Land Use Transition and Its Eco-Environmental Effects in the Beijing–Tianjin–Hebei Urban Agglomeration: A Production–Living–Ecological Perspective
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methods
2.3.1. Classification of Production–Living–Ecological Land
2.3.2. Land Use Transfer Matrix
2.3.3. Measure of Eco-Environmental Effects of Land Use Transition
- (1)
- Eco-environmental quality index. The eco-environmental quality index (E) is a quantitative description of the overall eco-environmental quality of each region (unit), found by evaluating the different ecological quality levels of PLE land. It aims to calculate the change of area of the PLE land in different periods. Grid sampling of the land use was used to spatialize the eco-environmental quality index, and the E value of each unit was calculated as the regional eco-environmental quality index of the sampling center. The calculation in Equation (2) is as follows:Due to the strong scale dependence of geospatial data, different conclusions might be reached by selecting different research scales. Hence, in order to obtain the optimal scale, this study selected a grid size of 2 km × 2 km to carry out equidistant sampling.
- (2)
- Geostatistical analysis. The spatial analysis of regional eco-environmental quality was realized by the geostatistical analysis method. The semivariance analysis method was used to interpolate the regional eco-environmental quality index of the sampling center, so as to obtain the spatial distribution of the eco-environmental quality in the whole study area. The mathematical expression is in the following formula (Equation (3)):The Geostatistics Analyst tool in ArcGIS 10.2 was used to perform the statistical analysis on the E values at four time nodes in the BTH region. The results show that the E values follow a normal distribution and have a spatial correlation, so this research employed the ordinary Kriging method for spatial interpolation and the semivariation exponential function. Then, the results were divided into five levels using the natural breakpoint method: low-quality area (E ≤ 0.3), medium-low-quality area (0.3 < E ≤ 0.4), medium-quality area (0.4 < E ≤ 0.5), medium-high-quality area (0.5 < E ≤ 0.65), and high-quality area (E > 0.65).
- (3)
- Ecological contribution rate of land use transition. The ecological contribution rate of land use transition refers to the change of regional ecological quality caused by the change of land use type. This index quantifies the impact of land use transition on the regional ecological environment, which is conducive to the research on the main factors that induce changes to the regional ecological environment. Its calculation formula is as follows:
2.3.4. Carbon Sequestration Module of the InVEST Model
3. Results
3.1. Land Use Structure
3.2. Transition of PLE Land Use
- (1)
- Production land: agricultural production land continuously decreased from 1985 to 2018. From 1985 to 1995, it mainly transferred to rural and urban living land, grassland and forestland, with transfer rates of 32.63%, 21.91%, 14.63%, and 14.49%, respectively; between 1995 and 2005, it mainly converted to urban and rural living land and industrial production land, with transfer rates of 45.30%, 22.66%, and 17.85%, respectively; from 2005 to 2018, agricultural production land decreased the most, mainly to rural living land and urban production land, with transfer rates of 39.91% and 13.22%, respectively. Industrial production land showed a continuous increasing trend in the study period, and was mainly converted from agricultural production land, with contribution rates as high as 49.32%, 62.10%, and 56.26% in the three time intervals, respectively.
- (2)
- Living land: urban and rural living land increased significantly, mainly from agricultural production land from 1985 to 2018. At three time intervals, the contribution rates of agricultural production land to new urban living land were 75.47%, 69.47%, and 70.00%, respectively, while its contribution rates to new rural living land were 96.14%, 88.55%, and 84.65%, respectively.
- (3)
- Ecological land: grassland decreased continuously, and was mainly converted to agricultural production land and forestland. The largest transition of grassland occurred between 2005 and 2018, related to the human activities of land reclamation and afforestation to establish the BTH ecological barrier. The area of forestland decreased slightly from 1995 to 2005, but showed increasing trends during other periods. In particular, forestland experienced the largest increase from 2005 to 2018, which was mainly derived from grassland and agricultural production land. Water and other ecological land remained relatively stable during the study period.
3.3. Eco-Environmental Effects of Land Use Transition
3.3.1. Characteristics of Eco-Environmental Quality
3.3.2. Contribution of Land Use Transition to Eco-Environmental Quality
3.4. Carbon Storage
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Newbold, T.; Hudson, L.N.; Arnell, A.P.; Contu, S.; De Palma, A.; Ferrier, S.; Hill, S.L.L.; Hoskins, A.J.; Lysenko, I.; Phillips, H.R.P.; et al. Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science 2016, 353, 288–291. [Google Scholar] [CrossRef]
- Seto, K.C.; Reenberg, A.; Boone, C.G.; Fragkias, M.; Haase, D.; Langanke, T.; Marcotullio, P.; Munroe, D.K.; Olah, B.; Simon, D. Urban land teleconnections and sustainability. Proc. Natl. Acad. Sci. USA 2012, 109, 7687–7692. [Google Scholar] [CrossRef] [Green Version]
- Turner, B.L.; Lambin, E.F.; Reenberg, A. The emergence of land change science for global environmental change and sustainability. Proc. Natl. Acad. Sci. USA 2007, 104, 20666–20671. [Google Scholar] [CrossRef] [Green Version]
- Lambin, E.F.; Meyfroidt, P. Global land use change, economic globalization, and the looming land scarcity. Proc. Natl. Acad. Sci. USA 2011, 108, 3465–3472. [Google Scholar] [CrossRef] [Green Version]
- Hanaček, K.; Rodríguez-Labajos, B. Impacts of land-use and management changes on cultural agroecosystem services and environmental conflicts—A global review. Glob. Environ. Chang. 2018, 50, 41–59. [Google Scholar] [CrossRef]
- Quintas-Soriano, C.; Castro, A.J.; Castro, H.; García-Llorente, M. Impacts of land use change on ecosystem services and implications for human well-being in Spanish drylands. Land Use Policy 2016, 54, 534–548. [Google Scholar] [CrossRef]
- Lawler, J.J.; Lewis, D.J.; Nelson, E.J.; Plantinga, A.J.; Polasky, S.; Withey, J.C.; Helmers, D.P.; Martinuzzi, S.; Pennington, D.; Radeloff, V.C. Projected land-use change impacts on ecosystem services in the United States. Proc. Natl. Acad. Sci. USA 2014, 111, 7492–7497. [Google Scholar] [CrossRef] [Green Version]
- Braimoh, A.K.; Vlek, P.L. Impact of land use on soil resources. In Land Use and Soil Resources; Springer: Berlin/Heidelberg, Germany, 2008; pp. 1–7. [Google Scholar]
- Vitousek, P.M.; Mooney, H.A.; Lubchenco, J.; Melillo, J.M. Human domination of Earth’s ecosystems. Science 1997, 277, 494–499. [Google Scholar] [CrossRef] [Green Version]
- Houghton, R.A. The worldwide extent of land-use change. BioScience 1994, 44, 305–313. [Google Scholar] [CrossRef]
- Houghton, R.A.; Nassikas, A.A. Global and regional fluxes of carbon from land use and land cover change 1850–2015. Glob. Biogeochem. Cycles 2017, 31, 456–472. [Google Scholar] [CrossRef]
- Deines, J.M.; Schipanski, M.E.; Golden, B.; Zipper, S.C.; Nozari, S.; Rottler, C.; Guerrero, B.; Sharda, V. Transitions from irrigated to dryland agriculture in the ogallala aquifer: Land use suitability and regional economic impacts. Agric. Water Manag. 2020, 233. [Google Scholar] [CrossRef]
- Ouyang, Z.; Zheng, H.; Xiao, Y.; Polasky, S.; Liu, J.; Xu, W.; Wang, Q.; Zhang, L.; Xiao, Y.; Rao, E. Improvements in ecosystem services from investments in natural capital. Science 2016, 352, 1455–1459. [Google Scholar] [CrossRef]
- Chen, C.; Park, T.; Wang, X.; Piao, S.; Xu, B.; Chaturvedi, R.K.; Fuchs, R.; Brovkin, V.; Ciais, P.; Fensholt, R. China and India lead in greening of the world through land-use management. Nat. Sustain. 2019, 2, 122–129. [Google Scholar] [CrossRef]
- Keesstra, S.; Mol, G.; de Leeuw, J.; Okx, J.; Molenaar, C.; de Cleen, M.; Visser, S. Soil-related sustainable development goals: Four concepts to make land degradation neutrality and restoration work. Land 2018, 7, 133. [Google Scholar] [CrossRef] [Green Version]
- Griggs, D.; Stafford-Smith, M.; Gaffney, O.; Rockstroem, J.; Oehman, M.C.; Shyamsundar, P.; Steffen, W.; Glaser, G.; Kanie, N.; Noble, I. Sustainable development goals for people and planet. Nature 2013, 495, 305–307. [Google Scholar] [CrossRef]
- Chen, K.; Long, H.; Liao, L.; Tu, S.; Li, T. Land use transitions and urban-rural integrated development: Theoretical framework and China’s evidence. Land Use Policy 2020, 92, 104465. [Google Scholar] [CrossRef]
- Qu, Y.; Long, H. The economic and environmental effects of land use transitions under rapid urbanization and the implications for land use management. Habitat Int. 2018, 82, 113–121. [Google Scholar] [CrossRef]
- Ike, M.; Donovan, J.D.; Topple, C.; Masli, E.K. The process of selecting and prioritising corporate sustainability issues: Insights for achieving the sustainable development goals. J. Clean. Prod. 2019, 236, 117661. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Westlund, H.; Liu, Y. Urban-rural transformation in relation to cultivated land conversion in China: Implications for optimizing land use and balanced regional development. Land Use Policy 2015, 47, 218–224. [Google Scholar] [CrossRef]
- Tian, J.; Wang, B.; Zhang, C.; Li, W.; Wang, S. Mechanism of regional land use transition in underdeveloped areas of China: A case study of northeast China. Land Use Policy 2020, 94, 104538. [Google Scholar] [CrossRef]
- Liu, Y.; Long, H. Land use transitions and their dynamic mechanism: The case of the Huang-Huai-Hai Plain. J. Geogr. Sci. 2016, 26, 515–530. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Long, H.; Liu, Y.; Tu, S. Multi-scale analysis of rural housing land transition under China’s rapid urbanization: The case of bohai rim. Habitat Int. 2015, 48, 227–238. [Google Scholar] [CrossRef]
- Mather, A.S. Forest transition theory and the reforesting of Scotland. Scott. Geogr. J. 2004, 120, 83–98. [Google Scholar] [CrossRef]
- Zhang, Y.; Long, H.; Ma, L.; Ge, D.; Tu, S.; Qu, Y. Farmland function evolution in the Huang-Huai-Hai plain: Processes, patterns and mechanisms. J. Geogr. Sci. 2018, 28, 759–777. [Google Scholar] [CrossRef] [Green Version]
- Jiang, G.; He, X.; Qu, Y.; Zhang, R.; Meng, Y. Functional evolution of rural housing land: A comparative analysis across four typical areas representing different stages of industrialization in China. Land Use Policy 2016, 57, 645–654. [Google Scholar] [CrossRef]
- Nizalov, D.; Thornsbury, S.; Loveridge, S.; Woods, M.; Zadorozhna, O. Security of property rights and transition in land use. J. Comp. Econ. 2016, 44, 76–91. [Google Scholar] [CrossRef] [Green Version]
- Jin, X.; Xu, X.; Xiang, X.; Bai, Q.; Zhou, Y. System-dynamic analysis on socio-economic impacts of land consolidation in China. Habitat Int. 2016, 56, 166–175. [Google Scholar] [CrossRef]
- Chen, W.; Chi, G.; Li, J. The spatial association of ecosystem services with land use and land cover change at the county level in China, 1995–2015. Sci. Total Environ. 2019, 669, 459–470. [Google Scholar] [CrossRef]
- Asadolahi, Z.; Salmanmahiny, A.; Sakieh, Y.; Mirkarimi, S.H.; Baral, H.; Azimi, M. Dynamic trade-off analysis of multiple ecosystem services under land use change scenarios: Towards putting ecosystem services into planning in Iran. Ecol. Complex. 2018, 36, 250–260. [Google Scholar] [CrossRef]
- Lu, X.; Shi, Y.; Chen, C.; Yu, M. Monitoring cropland transition and its impact on ecosystem services value in developed regions of China: A case study of Jiangsu Province. Land Use Policy 2017, 69, 25–40. [Google Scholar] [CrossRef]
- Long, H.; Liu, Y.; Hou, X.; Li, T.; Li, Y. Effects of land use transitions due to rapid urbanization on ecosystem services: Implications for urban planning in the new developing area of China. Habitat Int. 2014, 44, 536–544. [Google Scholar] [CrossRef]
- Faiz, M.A.; Liu, D.; Fu, Q.; Naz, F.; Hristova, N.; Li, T.; Niaz, M.A.; Khan, Y.N. Assessment of dryness conditions according to transitional ecosystem patterns in an extremely cold region of China. J. Clean. Prod. 2020, 255. [Google Scholar] [CrossRef]
- Asabere, S.B.; Acheampong, R.A.; Ashiagbor, G.; Beckers, S.C.; Keck, M.; Erasmi, S.; Schanze, J.; Sauer, D. Urbanization, land use transformation and spatio-environmental impacts: Analyses of trends and implications in major metropolitan regions of Ghana. Land Use Policy 2020, 96, 104707. [Google Scholar] [CrossRef]
- Liu, Y.; Long, H.; Li, T.; Tu, S. Land use transitions and their effects on water environment in Huang-Huai-Hai Plain, China. Land Use Policy 2015, 47, 293–301. [Google Scholar] [CrossRef]
- Nuissl, H.; Haase, D.; Lanzendorf, M.; Wittmer, H. Environmental impact assessment of urban land use transitions—A context-sensitive approach. Land Use Policy 2009, 26, 414–424. [Google Scholar] [CrossRef]
- Ge, D.; Wang, Z.; Tu, S.; Long, H.; Yan, H.; Sun, D.; Qiao, W. Coupling analysis of greenhouse-led farmland transition and rural transformation development in China’s traditional farming area: A case of Qingzhou city. Land Use Policy 2019, 86, 113–125. [Google Scholar] [CrossRef]
- Long, H.; Qu, Y. Land use transitions and land management: A mutual feedback perspective. Land Use Policy 2018, 74, 111–120. [Google Scholar] [CrossRef]
- Liu, J.; Diamond, J.M. China’s environment in a globalizing world. Nature 2005, 435, 1179–1186. [Google Scholar] [CrossRef]
- Bryan, B.A.; Gao, L.; Ye, Y.; Sun, X.; Connor, J.D.; Crossman, N.D.; Stafford-Smith, M.; Wu, J.; He, C.; Yu, D. China’s response to a national land-system sustainability emergency. Nature 2018, 559, 193–204. [Google Scholar] [CrossRef]
- Liao, G.; He, P.; Gao, X.; Deng, L.; Zhang, H.; Feng, N.; Zhou, W.; Deng, O. The production-living-ecological land classification system and its characteristics in the hilly area of Sichuan province, southwest China based on identification of the main functions. Sustainability 2019, 11, 1600. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Liu, Y.; Li, Y. Classification evaluation and spatial-temporal analysis of “production-living-ecological” spaces in China. Acta Geogr. Sin. 2017, 72, 1290–1304. (In Chinese) [Google Scholar]
- Deng, W.; Zhang, J.; Shi, Z.; Wan, J.; Meng, B. Interpretation of mountain territory space and its optimized conceptual model and theoretical framework. Mt. Res. 2017, 35, 121–128. (In Chinese) [Google Scholar]
- Fang, C.; Yang, J.; Fang, J.; Huang, X.; Zhou, Y. Optimization transmission theory and technical pathways that describe multiscale urban agglomeration spaces. Chin. Geogr. Sci. 2018, 28, 543–554. (In Chinese) [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Xu, E.; Zhu, H. An ecological-living-industrial land classification system and its spatial distribution in China. Resour. Sci. 2015, 37, 1332–1338. (In Chinese) [Google Scholar]
- Shi, Z.; Deng, W.; Zhang, S. Spatio-temporal pattern changes of land space in Hengduan Mountains during 1990–2015. J. Geogr. Sci. 2018, 28, 529–542. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Fang, C. Quantitative function identification and analysis of urban ecological-production-living spaces. Acta Geogr. Sin. 2016, 71, 49–65. (In Chinese) [Google Scholar]
- Xi, J.; Wang, S.; Zhang, R. Restructuring and optimizingproduction-living-ecology space in rural settlements: A case study of Gougezhuang village at Yesanpo tourism attraction in Hebei province. J. Nat. Resour. 2016, 31, 425–435. (In Chinese) [Google Scholar]
- Zhou, D.; Xu, J.; Lin, Z. Conflict or coordination? Assessing land use multi-functionalization using production-living-ecology analysis. Sci. Total Environ. 2017, 577, 136–147. [Google Scholar] [CrossRef]
- Yang, Y.; Bao, W.; Liu, Y. Coupling coordination analysis of rural production-living-ecological space in the Beijing-Tianjin-Hebei region. Ecol. Indic. 2020, 117, 106512. [Google Scholar] [CrossRef]
- Yu, Z.; Xu, E.; Zhang, H.; Shang, E. Spatio-temporal coordination and conflict of production-living-ecology land functions in the Beijing-Tianjin-Hebei region, China. Land 2020, 9, 170. [Google Scholar] [CrossRef]
- Huang, A.; Xu, Y.; Hao, J.; Sun, P.; Liu, C.; Zheng, W. Progress review on land use functions evaluation and its prospects. China Land Sci. 2017, 31, 88–96. (In Chinese) [Google Scholar]
- Ma, W.; Jiang, G.; Chen, Y.; Qu, Y.; Zhou, T.; Li, W. How feasible is regional integration for reconciling land use conflicts across the urban–rural interface? Evidence from Beijing–Tianjin–Hebei metropolitan region in China. Land Use Policy 2020, 92, 104433. [Google Scholar] [CrossRef]
- Tan, M.; Li, X.; Xie, H.; Lu, C. Urban land expansion and arable land loss in China—A case study of Beijing–Tianjin–Hebei region. Land Use Policy 2005, 22, 187–196. [Google Scholar] [CrossRef]
- Deng, X.; Huang, J.; Rozelle, S.; Zhang, J.; Li, Z. Impact of urbanization on cultivated land changes in China. Land Use Policy 2015, 45, 1–7. [Google Scholar] [CrossRef]
- Tian, Y.; Zhou, D.; Jiang, G. Conflict or coordination? Multiscale assessment of the spatio-temporal coupling relationship between urbanization and ecosystem services: The case of the Jingjinji Region, China. Ecol. Indic. 2020, 117, 106543. [Google Scholar] [CrossRef]
- Haas, J.; Ban, Y. Urban growth and environmental impacts in Jing-Jin-Ji, the Yangtze, River Delta and the Pearl River Delta. Int. J. Appl. Earth Obs. Geoinf. 2014, 30, 42–55. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, L. Delinking indicators on regional industry development and carbon emissions: Beijing–Tianjin–Hebei economic band case. Ecol. Indic. 2015, 48, 41–48. [Google Scholar] [CrossRef]
- Deng, X.; Dan, L.; Ye, Q.; Wang, Z.; Liu, Y.; Zhang, X.; Zhang, F.; Qi, W.; Wang, G.; Wang, P.; et al. Methodological framework and research progress on the social and economic costs of carbon emission and reduction. J. Geo-Inf. Sci. 2018, 20, 405–413. (In Chinese) [Google Scholar]
- Song, W.; Deng, X. Effects of urbanization-induced cultivated land loss on ecosystem services in the north china plain. Energies 2015, 8, 5678–5693. [Google Scholar] [CrossRef]
- Cui, X.; Wei, X.; Liu, W.; Zhang, F.; Li, Z. Spatial and temporal analysis of carbon sources and sinks through land use/cover changes in the Beijing-Tianjin-Hebei urban agglomeration region. Phys. Chem. Earth 2019, 110, 61–70. [Google Scholar] [CrossRef]
- Li, S.; Yang, H.; Lacayo, M.; Liu, J.; Lei, G. Impacts of land-use and land-cover changes on water yield: A case study in Jing-Jin-Ji, China. Sustainability 2018, 10, 960. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Liu, Y.; Yang, Y.; Liu, J. Spatial-temporal characteristics and driving factors of urban construction land in Beijing-Tianjin-Hebei region during 1985–2015. Geogr. Res. 2018, 37, 37–52. (In Chinese) [Google Scholar]
- Liu, Y.; Yang, Y.; Li, Y.; Li, J. Conversion from rural settlements and arable land under rapid urbanization in Beijing during 1985–2010. J. Rural Stud. 2017, 51, 141–150. [Google Scholar] [CrossRef]
- Liu, J.; Kuang, W.; Zhang, Z.; Xu, X.; Qin, Y.; Ning, J.; Zhou, W.; Zhang, S.; Li, R.; Yan, C.; et al. Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s. J. Geogr. Sci. 2014, 24, 195–210. [Google Scholar] [CrossRef]
- Li, X.; Fang, C.; Huang, J.; Mao, H. The urban land use transformations and associated effects on eco-environment in northwest china arid region:a case study in ehxi region, gansu province. Quat. Sci. 2003, 23, 280–290. (In Chinese) [Google Scholar]
- Zhang, Y.; Liu, Y.; Gu, J.; Ding, Q. Land use/land cover change and its environmental effects in Wuhan city. Sci. Geogr. Sin. 2011, 31, 1280–1285. (In Chinese) [Google Scholar]
- Hu, F.; An, Y.; Zhao, H. Research on characteristics of ecological environment effect on a “Semi-Karst” region based on land use transition: A case in central Guizhou province, China. Earth Environ. 2016, 44, 447–454. (In Chinese) [Google Scholar]
- Li, C.; Xin, G.; Yang, C.; Cheng, X. Land Use and Land Cover Change(LUCC)and its environmental effects of traditional farm area. J. Southwest Univ. Nat. Sci. Ed. 2016, 38, 139–145. (In Chinese) [Google Scholar]
- Luo, G.; Liao, H.; Li, Q.; Liao, L.; Li, Y.; Fang, A. A study of land use function transformation based on ecological-production-living spaces and associated eco-environment responsea case study of banan district. J. Southwest Univ. Nat. Sci. Ed. 2018, 40, 105–113. (In Chinese) [Google Scholar]
- Gong, Y.; Han, S.; Shi, X.; Tang, X. Temporal and spatial evolution and associated eco-environment effects of the land use transformation of ecological-production-living spaces in Guangdong province. Res. Soil Water Conserv. 2020, 27, 203–209. (In Chinese) [Google Scholar]
- Wu, H.; Guo, Z.; Peng, C. Land use induced changes of organic carbon storage in soils of China. Glob. Chang. Biol. 2003, 9, 305–315. [Google Scholar] [CrossRef]
- Turner, D.P.; Koerper, G.J.; Harmon, M.E.; Lee, J.J. A carbon budget for forests of the conterminous United States. Ecol. Appl. 1995, 5, 421–436. [Google Scholar] [CrossRef]
- He, C.; Zhang, D.; Huang, Q.; Zhao, Y. Assessing the potential impacts of urban expansion on regional carbon storage by linking the LUSD-urban and InVEST models. Environ. Model. Softw. 2016, 75, 44–58. [Google Scholar] [CrossRef]
- Sun, X.; Lu, Z.; Li, F.; Crittenden, J.C. Analyzing spatio-temporal changes and trade-offs to support the supply of multiple ecosystem services in Beijing, China. Ecol. Indic. 2018, 94, 117–129. [Google Scholar] [CrossRef]
- Wang, C.; Zhan, J.; Chu, X.; Liu, W.; Zhang, F. Variation in ecosystem services with rapid urbanization: A study of carbon sequestration in the Beijing-Tianjin-Hebei region, China. Phys. Chem. Earth 2019, 110, 195–202. [Google Scholar] [CrossRef]
- Chen, T.; Feng, Z.; Zhao, H.; Wu, K. Dataset of ecosystem services in Beijing and its surrounding areas. Data Brief 2020, 29, 105151. [Google Scholar] [CrossRef]
- Li, J.; Xia, S.; Yu, X.; Li, S.; Xu, C.; Zhao, N.; Wang, S. Evaluation of carbon storage on terrestrial ecosystem in Hebei province based on InVEST model. J. Ecol. Rural Environ. 2020, 854–861. (In Chinese) [Google Scholar] [CrossRef]
- Pérez-Soba, M.; Petit, S.; Jones, L.; Bertrand, N.; Briquel, V.; Omodei-Zorini, L.; Contini, C.; Helming, K.; Farrington, J.H.; Mossello, M.T. Land use functions—A multifunctionality approach to assess the impact of land use changes on land use sustainability. In Sustainability Impact Assessment of Land Use Changes; Springer: Berlin/Heidelberg, Germany, 2008; pp. 375–404. [Google Scholar]
- Huang, A.; Xu, Y.; Lu, L.; Liu, C.; Zhang, Y.; Hao, J.; Wang, H. Research progress of the identification and optimization of production-living-ecological spaces. Prog. Geogr. 2020, 39, 503–518. (In Chinese) [Google Scholar] [CrossRef]
- Lu, L.; Zhou, S.; Zhou, B.; Dai, L.; Chang, T.; Bao, G.; Zhou, H.; Li, Z. Land use tansformation and its eco-environmental response in process of the regional development:A case study of Jiangsu province. Sci. Geogr. Sin. 2013, 33, 1442–1449. (In Chinese) [Google Scholar]
- Yang, Q.; Duan, X.; Wang, L.; Jin, Z. Land use transformation based onecological-production-living spaces and associated eco-environment efects: A case study in the Yangtze river delta. Sci. Geogr. Sin. 2018, 38, 97–106. (In Chinese) [Google Scholar]
- Liu, Y.; Liu, Y.; Chen, Y.; Long, H. The process and driving forces of rural hollowing in China under rapid urbanization. J. Geogr. Sci. 2010, 20, 876–888. [Google Scholar] [CrossRef]
- Liu, Y. Research on the urban-rural integration and rural revitalization in the new era in China. Acta Geogr. Sin. 2018, 73, 637–650. (In Chinese) [Google Scholar]
- Zheng, X.; Liu, Y. Scientific connotation, formation mechanism and regulation strategy of “rural disease” in China in the new era. Hum. Geogr. 2018, 33, 100–106. (In Chinese) [Google Scholar]
- Gökyer, E. Understanding landscape structure using landscape metrics. In Advances in Landscape Architecture; InTech: London, UK, 2013; pp. 663–676. [Google Scholar]
- Pacione, M. Private profit, public interest and land use planning-A conflict interpretation of residential development pressure in Glasgow’s rural-urban fringe. Land Use Policy 2013, 32, 61–77. [Google Scholar] [CrossRef]
- Tudor, C.A.; Ioja, I.C.; Patru-Stupariu, I.; Nita, M.R.; Hersperger, A.M. How successful is the resolution of land-use conflicts? A comparison of cases from Switzerland and Romania. Appl. Geogr. 2014, 47, 125–136. [Google Scholar] [CrossRef]
- Wu, Z. Optimization of production-living-ecological space and environmental protection of the Beijing-Tianjin-Hebei region. City 2014, 12, 26–29. (In Chinese) [Google Scholar]
- Zhang, W.; Jiang, H.; Wang, J. Ecological and environmental protection strategy for the coordinated development of the Beijing-Tian-Hebei region. Chin. J. Environ. Manag. 2017, 9, 41–45. (In Chinese) [Google Scholar] [CrossRef]
Production–Living–Ecological Land Classification | Basic Land Use Classification | |||
---|---|---|---|---|
1st Level Classes | Subclasses | Eco-Environment Quality Index | Secondary Type | Eco-Environment Quality Index |
Production land | Agricultural production land | 0.2522 | Paddy land | 0.30 |
Arid land | 0.25 | |||
Industrial production land | 0.1500 | Other construction land | 0.15 | |
Living land | Urban living land | 0.2000 | Urban built-up land | 0.20 |
Rural living land | 0.2000 | Rural settlement | 0.20 | |
Ecological land | Forestland | 0.7813 | Woodland | 0.95 |
Shrub land | 0.65 | |||
Sparse woodland | 0.45 | |||
Other woodland | 0.40 | |||
Grassland | 0.6306 | High coverage grassland | 0.75 | |
Medium coverage grassland | 0.45 | |||
Low coverage grassland | 0.20 | |||
Water area | 0.5519 | River canal | 0.55 | |
Lake | 0.75 | |||
Reservoir pond | 0.55 | |||
Permanent glacial snow land | 0.90 | |||
Tidal flat | 0.45 | |||
Beach | 0.55 | |||
Other ecological land | 0.4050 | Desert | 0.01 | |
Gobi | 0.01 | |||
Saline-alkali land | 0.05 | |||
Swamp | 0.65 | |||
Bare land | 0.05 | |||
Bare rock | 0.01 |
1st Level Classes | Subclasses | Ci_above | Ci_below | Ci_soil | Ci_dead |
---|---|---|---|---|---|
Production land | Agricultural production land | 11.19 | 22.9 | 67.24 | 4.11 |
Industrial production land | 2.00 | 11.94 | 44.24 | 0 | |
Living land | Urban living land | 2.00 | 11.94 | 44.24 | 0 |
Rural living land | 2.00 | 11.94 | 44.24 | 0 | |
Ecological land | Forestland | 28.39 | 35.96 | 133.16 | 10.77 |
Grassland | 12.44 | 25.73 | 72.92 | 3.74 | |
Water area | 3.74 | 15.8 | 11.55 | 0 | |
Other ecological land | 4.48 | 14.01 | 46.18 | 0.1 |
Final Year | Initial Total | Gross Loss | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Agricultural Production Land | Industrial Production land | Urban Living Land | Rural Living Land | Forest | Grassland | Water Area | Other Ecological Land | ||||
Initial Year | Agricultural Production Land | 105,159.13 | 319.24 | 1030.17 | 2294.64 | 1020.43 | 1543.32 | 705.66 | 128.94 | 112,201.54 | 7042.42 |
108,315.48 | 296.46 | 752.53 | 376.43 | 54.55 | 14.47 | 158.09 | 8.77 | 109,976.79 | 1661.31 | ||
93,394.36 | 1958.03 | 2042.01 | 6164.10 | 1598.85 | 2215.05 | 1299.18 | 167.71 | 108,839.28 | 15,444.92 | ||
Industrial Production Land | 71.41 | 1694.47 | 57.61 | 3.21 | 10.86 | 9.47 | 21.44 | 3.86 | 1872.33 | 177.86 | |
12.33 | 2239.42 | 43.77 | 13.02 | 0.96 | 0.58 | 31.03 | 0.62 | 2341.72 | 102.30 | ||
225.10 | 655.04 | 195.85 | 275.52 | 45.01 | 95.26 | 1182.61 | 42.44 | 2716.84 | 2061.81 | ||
Urban Living Land | 48.86 | 0.21 | 2061.01 | 0.75 | 3.10 | 2.84 | 11.68 | 4.31 | 2132.76 | 71.75 | |
15.14 | 0.46 | 3406.60 | 0.87 | 0.70 | 0.66 | 1.57 | 0.04 | 3426.05 | 19.45 | ||
145.92 | 99.35 | 3971.17 | 189.88 | 15.24 | 36.56 | 31.23 | 0.55 | 4489.90 | 518.73 | ||
Rural Living Land | 1282.94 | 7.67 | 246.81 | 9066.26 | 26.72 | 32.20 | 28.04 | 8.69 | 10,699.33 | 1633.07 | |
41.29 | 8.07 | 163.40 | 11,235.79 | 1.06 | 0.38 | 3.00 | 0.11 | 11,453.09 | 217.31 | ||
2340.35 | 170.20 | 469.40 | 8461.05 | 50.73 | 79.95 | 76.42 | 12.79 | 11,660.89 | 3199.85 | ||
Forest | 822.23 | 31.37 | 12.04 | 26.03 | 42,140.23 | 1466.66 | 51.56 | 8.12 | 44,558.24 | 2418.02 | |
57.47 | 32.19 | 18.05 | 14.26 | 44,568.95 | 42.24 | 15.81 | 0.09 | 44,749.07 | 180.12 | ||
1137.31 | 319.34 | 47.79 | 198.82 | 40,920.41 | 1929.27 | 92.79 | 21.13 | 44,666.86 | 3746.45 | ||
Grassland | 1894.25 | 126.33 | 6.35 | 34.50 | 1466.55 | 31,983.87 | 123.30 | 46.79 | 35,681.94 | 3698.06 | |
95.65 | 54.71 | 8.92 | 4.83 | 18.58 | 34,950.59 | 42.27 | 0.60 | 35,176.16 | 225.56 | ||
1944.63 | 618.79 | 57.48 | 250.40 | 2740.04 | 28,994.17 | 248.95 | 180.49 | 35,034.94 | 6040.77 | ||
Water Area | 498.77 | 95.66 | 10.89 | 21.91 | 72.38 | 91.30 | 5523.69 | 28.82 | 6343.42 | 498.77 | |
267.47 | 82.33 | 75.23 | 13.71 | 18.67 | 20.35 | 5991.15 | 26.65 | 6495.57 | 504.41 | ||
975.12 | 253.62 | 92.55 | 153.94 | 142.14 | 315.48 | 3919.21 | 427.91 | 6279.95 | 2360.74 | ||
Other Ecological Land | 199.21 | 66.77 | 1.16 | 5.79 | 8.80 | 46.49 | 30.19 | 1865.81 | 2224.22 | 358.41 | |
34.45 | 3.20 | 21.41 | 1.98 | 3.38 | 5.65 | 37.01 | 1988.26 | 2095.34 | 107.09 | ||
611.61 | 61.09 | 12.26 | 48.87 | 52.27 | 316.03 | 129.78 | 793.21 | 2025.13 | 1231.92 | ||
Initial Total | 109,976.79 | 2341.72 | 3426.05 | 11,453.09 | 44,749.07 | 35,176.16 | 6495.57 | 2095.34 | 215,713.79 | — | |
108,839.28 | 2716.84 | 4489.90 | 11,660.89 | 44,666.86 | 35,034.94 | 6279.95 | 2025.13 | 215,713.79 | — | ||
100,774.39 | 4135.46 | 6888.51 | 15,742.57 | 45,564.68 | 33,981.78 | 6980.17 | 1646.23 | 215,713.79 | — | ||
Gross Gain | 4817.66 | 647.25 | 1365.04 | 2386.83 | 2608.84 | 3192.28 | 971.88 | 229.53 | — | — | |
523.80 | 477.42 | 1083.30 | 425.11 | 97.91 | 84.35 | 288.79 | 36.87 | — | — | ||
7380.03 | 3480.43 | 2917.34 | 7281.53 | 4644.27 | 4987.61 | 3060.96 | 853.02 | — | — |
Types | 1985 | 1995 | 2005 | 2018 | ||||
---|---|---|---|---|---|---|---|---|
Area (km2) | % | Area (km2) | % | Area (km2) | % | Area (km2) | % | |
Low-quality area | 87,011.58 | 40.34 | 87,294.75 | 40.47 | 90,050.27 | 41.75 | 89,365.24 | 41.43 |
Medium-low-quality area | 27,390.10 | 12.70 | 27,250.79 | 12.63 | 24,511.47 | 11.36 | 25,693.21 | 11.91 |
Medium-quality area | 18,778.39 | 8.71 | 18,782.55 | 8.71 | 18,746.03 | 8.69 | 18,403.21 | 8.53 |
Medium-high-quality area | 44,135.46 | 20.46 | 43,894.52 | 20.35 | 45,254.22 | 20.98 | 43,825.56 | 20.32 |
High-quality area | 38,398.26 | 17.80 | 38,491.18 | 17.84 | 37,151.81 | 17.22 | 38,426.57 | 17.81 |
Type of Change | Land Use Function Transformation | 1985–1995 | 1995–2005 | 2005–2018 | |||
---|---|---|---|---|---|---|---|
L | % | L | % | L | % | ||
Eco-Environment Improvement | Agricultural production land→Forestland | 0.002502 | 30.56 | 0.000134 | 23.44 | 0.003921 | 23.86 |
Agricultural production land→Grassland | 0.002707 | 33.07 | — | — | 0.003885 | 23.64 | |
Agricultural production land→Water area | 0.000972 | 11.87 | 0.00022 | 38.48 | 0.001805 | 10.98 | |
Industrial production land→Water area | — | — | 0.000058 | 10.14 | 0.002202 | 13.40 | |
Grassland→Forestland | 0.001024 | 12.51 | 0.000013 | 2.27 | 0.001914 | 11.65 | |
Total | 0.007205 | 88.01 | 0.000425 | 74.33 | 0.013727 | 83.53 | |
Eco-Environment Deterioration | Agricultural production land→Industrial production land | — | — | 0.00014 | 7.54 | 0.000928 | 5.27 |
Agricultural production land→Urban living land | 0.000249 | 2.70 | 0.000182 | 9.81 | 0.000494 | 2.81 | |
Agricultural production land→Rural living land | 0.000556 | 6.03 | 0.000091 | 4.90 | 0.001491 | 8.47 | |
Forestland→Agricultural production land | 0.002019 | 21.90 | 0.000141 | 7.60 | 0.002789 | 15.84 | |
Forestland→Industrial production land | — | — | — | — | 0.000934 | 5.30 | |
Forestland→Grassland | — | — | — | — | 0.001348 | 7.66 | |
Grassland→Agricultural production land | 0.003326 | 36.08 | 0.000168 | 9.05 | 0.003411 | 19.37 | |
Grassland→Industrial production land | 0.000282 | 3.06 | 0.000122 | 6.57 | 0.001378 | 7.83 | |
Water area→Agricultural production land | 0.000694 | 7.53 | 0.000372 | 20.04 | 0.001351 | 7.67 | |
Water area→Industrial production land | — | — | 0.000153 | 8.27 | 0.000471 | 2.68 | |
Total | 0.007126 | 77.30 | 0.001369 | 73.78 | 0.014595 | 82.90 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Bao, W.; Li, Y.; Wang, Y.; Chen, Z. Land Use Transition and Its Eco-Environmental Effects in the Beijing–Tianjin–Hebei Urban Agglomeration: A Production–Living–Ecological Perspective. Land 2020, 9, 285. https://doi.org/10.3390/land9090285
Yang Y, Bao W, Li Y, Wang Y, Chen Z. Land Use Transition and Its Eco-Environmental Effects in the Beijing–Tianjin–Hebei Urban Agglomeration: A Production–Living–Ecological Perspective. Land. 2020; 9(9):285. https://doi.org/10.3390/land9090285
Chicago/Turabian StyleYang, Yuanyuan, Wenkai Bao, Yuheng Li, Yongsheng Wang, and Zongfeng Chen. 2020. "Land Use Transition and Its Eco-Environmental Effects in the Beijing–Tianjin–Hebei Urban Agglomeration: A Production–Living–Ecological Perspective" Land 9, no. 9: 285. https://doi.org/10.3390/land9090285
APA StyleYang, Y., Bao, W., Li, Y., Wang, Y., & Chen, Z. (2020). Land Use Transition and Its Eco-Environmental Effects in the Beijing–Tianjin–Hebei Urban Agglomeration: A Production–Living–Ecological Perspective. Land, 9(9), 285. https://doi.org/10.3390/land9090285