Tropical PeatLand Forest Biomass Estimation Using Polarimetric Parameters Extracted from RadarSAT-2 Images
Abstract
:1. Introduction
2. Materials and Method
2.1. Study Area
2.2. SAR and Ancillary Data
2.3. Referenced Data
2.4. Main PolSAR Concepts in the Context of This Study
2.4.1. Yamaguchi Decomposition Parameters
2.4.2. Eigen Decomposition Parameters
2.4.3. Backscattering Coefficient
2.5. PolSAR Data Pre-Processing
2.6. Modeling AGB vs. Polarimetric Parameters
3. Results and Discussions
3.1. Temporal Dependence of Polarimetric Parameters
3.2. Regression Analysis—Modeling AGB vs. Polarimetric Parameters
3.3. Model Validation—Reference Biomass vs Observed Biomass
3.4. Limitations
- Referenced biomass data collected through the field is not uniformally distributed throughout the study area. With more field data that are uniformally distributed throughput the study site cover major tree species can comprehensive understanding of true biomass conditions. However it is extremely difficult due to existence of wild-life.
- As region specific tree species allometric equations are not available for tree species in study site. Generic region specific allometric was used to calculate AGB using field data. Species specific allometric can give more accurate AGB estimates.
- As C-band is mostly sensitive to leaves and main branches, more precise AGB estimation can be done by developing synergy of polarimetric parameters extracted from C- and L-band PolSAR data.
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AGB | Aboveground Biomass |
BMI | Biomass Index |
CSI | Canopy Structure Index |
DBH | Diameter at Breast Height |
Pedestal Height | |
PolSAR | Polarimetric SAR |
RVI | Radar Vegetation Index |
SAR | Synthetic Aperture Radar |
VSI | Volume Scattering Index |
References
- Ridder, R.M. Global Forest Resources Assessment 2010: Options And Recommendations for a Global Remote Sensing Survey of Forests; FAO Forest Resources Assessment Programme Working Papper; FAO: Rome, Italy, 2007; Volume 141. [Google Scholar]
- Barrett, M.; Belward, A.; Bladen, S.; Breeze, T.; Burgess, N.; Butchart, S.; Clewclow, H.; Cornell, S.; Cottam, A.; Croft, S.; et al. Living Planet Report 2018; Aiming Higher: Gland, Switzerland, 2018. [Google Scholar]
- Sodhi, N.S.; Koh, L.P.; Clements, R.; Wanger, T.C.; Hill, J.K.; Hamer, K.C.; Clough, Y.; Tscharntke, T.; Posa, M.R.C.; Lee, T.M. Conserving Southeast Asian forest biodiversity in human-modified landscapes. Biol. Conserv. 2010, 143, 2375–2384. [Google Scholar] [CrossRef]
- Fearnside, P.M. Tropical deforestation and global warming. Science 2006, 312, 1137. [Google Scholar] [CrossRef] [PubMed]
- Saatchi, S.; Ulander, L.; Williams, M.; Quegan, S.; LeToan, T.; Shugart, H.; Chave, J. Forest biomass and the science of inventory from space. Nat. Clim. Chang. 2012, 2, 826–827. [Google Scholar] [CrossRef]
- Tottrup, C. Improving tropical forest mapping using multi-date landsat tm data and pre-classification image smoothing. Int. J. Remote Sens. 2004, 25, 717–730. [Google Scholar] [CrossRef]
- Pax-Lenney, M.; Woodcock, C.E.; Macomber, S.A.; Gopal, S.; Song, C. Forest mapping with a generalized classifier and landsat tm data. Remote Sens. Environ. 2001, 77, 241–250. [Google Scholar] [CrossRef]
- Woodcock, C.E.; Collins, J.B.; Gopal, S.; Jakabhazy, V.D.; Li, X.; Macomber, S.; Ryherd, S.; Harward, V.J.; Levitan, J.; Wu, Y.; et al. Mapping forest vegetation using landsat tm imagery and a canopy reflectance model. Remote Sens. Environ. 1994, 50, 240–254. [Google Scholar] [CrossRef]
- Nilsson, M.; Folving, S.; Kennedy, P.; Puumalainen, J.; Chirici, G.; Corona, P.; Marchetti, M.; Olsson, H.; Ricotta, C.; Ringvall, A.; et al. Combining remote sensing and field data for deriving unbiased estimates of forest parameters over large regions. In Advances in Forest Inventory for Sustainable Forest Management and Biodiversity Monitoring; Springer: Dordrecht, The Netherlands, 2003; pp. 19–32. [Google Scholar]
- Tomppo, E.; Olsson, H.; Ståhl, G.; Nilsson, M.; Hagner, O.; Katila, M. Combining national forest inventory field plots and remote sensing data for forest databases. Remote Sens. Environ. 2008, 112, 1982–1999. [Google Scholar] [CrossRef]
- Mäkelä, H.; Pekkarinen, A. Estimation of forest stand volumes by landsat tm imagery and stand-level field-inventory data. For. Manag. 2004, 196, 245–255. [Google Scholar] [CrossRef]
- Zhou, X.; Zhu, X.; Dong, Z.; Guo, W. Estimation of biomass in wheat using random forest regression algorithm and remote sensing data. Crop J. 2016, 4, 212–219. [Google Scholar]
- McRoberts, R.E.; Tomppo, E.O. Remote sensing support for national forest inventories. Remote Sens. Environ. 2007, 110, 412–419. [Google Scholar] [CrossRef]
- Chen, G.; Hay, G.J. A support vector regression approach to estimate forest biophysical parameters at the object level using airborne lidar transects and quickbird data. Photogramm. Eng. Remote. 2011, 77, 733–741. [Google Scholar] [CrossRef] [Green Version]
- Qi, W.; Saarela, S.; Armston, J.; Ståhl, G.; Dubayah, R. Forest biomass estimation over three distinct forest types using tandem-x insar data and simulated gedi lidar data. Remote Sens. Environ. 2019, 232, 111283. [Google Scholar] [CrossRef]
- Lu, D.; Chen, Q.; Wang, G.; Moran, E.; Batistella, M.; Zhang, M.; Vaglio Laurin, G.; Saah, D. Aboveground forest biomass estimation with landsat and lidar data and uncertainty analysis of the estimates. Int. J. For. Res. 2012, 2012, 436537. [Google Scholar]
- Chang, J.; Shoshany, M. Mediterranean shrublands biomass estimation using sentinel-1 and sentinel-2. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 5300–5303. [Google Scholar]
- Vastaranta, M.; Yu, X.; Luoma, V.; Karjalainen, M.; Saarinen, N.; Wulder, M.A.; White, J.C.; Persson, H.J.; Hollaus, M.; Yrttimaa, T.; et al. Aboveground forest biomass derived using multiple dates of worldview-2 stereo-imagery: Quantifying the improvement in estimation accuracy. Int. J. Remote. 2018, 39, 8766–8783. [Google Scholar] [CrossRef] [Green Version]
- Baig, S.; Qazi, W.A.; Akhtar, A.M.; Waqar, M.M.; Ammar, A.; Gilani, H.; Mehmood, S.A. Above ground biomass estimation of dalbergia sissoo forest plantation from dual-polarized alos-2 palsar data. Can. J. Remote Sens. 2017, 43, 297–308. [Google Scholar] [CrossRef]
- Qazi, W.A.; Baig, S.; Gilani, H.; Waqar, M.M.; Dhakal, A.; Ammar, A. Comparison of forest aboveground biomass estimates from passive and active remote sensing sensors over kayar khola watershed, chitwan district, nepal. J. Appl. Remote Sens. 2017, 11, 026038. [Google Scholar] [CrossRef]
- Stelmaszczuk-Górska, M.; Thiel, C.; Schmullius, C. Remote sensing for aboveground biomass estimation in boreal forests. In Earth Observation for Land and Emergency Monitoring; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2017; pp. 33–55. [Google Scholar]
- Sinha, S.; Jeganathan, C.; Sharma, L.K.; Nathawat, M.S. A review of radar remote sensing for biomass estimation. Int. J. Environ. Technol. 2015, 12, 1779–1792. [Google Scholar] [CrossRef] [Green Version]
- Sun, G.; Ranson, K.J.; Guo, Z.; Zhang, Z.; Montesano, P.; Kimes, D. Forest biomass mapping from lidar and radar synergies. Remote Sens. Environ. 2011, 115, 2906–2916. [Google Scholar] [CrossRef] [Green Version]
- Waqar, M.M.; Sukmawati, R.; Ji, Y.Q.; Sri Sumantyo, J.T.; Segah, H.; Prasetyo, L.B. Retrieval of tropical peatland forest biomass from polarimetric features in central kalimantan, indonesia. Prog. Electromagn. Res. 2020, 98, 109–125. [Google Scholar] [CrossRef] [Green Version]
- Antropov, O.; Rauste, Y.; Hame, T. Volume scattering modeling in polsar decompositions: Study of alos palsar data over boreal forest. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3838–3848. [Google Scholar] [CrossRef]
- Amrutkar, R.P.; Kumar, S.; Kushuwaha, S.P.S.; Bhatt, G.D. Forest biophysical parameter retrieval using polsar technique. In Proceedings of the 8th International Conference on Microwaves, Antenna, Propagation & Remote Sensing-ICMARS, Jodhpur, India, 27–30 March 2012. [Google Scholar]
- Paradzayi, C. Polarimetric Synthetic Aperture Radar (POLSAR) above Ground Biomass Estimation in Communal African Savanna Woodlands. Ph.D. Thesis, University of Johannesburg, Johannesburg, South Africa, 2012. [Google Scholar]
- Englhart, S.; Keuck, V.; Siegert, F. Aboveground biomass retrieval in tropical forests—the potential of combined x-and l-band sar data use. Remote Sens. Environ. 2011, 115, 1260–1271. [Google Scholar] [CrossRef]
- Morel, A.C.; Saatchi, S.S.; Malhi, Y.; Berry, N.J.; Banin, L.; Burslem, D.; Nilus, R.; Ong, R.C. Estimating aboveground biomass in forest and oil palm plantation in sabah, malaysian borneo using alos palsar data. For. Ecol. Manag. 2011, 262, 1786–1798. [Google Scholar] [CrossRef]
- Antropov, O.; Rauste, Y.; Häme, T.; Praks, J. Polarimetric alos palsar time series in mapping biomass of boreal forests. Remote Sens. 2017, 9, 999. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, H. Estimation of ground water level in a peat swamp forest as an index of peat/forest fire. In Proceedings of the International Symposium on land management and biodiversity in Southeast Asia, Bali, Indonesia, 17–20 September 2002. [Google Scholar]
- Tawaraya, K.; Takaya, Y.; Turjaman, M.; Tuah, S.J.; Limin, S.H.; Tamai, Y.; Cha, J.Y.; Wagatsuma, T.; Osaki, M. Arbuscular mycorrhizal colonization of tree species grown in peat swamp forests of central kalimantan, indonesia. For. Ecol. Manag. 2003, 182, 381–386. [Google Scholar] [CrossRef]
- Page, S.E.; Wűst, R.A.J.; Weiss, D.; Rieley, J.O.; Shotyk, W.; Limin, S.H. A record of late pleistocene and holocene carbon accumulation and climate change from an equatorial peat bog (kalimantan, indonesia): Implications for past, present and future carbon dynamics. J. Quat. Sci. 2004, 19, 625–635. [Google Scholar] [CrossRef]
- Tuah, S.J.; Jamal, Y.M.; Limin, S.H. Nutritional characteristics in leaves of plants native to tropical peat swamps and heath forests of central kalimantan, indonesia. Tropics 2003, 12, 221–245. [Google Scholar] [CrossRef] [Green Version]
- Segah, H.; Tani, H.; Hirano, T. Detection of fire impact and vegetation recovery over tropical peat swamp forest by satellite data and ground-based ndvi instrument. Int. J. Remote Sens. 2010, 31, 5297–5314. [Google Scholar] [CrossRef]
- Ferraz, A.; Saatchi, S.S.; Xu, L.; Hagen, S.; Chave, J.; Yu, Y.; Meyer, V.; Garcia, M.; Silva, C.; Roswintiarti, O.; et al. Aboveground Biomass, Landcover, and Degradation, Kalimantan Forests, Indonesia, 2014; ORNL DAAC: Oak Ridge, TN, USA, 2019. [Google Scholar]
- Basuki, T.M.; Van Laake, P.E.; Skidmore, A.K.; Hussin, Y.A. Allometric equations for estimating the above-ground biomass in tropical lowland dipterocarp forests. For. Ecol. Manag. 2009, 257, 1684–1694. [Google Scholar] [CrossRef]
- Anggraeni, B.W.; Purwanto, I.R.H. Model Pendugaan Cadangan Biomassa Dan Karbon Hutan Tropis Basah Di Pt Sari Bumi Kusuma, Kalimantan Tengah. Ph.D. Thesis, Universitas Gadjah Mada, Yogyakarta, Indonesia, 2011. [Google Scholar]
- Jaya, A.; Siregar, U.J.; Daryono, H.; Suhartana, S. Biomasa hutan rawa gambut tropika pada berbagai kondisi penutupan lahan. J. Penelit. Hutan dan Konserv. Alam 2007, 4, 341–352. [Google Scholar] [CrossRef]
- Miyamoto, K.; Rahajoe, J.S.; Kohyama, T.; Mirmanto, E. Forest structure and primary productivity in a Bornean heath forest. Biotropica 2007, 39, 35–42. [Google Scholar] [CrossRef]
- Pearson, T.; Walker, S.; Brown, S. Sourcebook for Land Use, Land-Use Change and Forestry Projects; World Bank: Washington, DC, USA, 2013. [Google Scholar]
- Chave, J.; Réjou-Méchain, M.; Búrquez, A.; Chidumayo, E.; Colgan, M.S.; Delitti, W.B.; Duque, A.; Eid, T.; Fearnside, P.M.; Goodman, R.C.; et al. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob. Chang. Biol. 2014, 20, 3177–3190. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, Y.; Moriyama, T.; Ishido, M.; Yamada, H. Four-component scattering model for polarimetric sar image decomposition. IEEE Trans. Geosci. Remote Sens. 2005, 43, 1699–1706. [Google Scholar] [CrossRef]
- Durden, S.L.; Zyl, J.J.V.; Zebker, H.A. The unpolarized component in polarimetric radar observations of forested areas. IEEE Trans. Geosci. Remote Sens. 1990, 28, 268–271. [Google Scholar] [CrossRef]
- Lee, J.-S.; Pottier, E. Polarimetric Radar Imaging: From Basics to Applications; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Cloude, S.R.; Pottier, E. A review of target decomposition theorems in radar polarimetry. IEEE Trans. Geosci. Remote Sens. 1996, 34, 498–518. [Google Scholar] [CrossRef]
- Berninger, A.; Lohberger, S.; Stängel, M.; Siegert, F. Sar-based estimation of above-ground biomass and its changes in tropical forests of kalimantan using l-and c-band. Remote Sens. 2018, 10, 831. [Google Scholar] [CrossRef] [Green Version]
- Omar, H.; Misman, M.A.; Kassim, A.R. Synergetic of palsar-2 and sentinel-1a sar polarimetry for retrieving aboveground biomass in dipterocarp forest of malaysia. Appl. Sci. 2017, 7, 675. [Google Scholar] [CrossRef] [Green Version]
Date of Acquisition | Acqusition Mode | Look Angle | Range and Azi Resolution |
---|---|---|---|
20 October 2018 | Fine Quad Pol | 22.51∼25.96 | 4.73 × 4.98 |
13 November 2018 | Fine Quad Pol | 22.51∼25.96 | 4.73 × 4.98 |
24 December 2018 | Fine Quad Pol | 30.56∼33.64 | 4.73 × 4.69 |
31 December 2018 | Fine Quad Pol | 22.49∼25.96 | 4.73 × 4.98 |
10 January 2019 | Fine Quad Pol | 37.68∼40.38 | 4.73 × 4.77 |
17 January 2019 | Fine Quad Pol | 30.56∼33.64 | 4.73 × 4.69 |
Allometric Model | Sample | Tree | DBH (cm) | R2 | Reference |
---|---|---|---|---|---|
Component | |||||
lnAGB = −3.408+2.708 * lnD | 40 | St | 1.1–115 | 0.98 | [38] |
AGB = 2.708 * D2.486 | bda | St | 2–35 | 0.90 | [39] |
lnAGB = −2.26 + 1.27 * lnD | 184 | St | 4.8–69.7 | 0.99 | [40] |
lnAGB = −4.26 + 1.36 * lnD | 184 | Br + Tw | 4.8–69.7 | 0.91 | [40] |
lnAGB = −3.86 + 1.01 * lnD | 184 | Le | 4.8–69.7 | 0.81 | [40] |
lnAGB = 1.201 + 2.196 * ln(D) | 122 | St | 6.5–200 | 0.96 | [37] |
lnAGB = −0.744 + 2.188 * log(D)+0.832 * log(WSG) | 122 | St | 6.5–200 | 0.97 | [37] |
lnAGB = −2.289 + 2.649 * ln(D)−0.021 * ln(D) | 226 | St | 5–148 | 0.98 | [41] |
AGB = 42.69−12.8(D) + 1.242(D) | 170 | St | 5–148 | 0.84 | [42] |
Polarimetric Parameter | Description | |
---|---|---|
Backscattering Coefficient of HH Channel | ||
Backscattering | Backscattering Coefficient of HV Channel | |
Coefficient | Backscattering Coefficient of VH Channel | |
Backscattering Coefficient of VH Channel | ||
Eighn Decomposition | H | Entropy |
Parameters | Alpha | |
Yamaguchi Decomposition | Surface Scattering | |
Parameters | Volume Scattering | |
CSI | Canoopy Structure Index | |
Polarimetric | VSI | Volume Scattering Index |
Parameters | RVI | Radar Vegetation Index |
Pedestal height |
Parameters | 20 October 2018 | 13 November 2018 | 24 December 2018 | 31 December 2018 | 10 January 2019 | 17 January 2019 |
---|---|---|---|---|---|---|
VSI | 0.61 | 0.45 | 0.51 | 0.64 | 0.60 | 0.55 |
H | 0.58 | 0.43 | 0.49 | 0.60 | 0.57 | 0.53 |
RVI | 0.53 | 0.43 | 0.49 | 0.57 | 0.55 | 0.51 |
0.51 | 0.36 | 0.47 | 0.53 | 0.54 | 0.49 | |
0.44 | 0.32 | 0.49 | 0.49 | 0.46 | 0.43 | |
0.44 | 0.33 | 0.41 | 0.48 | 0.46 | 0.44 | |
0.40 | 0.39 | 0.43 | 0.49 | 0.48 | 0.46 | |
CSI | 0.33 | 0.27 | 0.31 | 0.41 | 0.42 | 0.34 |
VSI | H | RVI | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
RMSE | RMSE | RMSE | RMSE | RMSE | ||||||
20 October 2018 | 0.76 | 34.43 | 0.73 | 36.88 | 0.71 | 41.88 | 0.70 | 39.56 | 0.68 | 39.87 |
13 November 2018 | 0.63 | 41.44 | 0.61 | 44.93 | 0.60 | 47.73 | 0.58 | 51.84 | 0.55 | 54.45 |
24 December 2018 | 0.71 | 34.76 | 0.67 | 38.33 | 0.66 | 44.11 | 0.64 | 44.43 | 0.58 | 46.53 |
31 December 2018 | 0.77 | 33.21 | 0.75 | 35.12 | 0.72 | 38.49 | 0.72 | 37.35 | 0.69 | 37.53 |
10 January 2019 | 0.73 | 34.88 | 0.71 | 36.98 | 0.70 | 42.42 | 0.66 | 40.43 | 0.66 | 41.23 |
17 January 2019 | 0.71 | 35.82 | 0.70 | 37.81 | 0.68 | 42.10 | 0.66 | 42.43 | 0.63 | 42.43 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Waqar, M.M.; Sukmawati, R.; Ji, Y.; Sri Sumantyo, J.T. Tropical PeatLand Forest Biomass Estimation Using Polarimetric Parameters Extracted from RadarSAT-2 Images. Land 2020, 9, 193. https://doi.org/10.3390/land9060193
Waqar MM, Sukmawati R, Ji Y, Sri Sumantyo JT. Tropical PeatLand Forest Biomass Estimation Using Polarimetric Parameters Extracted from RadarSAT-2 Images. Land. 2020; 9(6):193. https://doi.org/10.3390/land9060193
Chicago/Turabian StyleWaqar, Mirza Muhammad, Rahmi Sukmawati, Yaqi Ji, and Josaphat Tetuko Sri Sumantyo. 2020. "Tropical PeatLand Forest Biomass Estimation Using Polarimetric Parameters Extracted from RadarSAT-2 Images" Land 9, no. 6: 193. https://doi.org/10.3390/land9060193
APA StyleWaqar, M. M., Sukmawati, R., Ji, Y., & Sri Sumantyo, J. T. (2020). Tropical PeatLand Forest Biomass Estimation Using Polarimetric Parameters Extracted from RadarSAT-2 Images. Land, 9(6), 193. https://doi.org/10.3390/land9060193