google Scholar] [CrossRef]
- Hailegnaw, N.S.; Mercl, F.; Pračke, K.; Száková, J.; Tlustoš, P. Mutual relationships of biochar and soil pH, CEC, and exchangeable base cations in a model laboratory experiment. J. Soils Sed. 2019, 19, 2405–2416. [Google Scholar] [CrossRef]
- Li, S.; Barreto, V.; Li, R.; Chen, G.; Hsieh, Y.P. Nitrogen retention of biochar derived from different feedstocks at variable pyrolysis temperatures. J. Anal. Appl. Pyrolysis 2018, 133, 136–146. [Google Scholar] [CrossRef]
- Song, W.; Guo, M. Quality variations of poultry litter biochar generated at different pyrolysis temperatures. J. Anal. Appl. Pyrolysis 2012, 94, 138–145. [Google Scholar] [CrossRef]
- Marouf, R.; Dali, N.; Boudouara, N.; Ouadjenia, F.; Zahaf, F. Study of adsorption properties of bentonite clay. In Montmorillonite Clay; IntechOpen: London, UK, 2021. [Google Scholar]
- Haag, H.; Saito, S.; Dechen, A.; Carmello, Q. Accumulation of dry matter and uptake of macro-and micro-nutrients by ginger. Luize-de Queiroz 1990, 47, 435–457. [Google Scholar] [CrossRef]
- Timilsena, Y.P.; Adhikari, R.; Casey, P.; Muster, T.; Gill, H.; Adhikari, B. Enhanced efficiency fertilisers: A review of formulation and nutrient release patterns. J. Sci. Food Agric. 2015, 95, 1131–1142. [Google Scholar] [CrossRef] [PubMed]
- Dirnböck, T.; Kobler, J.; Kraus, D.; Grote, R.; Kiese, R. Impacts of management and climate change on nitrate leaching in a forested karst area. J. Environ. Manage. 2016, 165, 243–252. [Google Scholar] [CrossRef]
- Silber, A. Chemical characteristics of soilless media. In Soilless Culture; Elsevier: Amsterdam, The Netherlands, 2019; pp. 113–148. [Google Scholar]
- Laekemariam, F.; Kibret, K.; Shiferaw, H. Potassium (K)-to-magnesium (Mg) ratio, its spatial variability and implications to potential Mg-induced K deficiency in Nitisols of Southern Ethiopia. Agric. Food Secur. 2018, 7, 1–10. [Google Scholar] [CrossRef]
- Loide, V. About the effect of the contents and ratios of soil’s available calcium, potassium and magnesium in liming of acid soils. Agron. Res. 2004, 2, 71–82. [Google Scholar]
- Nguyen, H.H.; Maneepong, S.; Suraninpong, P. Effects of potassium, calcium, and magnesium ratios in soil on their uptake and fruit quality of pummelo. J. Agric. Sci. 2017, 9, 110–121. [Google Scholar] [CrossRef]
- Rietra, R.P.J.J.; Heinen, M.; Dimkpa, C.O.; Bindraban, P.S. Effects of nutrient antagonism and synergism on yield and fertilizer use efficiency. Commun. Soil Sci. Plant Anal. 2017, 48, 1895–1920. [Google Scholar] [CrossRef]
- Yang, M.; Zhou, D.; Hang, H.; Chen, S.; Liu, H.; Su, J.; Lv, H.; Jia, H.; Zhao, G. Effects of balancing exchangeable cations Ca, Mg, and K on the growth of tomato seedlings (Solanum lycopersicum L.) based on increased soil cation exchange capacity. Agronomy 2024, 14, 629. [Google Scholar] [CrossRef]
- Xie, K.; Cakmak, I.; Wang, S.; Zhang, F.; Guo, S. Synergistic and antagonistic interactions between potassium and magnesium in higher plants. Crop J. 2021, 9, 249–256. [Google Scholar] [CrossRef]
- Odom, I. Smectite clay minerals: Properties and uses. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 1984, 311, 391–409. [Google Scholar] [CrossRef]
- Orucoglu, E.; Grangeon, S.; Gloter, A.; Robinet, J.-C.; Madé, B.; Tournassat, C. Competitive adsorption processes at clay mineral surfaces: A coupled experimental and modeling approach. ACS Earth Space Chem. 2022, 6, 144–159. [Google Scholar] [CrossRef]
- Banitalebi, G.; Mosaddeghi, M.R.; Shariatmadari, H. Evaluation of physio-chemical properties of biochar-based mixtures for soilless growth media. J. Mater. Cycles Waste 2021, 23, 950–964. [Google Scholar] [CrossRef]
- Ahmed, N.; Deng, L.; Wang, C.; Shah, Z.-u.-H.; Deng, L.; Li, Y.; Li, J.; Chachar, S.; Chachar, Z.; Hayat, F. Advancements in biochar modification for enhanced phosphorus utilization in agriculture. Land 2024, 13, 644. [Google Scholar] [CrossRef]
- Luo, L.; Wang, J.; Lv, J.; Liu, Z.; Sun, T.; Yang, Y.; Zhu, Y.-G. Carbon sequestration strategies in soil using biochar: Advances, challenges, and opportunities. Environ. Sci. Technol. 2023, 57, 11357–11372. [Google Scholar] [CrossRef]
- Garofalo, P.; Gaeta, L.; Vitti, C.; Giglio, L.; Leogrande, R. Optimizing water footprint, productivity, and sustainability in Southern Italian olive groves: The role of organic fertilizers and irrigation management. Land 2025, 14, 318. [Google Scholar] [CrossRef]
Parameter | Unit | Pine Bark Potting Media Base | Pine Bark Potting Media Enriched With Synthetic Fertilizer | Organic Fertilizer | BMC |
---|---|---|---|---|---|
Wet bulk density | kg L−1 | 0.5 | 0.61 | n.a | n.a. |
Dry bulk density | kg L−1 | 0.25 | 0.31 | n.a | n.a. |
Moisture content | % | 51 | 48 | n.a | 35 |
Air-filled porosity | % | 22 | 17 | n.a | n.a. |
Total water holding capacity | % | 53 | 58 | n.a | n.a. |
pH | 7.16 | 6.31 | n.a | 8.6 | |
Electrical conductivity | dS m−1 | 0.16 | 2.4 | n.a | 26 |
Chloride | mg L−1 | 20 | 177 | n.a | n.a. |
Ammonium nitrogen | mg L−1 N | 1.3 | 28.2 | n.a | n.a. |
Nitrate nitrogen | mg L−1 N | 0.2 | 28.5 | n.a | n.a. |
Total Carbon (C) | % | 32.6 | 34.3 | 18.3 | 33.3 |
Total Nitrogen (N) | % | 0.2 | 0.6 | 5.21 | 5.52 |
Calcium (Ca) | % | 0.63 | 1.2 | 14.18 | 1.39 |
Magnesium (Mg) | % | 0.23 | 0.26 | 3.36 | 0.39 |
Potassium (K) | % | 0.04 | 0.36 | 3.74 | 1.94 |
Sodium (Na) | % | 0.04 | 0.08 | BDL | 0.76 |
Sulphur (S) | % | 0.02 | 0.17 | 1.35 | 0.73 |
Phosphorus (P) | %__tracked | BDL | 0.04 | 2.9 | 0.72 |
Zinc (Zn) | % | BDL | 0.003 | 0.13 | 0.03 |
Manganese (Mn) | % | BDL | 0.012 | 0.032 | 0.25 |
Iron (Fe) | % | 0.25 | 0.96 | 3.13 | 3.59 |
Copper (Cu) | % | BDL | 0.006 | 0.027 | 0.02 |
Boron (B) | % | 0.02 | 0.02 | 0.25 | 0.01 |
Silicon (Si) | % | BDL | BDL | 3.5 | 0.01 |
Aluminum (Al) | % | 0.3 | 0.403 | BDL | 0.69 |
Treatment | N | P | K | Ca | Mg | B | Zn |
---|---|---|---|---|---|---|---|
(g pot−1) | (g pot−1) | (g pot−1) | (g pot−1) | (g pot−1) | (g pot−1) | (g pot−1) | |
S100 | 51.2 | 3.3 | 31.3 | 100.0 | 21.6 | 1.8 | 0.4 |
O100 | 38.0 | 20.9 | 22.0 | 102.7 | 24.3 | 1.7 | 0.2 |
BMC + O50 | 28.9 | 11.8 | 14.0 | 73.8 | 22.1 | 1.6 | 0.2 |
BMC | 17.4 | 1.4 | 5.1 | 46.5 | 19.7 | 1.5 | 0.1 |
Treatment | Week 14 | Week 22 | ||
---|---|---|---|---|
NH4+-N (mg L−1) | NO3−-N (mg L−1) | NH4+-N (mg L−1) | NO3−-N (mg L−1) | |
S100 | 0.88 ± 0.15 a | 33.53 ± 10.95 a | 0.32 ± 0.05 a | 8.28 ± 4.12 a |
O100 | 0.34 ± 0.07 b | 10.16 ± 5.46 ab | 0.16 ± 0.01 b | 0.95 ± 0.22 a |
BMC + O50 | 0.25 ± 0.05 b | 0.83 ± 0.29 b | 0.08 ± 0.01 b | 0.64 ± 0.12 a |
BMC | 0.09 ± 0.01 b | 0.22 ± 0.07 b | 0.12 ± 0.01 b | 0.44 ± 0.06 a |
Treatment | Commercial Value ($ pot−1) | Net Income ($ pot−1) | Cost of Fertilizer and Potting Media ($ pot−1) |
---|---|---|---|
S100 | 34.63 ± 3.1 a | 30.28 ± 3.1 a | 4.33 |
O100 | 29.92 ± 2.9 ab | 26.09 ± 2.9 a | 3.85 |
BMC + O50 | 22.38 ± 3.8 b | 18.87 ± 3.8 a | 3.52 |
BMC | 4.14 ± 0.6 c | 1.04 ± 0.6 b | 3.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trubenbacher, K.; Hosseini Bai, S.; Dissanayake, L.; Omidvar, N.; Joseph, S.; Farrar, M.B. Effects of Biochar-Based Fertilizer on Root Zeta Potential, Nutrient Leaching and Yield in an Intensive Protected Cropping System. Land 2025, 14, 2036. https://doi.org/10.3390/land14102036
Trubenbacher K, Hosseini Bai S, Dissanayake L, Omidvar N, Joseph S, Farrar MB. Effects of Biochar-Based Fertilizer on Root Zeta Potential, Nutrient Leaching and Yield in an Intensive Protected Cropping System. Land. 2025; 14(10):2036. https://doi.org/10.3390/land14102036
Chicago/Turabian StyleTrubenbacher, Kane, Shahla Hosseini Bai, Lakmini Dissanayake, Negar Omidvar, Stephen Joseph, and Michael B. Farrar. 2025. "Effects of Biochar-Based Fertilizer on Root Zeta Potential, Nutrient Leaching and Yield in an Intensive Protected Cropping System" Land 14, no. 10: 2036. https://doi.org/10.3390/land14102036
APA StyleTrubenbacher, K., Hosseini Bai, S., Dissanayake, L., Omidvar, N., Joseph, S., & Farrar, M. B. (2025). Effects of Biochar-Based Fertilizer on Root Zeta Potential, Nutrient Leaching and Yield in an Intensive Protected Cropping System. Land, 14(10), 2036. https://doi.org/10.3390/land14102036