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Abstract: This paper was aimed at estimating the forest aboveground biomass (AGB) in the
Central Kalimantan tropical peatland forest, Indonesia, using polarimetric parameters extracted
from RadarSAT-2 images. Six consecutive acquisitions of RadarSAT-2 full polarimetric data were
acquired and polarimetric parameters were extracted. The backscattering coefficient (σo) for HH, HV,
VH, and VV channels was computed respectively. Entropy (H) and alpha (α) were computed using
eign decomposition. In order to understand the scattering behavior, Yamaguchi decomposition
was performed to estimate surface scattering (γsur f ) and volume scattering (γvol) components.
Similarly following polarimetric indices were computed; Biomass Index (BMI), Canopy Structure
Index (CSI), Volume Scattering Index (VSI), Radar Vegetation Index (RVI) and Pedestal Height (ph).
The PolSAR parameters were evaluated in terms of their temporal consistency, inter-dependence,
and suitability for forest aboveground biomass estimation across rainy and dry conditions. Regression
analysis was performed between referenced biomass measurements and polarimetric parameters;
VSI, H, RVI, ph, and γvol were found significantly correlated with AGB. Biomass estimation was
carried out using significant models. Resultant models were validated using field-based AGB
measurements. Validation results show a significant correlation between measured and referenced
biomass measurements with temporal consistency over the acquisition time period.

Keywords: forest biomass; polarimetric parameters 2; radar vegetation index (RVI); volume scattering
index (VSI); canopy structure index (CSI)

1. Introduction

Aboveground biomass is an important biophysical describing all living biomass above the soil
that includes stems, branches, leaves, barks, seeds and foliage in terrestrial ecosystems [1]. It plays an
important role in maintaining the carbon cycle by removing CO2 from the atmosphere by the process
of photosynthesis and storing it in the components of trees. Due to rapid urbanization, forest regions
are deforested and degraded especially in developing countries. The tropical rainforests are the most
significant carbon reservoir. They are home to gigantic trees, world-famous plants, birds and a variety
of fascinating mammals. Around 80% of the world’s documented species can be found in tropical
rainforests, although they cover only 6% of the Earth’s land surface. Furthermore, tropical rainforests
have the largest living biomass and home to the highest rate of terrestrial biodiversity However they are
the most endangered habitat and vulnerable to deforestation and degradation. Annual deforestation
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rate of rainforests is alarmingly high which is about 140,000 km2 [2]. Mostly rainforests are deforested
by logging companies for timber and local community for farming. Among the most endangered
rainforests are the south–east Asian rainforest especially in the Kalimantan Island is facing deforestation
and degradation at an alarming rate especially due to a rapid increase in human population [3]. Due to
deforestation, degradation and forest burning, the stored CO2 can return back to the atmosphere
and can alter atmospheric composition which can result in climate change and global warming [4].

Cost-effective assessment of the forest biomass is vital for effective forest industry, sustainable
forest management and resource planning [5]. Traditional practices involve extensive fieldwork with
substantial human resources in the field, however, such practices are not sustainable for developing
countries like Indonesia. Recently remote sensing is being extensively used for forest studies [6–8],
however, incorporating field-based forest biophysical parameters increases the estimation accuracy of
forest biophysical parameters using remote sensing data [9–13]. Researchers attempted to estimate
forest AGB using optical, SAR and lidar data. Each of these have the potential to estimate different
characteristics of forest structure. Application of optical remote sensing is very limited to low
stand biomass regions. However, high-resolution optical data provide estimation of biophysical
parameters at stand level [14]. However, Synthetic Aperture Radar (SAR) and lidar are proven to be
more effective over the medium to high stand level biomass [15]. Many researchers used optical remote
sensing data ranging from medium resolutions to very high resolution that includes: Landsat, Sentinal,
QuickBird and WorldView-2 for forest aboveground biomass estimation [16–20]. As tropical regions are
mostly covered with clouds, the applications of optical remote sensing data is limited over the tropical
area. However, SAR provides unique penetration capability through clouds, which allow all weather
condition monitoring capability over tropical regions. Remote sensing of forest structure and biomass
with SAR bear significant potential for mapping and understanding of ecological processes [21–23].
SAR can provide significant information about forest structure depending on microwave (X-, C-, L-,
P-) band used for image acquisition. Scattering from X-band image mostly contain information about
leaves and small branches, scattering from C-band image provide information about main branches,
L-band have a penetration capability until stem of the tree, however, under ideal conditions P-band can
penetrate until soil and main roots.

Because of it’s unique penetration capability, SAR is very suitable for forest biophysical parameter
estimation over a heterogeneous environment like natural forest. Polarimetric SAR (PolSAR) is also
considered to be an alternative with active development particularly in forest applications. In this paper,
PolSAR term will be used frequently for full polarimetric SAR or quad pol SAR data. PolSAR-based
forest biophysical parameters estimation is an active research area nowadays where decomposition
based polarimetric parameters are being used in synergy with field based reference measurements
for forest biomass estimation [24–27]. PolSAR-based AGB estimation at higher level of forest biomass
experiences saturation of PolSAR signal and it’s well documented limitation of this technique [5,28,29].
As natural forest is perfectly random in nature, polarimetric parameters describing randomness of
the target could be significantly correlated with forest biophysical parameters. Few attempts were made
to exploit these polarimetric parameters to estimate forest parameters [30], however, a comprehensive
analysis of polarimetric parameters and it’s temporal consistency using time-series C-band PolSAR
data is not performed yet. This study focuses on estimating aboveground biomass using polarimetric
parameters estimated from C-band RadarSAT-2 image. Furthermore, consistency of these polarimetric
parameters was investigated for its multi-temporal behaviour for AGB estimation.

The paper is organized as follows. Section 2 mainly focused on description of study area, PolSAR
data used in this study, Ancillary Data used, referenced data used for modeling biomass as a function of
polarimetric parameters, main PolSAR concepts with related description, preprocessing of PolSAR data
and methodological framework adopted in this research. In Section 3, the key analysis was preformed
and discussed. In Section 4, study is concluded and future directions are potentials are listed.
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2. Materials and Method

2.1. Study Area

The study site is located in tropical peat and kerangas forests around Palangkaraya, the capital city
of Central Kalimantan Province, Indonesia (Figure 1). Central Kalimantan lies within the Inter-Tropical
Convergence Zone (ITCZ), and it falls under the wet tropical climate region. Central Kalimantan is hot
and humid, the mean daily temperature ranges from 24 ◦C to 30 ◦C and annual rainfall varies between
2500 to 2800 mm [31–33].

Figure 1. Location of the study area.

Rainfall in the study area is common throughout the year, however, the rainy season is from
October to February and the dry season is from March to September. The forest canopy has three
strata with a maximum height of 35 m. The principal tree species of the upper canopy are Gonystylus
Bancanus, Shorea spp. (Meranti), Cratoxylon Glaucum (Gerongang) and Dactylocladus Stenostachys
(Mentibu). The mix swamp forest grades into the low-pole forest, which continues for a further
7 km from the Sebangau river or so. Low canopy forest has only two strata and very few trees of
commercial value. The principal species of the upper canopy are Combretocarpus Rotundatus (Tumeh),
Palaquium sp., Dyera Costulata, Ilex Cymosa, Dyospyros sp. and Calophyllum spp. [34,35]. The study
site is relatively flat with an elevation that varies between 4 m to 157 m. Rainfall is common throughout
the year, and varies from about 60 inches (150 cm) to over 180 inches (450 cm) per year. In most parts
of Sabah the wettest months occur during the North–East Monsoon from October through February
and the driest months during the South–West Monsoon from March to September.

2.2. SAR and Ancillary Data

RadarSAT-2 full polarimetric times series data were acquired from the Canadian Space Agency
(CSA), in single look complex (SLC) format. A total of six acquisitions were acquired for study site
during October 2018 to January 2019 (see Figure 2 at incident angle ranging form 22◦ to 40◦ (see Table 1).
Each acquisition of the study area comprises of three adjust scenes. Land cover of the study site was
obtained from CIFOR Atlast for Borneo Island (https://www.cifor.org/map/atlas/). SRTM 30 m DEM
of study site was acquired from EarthExplorer (https://earthexplorer.usgs.gov/).

https://www.cifor.org/map/atlas/
https://earthexplorer.usgs.gov/
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Figure 2. RadarSAT-2 time series acquired from October 2018 to January 2019.

Table 1. RadarSAT-2 scenes used in this study.

Date of Acquisition Acqusition Mode Look Angle Range and Azi Resolution

20 October 2018 Fine Quad Pol 22.51∼25.96 4.73 × 4.98
13 November 2018 Fine Quad Pol 22.51∼25.96 4.73 × 4.98
24 December 2018 Fine Quad Pol 30.56∼33.64 4.73 × 4.69
31 December 2018 Fine Quad Pol 22.49∼25.96 4.73 × 4.98

10 January 2019 Fine Quad Pol 37.68∼40.38 4.73 × 4.77
17 January 2019 Fine Quad Pol 30.56∼33.64 4.73 × 4.69

Daily maximum temperature (◦C) and precipitation measured from nearest meteorological
weather station indicate the weather conditions during SAR data acquisition shown in Figure 3.
The majority of the acquisitions were acquired under dry conditions, however, one acquisition was
acquired under rainy conditions.

Figure 3. The daily precipitation and maximum temperature (from 1 October 2018 to 31 January 2019),
the six vertical dash lines indicate SAR observation dates as listed in the Table 1.
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2.3. Referenced Data

Referenced data were collected both from referenced biomass map [36] and a 30-day field visit in
the study site. A total of 300 referenced measurements were taken from referenced map uniformally
distributed throughout the study area and 54 plots of 20 m × 20 m dimensions were sampled during
the field survey. Distribution of referenced biomass measurements taken from referenced biomass map
and field plots are shown in Figure 1. In each field plot, the diameter at breast height (DBH), tree species,
and plot center GPS location was measured. Due to the existence of wildlife in the study site and limited
available resources, field data was only collected over easily accessible forest patches. A locally
developed generic allometric equation [37] was used to calculate the stand level aboveground biomass.
Table 2 listed locally developed generic allometric equations for the study site. The histograms for
referenced AGB data are shown in Figure 4. Sample points collected from referenced biomass maps
ranged from 0.04 Mg ha−1 to 636 Mg ha−1 and field data collected from field visit ranged from
28.36 Mg ha−1 to 530.25 Mg ha−1. Sampled data collected from referenced biomass map was used as
training data and data collected from field survey was used as validation data.

Figure 4. Forest aboveground biomass distribution. (a) Distribution in samples collected from
referenced biomass map; (b) Distribution in data collected through field visit.

Table 2. Locally developed allometric equations for mix forest, where St, Br, Tw, Le and WSG are stem,
branch, twing, leaf and wood specific gravity, respectively.

Allometric Model Sample Tree
Component

DBH (cm)
R2 Reference

lnAGB = −3.408+2.708 * lnD 40 St 1.1–115 0.98 [38]
AGB = 2.708 * D2.486 bda St 2–35 0.90 [39]

lnAGB = −2.26 + 1.27 * lnD2 184 St 4.8–69.7 0.99 [40]
lnAGB = −4.26 + 1.36 * lnD2 184 Br + Tw 4.8–69.7 0.91 [40]
lnAGB = −3.86 + 1.01 * lnD2 184 Le 4.8–69.7 0.81 [40]
lnAGB = 1.201 + 2.196 * ln(D) 122 St 6.5–200 0.96 [37]

lnAGB = −0.744 + 2.188 * log(D)+0.832 * log(WSG) 122 St 6.5–200 0.97 [37]
lnAGB = −2.289 + 2.649 * ln(D)−0.021 * ln(D)2 226 St 5–148 0.98 [41]

AGB = 42.69−12.8(D) + 1.242(D2) 170 St 5–148 0.84 [42]

2.4. Main PolSAR Concepts in the Context of This Study

Fully polarimetric SAR measurements can be represented by scattering matrix shown in
equation below:

[S] =

[
SHH SHV
SVH SVV

]
, (1)

where Sxy is the complex backscattering term associated with x and y being the transmitted and received
polarization respectively. Equation (1) can be rewritten in the Pauli basis:
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~k =
1√
2

[
SHH + SVV SHH − SVV 2SHV

]T
. (2)

In space-born SAR polarimetry, after polarimetric calibration, Faraday rotation compensation
need to be applied by rotating it an angle θ around the radar line of sight leading to:

S′ =

[
cosθ sinθ

−sinθ cosθ

] [
SHH SHV
SVH SVV

] [
cosθ −sinθ

sinθ cosθ

]
(3)

where

S′ =

[
Shh Shv
Svh Svv

]
. (4)

The corresponding covariance matrix is positive semi-definite Hermitian:

[C3] =


〈
ShhS∗hh

〉 〈√
2ShhS∗hv

〉 〈
ShhS∗hv

〉〈√
2ShvS∗hh

〉 〈
2ShvS∗hv

〉 〈√
2ShvS∗vv

〉
〈
SvvS∗hh

〉 〈√
2SvvS∗hv

〉
〈SvvS∗vv〉 .

 (5)

The covariance matrix is fundamental to characterizing the SAR image to corresponding scattering
components, e.g., surface, double-bounce, and volume scattering. Cloude and Pottier have proposed a
polarimetric coherence matrix, reformulating the covariance matrix in the Pauli basis, with the target
vector in the reciprocal mono-static case given by Equation (2). Then, the coherence matrix can be
expressed as follows:

[T3] =
1
2


〈
|Shh + Svv|2

〉
〈(Shh + Svv)(Shh − Svv)∗〉

〈
2(Shh + Svv)S∗hv

〉
〈(Shh − Svv)(Shh + Svv)∗〉

〈
|Shh − Svv|2

〉 〈
2(Shh − Svv)S∗hv

〉
〈2Shv(Shh + Svv)∗〉 〈2Shv(Shh − Svv)∗〉

〈
4 |Shv|2

〉
 (6)

2.4.1. Yamaguchi Decomposition Parameters

Yamaguchi proposed a four-component decomposition scheme [43], which can decompose a
coherency matrix to the surface, double-bounce, volume and helix scattering. Mathematical expressions
to compute volumetric scattering coefficients are listed below:

γv = 8
〈
|SHV |2

〉
− 4 |Im 〈S∗HV(SHH − SVV)〉| . (7)

Corresponding volumetric scattering power can be obtained by:

Pv = γv. (8)

Biomass Index (BMI) is an indicator of the relative amount of woody compared to leafy biomass.
As BMI is not a ratio, and therefore is influenced by slope.

BiomassIndex(BMI) =
σo

HH + σo
VV

2
(9)

Canopy Structure Index (CSI) is a measure of relative importance of vertical versus horizontal
structure in the vegetation. Ecosystems dominated by nearly vertical trunks or stems will have higher
CSI values than will ecosystems dominated by horizontal or near-horizontal branches. As the chosen
study area for this research is intact forest, CSI can be an important indicator of tree density.
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CanopyStructureIndex(CSI) =
σo

VV
σo

VV + σo
HH

. (10)

Volume scattering index (VSI) is a measure of depolarization of the linearly polarized incident
radar signal. High values of result when the cross-polarized bacscatter is dominating if compared to
co-polarized backscatter.

VolumeScatteringIndex(VSI) =
σo

HV
σo

HV + BMI
. (11)

The radar vegetation index (RVI) measures the randomness of scattering and can be written as:

RadarVegetationIndex(RVI) =
8σo

HV
σo

HH + σo
VV + 2σo

HV
. (12)

Charbonnueau et al. (2005) assumed that σo
HH ≈ σo

HH . This assumption is valid when
the interaction between the soil and vegetation is negligible. Thus equation for RVI reduced to
the form of:

RadarVegetationIndex(RVI) =
4σo

HV
σo

HH + σo
HV

. (13)

Durden et al. (1990) [44] put forward a pedestal height (hp) as the ratio of minimum eigenvalue to
maximum eigenvalue (Lee and Pottier, 2009) [45]:

PedestalHeight(hp) =
min(λ1, λ2, λ3))

max(λ1, λ2, λ3))
. (14)

As a measure of the unpolarized backscattered energy, the pedestal height is expected to be high
in the case of an forest area.

2.4.2. Eigen Decomposition Parameters

Cloude and Pottier (1996) proposed the following description for the eigenvectors of
the covariance matrix in the Pauli basis [46]:

ẽ =
[
cosα sinαcosβeiδ sinαsinβeiγ

]
. (15)

The average angle α can be calculated using

Alpha(α) = P1λ1 + P2λ2 + P3λ3, (16)

where
λ1 =

1
2
|SHH + SVV |2 (17)

λ2 =
1
4
|SHH − SVV |2 + |SHV |2 + ImS∗HV(|SHH − SVV |2) (18)

λ3 =
1
4
|SHH − SVV |2 + |SHV |2 − ImS∗HV(|SHH − SVV |2). (19)

Entropy is the measure of target randomness or disorder, which is defined as:

Entropy(H) = −
3

∑
i=1

pi · log3(pi); pi =
λi

∑3
k=1 λk

. (20)
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2.4.3. Backscattering Coefficient

The radar backscattering coefficient σo provides information about the imaging surface, and it
is the function of radar observation parameters: frequency, polarization, incident angle, and surface
parameters: roughness, geometric shape and dielectric constant of the target.

σo
slc = 10 · log10 < I2 + Q2 > +CF1 + A. (21)

2.5. PolSAR Data Pre-Processing

The acquired time series RadarSAT-2 full polarimetric data were multi-looked to 20 m square pixel.
Backscattering coefficient (σo) for HH, HV, VH and VV channels were calculated using Equation (21).
Eigen-decomposition parameters, i.e., alpha (α) and entropy (H) were computed using Equations (16)
and (20) respectively. Volumetric scattering behaviour was estimated using Yamaguchi decomposition
(Equation (8)). Similarly polarimetric indices that include Canopy Structure Index (CSI), Volume
Scattering Index (VSI), Radar Vegetation Index (RVI), Pedestal Height (ph) were calculated using
Equations (10), (11), (13) and (14) respectively. The whole processing was done using PCI Geomatica
and open source SNAP software package provided by the European Space Agency (ESA). All of
the computed parameters were terrain-corrected using SRTM 30 m DEM. Lee sigma filter 7 × 7 was
performed to smooth the speckles in the resultant images. The same processing was applied on all
RadarSAT-2 acquisitions as listed in Table 1. All of the polarimetric parameters extracted and used for
further analysis are listed in Table 3.

Table 3. Polarimetric parameters used in this study.

Polarimetric Parameter Description

σHH Backscattering Coefficient of HH Channel
Backscattering σHV Backscattering Coefficient of HV Channel

Coefficient σVH Backscattering Coefficient of VH Channel
σVV Backscattering Coefficient of VH Channel

Eighn Decomposition H Entropy
Parameters α Alpha

Yamaguchi Decomposition γsur f Surface Scattering
Parameters γvol Volume Scattering

CSI Canoopy Structure Index
Polarimetric VSI Volume Scattering Index
Parameters RVI Radar Vegetation Index

ph Pedestal height

Correlation analysis was performed among all polarimetric parameters listed in Table 3,
and results are shown in Figure 5. As can be seen from the Figure 5 mostly the correlation among
polarimetric parameters is not significantly high except few exceptions; e.g., α is correlated to σVH with
R2 of 0.60; entropy (E) is significantly correlated with VSI, RVI and ph with R2 of 0.60, 0.78 and 0.79
and σVH is moderately correlated with VSI.
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Figure 5. Correlation matrix among polarimetric parameters used in this research.

2.6. Modeling AGB vs. Polarimetric Parameters

As the referenced biomass measurements (training data) was made available at the 1 hectare
scale. To match this, all polarimetric parameters were upscaled to 1 hectare (100 m × 100 m) resolution.
Regression analysis was performed between referenced biomass measurements and polarimetric
parameters. Logarithmic regression was chosen based on plotting results. In logarithmic regression
saturation often occurs beyond a certain point. Hence, the accuracy such relationship significantly
influenced beyond the saturation point. If X is the independent variable and Y is dependent variable,
then the logarithmic regression equation can be written as:

Y = xo + x1lnX (22)

where X is the forest aboveground biomass in Mg ha−1, Y is the polarimetric parameter extracted
from RadarSAT-2 image, ln is the natural log and xo, x1 are regression coefficients. In case regression
modeling, coefficient of determination (R2) is of utter most significance. R2 describes the proportion of
variance in the dependent variable that is predictable from the independent variable.

R2 = 1− UnexplainedVariation
TotalVariation

(23)

R2 = 1− SSres

SStot
. (24)

In the best case, if the relationship between dependent and independent variable is perfectly
linear then SSres = 0 and R2 = 1.
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Similarly, the resultant root mean square error can be estimated using equation written as under:

RMSE =

√√√√ N

∑
(i=1))

[
(xo − x1)

N
], (25)

where xo − x1 is the residual and N is the number of sample points.
The resultant regression analysis is discussed in Section 3. The same approach was adopted for

all RadarSAT-2 acquisitions, regression results are summarized in Table 4. In order to get AGB as a
function of polarimetric parameter, the resultant regression models were inverted. Using inverted
regression biomass maps were generated for all acquisitions and using validation data, these maps
were validated. The complete methodological framework is shown in Figure 6.

Table 4. Regression results for RadarSAT-2 acquisitions.

Parameters 20 October 2018 13 November 2018 24 December 2018 31 December 2018 10 January 2019 17 January 2019

VSI 0.61 0.45 0.51 0.64 0.60 0.55
H 0.58 0.43 0.49 0.60 0.57 0.53

RVI 0.53 0.43 0.49 0.57 0.55 0.51
ph 0.51 0.36 0.47 0.53 0.54 0.49

γvol 0.44 0.32 0.49 0.49 0.46 0.43
α 0.44 0.33 0.41 0.48 0.46 0.44

σVH 0.40 0.39 0.43 0.49 0.48 0.46
CSI 0.33 0.27 0.31 0.41 0.42 0.34

Figure 6. Methodological framework.

3. Results and Discussions

First of all, temporal consistency and inter-dependency of polarimetric parameters and their
suitability for AGB estimation is discussed. We also described the results of regression between
polarimetric parameters and reference biomass measurements. Next, the validation results are
described in detail.
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3.1. Temporal Dependence of Polarimetric Parameters

As PolSAR images were acquired under different weather conditions (see Figure 3). It is important
analyze the impact caused by different weather conditions. For this, the PolSAR parameters extracted
from temporal images were evaluated in terms of their temporal consistency, inter-dependence
and suitability for forest aboveground biomass estimation across rainy and dry conditions. Figure 7
shows the correlation graph of each polarimetric parameter for all PolSAR acquisitions. It can
be seen that α and CSI are not temporally correlated, however H, σVH , ph, RVI, γvol and VSI are
temporally correlated at scale of moderate to high. Based on this temporal correlation, it is expected
that the AGB vs polariemtric parameters modeling results will be temporally consistent except for
α and CSI. The suitability of selected polarimetric parameters (listed in Table 3) for AGB estimation
can be validated by modeling referenced AGB vs. polarimetric parameters using regression. For this,
all selected polarimetric parameters (listed in Table 3) were chosen for further analysis.

Figure 7. Correlation matrix illustrating the level of temporal correlation among polarimetric
parameters extracted from RadarSAT-2 time series acquisitions.

3.2. Regression Analysis—Modeling AGB vs. Polarimetric Parameters

Regression results for AGB vs. polarimetric parameters for 31 December 2018 acquisition is
shown in Figure 8. Similarly, regression results for selected polarimetric parameters for all PolSAR
acquisitions are listed in Table 4. As it can be seen from the Figure 8, all polarimetric parameters
were normalized between 0 and 1. This makes it easy to compare results from different polarimetric
parameters having a different dynamic range.
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Figure 8. Model performance for the nonlinear regression of aboveground biomass (AGB) as function
of polarimetric parameters.

It can be seen from Figure 8; VSI, H, RVI, ph, and α are significantly correlated with referenced
biomass measurements. Similarly, CSI and σVH are moderately correlated with referenced biomass
measurements. Similar consistent results were found for other PolSAR acquisitions (see Table 4).
Similarly it can be seen from Table 4; regression results for 13 November 2018 acquisition are least
correlated if compared to other acquisitions. This can be easily correlated with moist weather conditions
during acquisition (see Figure 3). Among selected polarimetric parameters, VSI was found to be
the most correlated with R2 ranging from 0.45 (under moist conditions) to 0.62 (under dry conditions).
Similarly, σVH found the least correlated with R2 ranging from 0.27 (under moist conditions) to 0.42
(under dry conditions). Regression results for 24 December 2018 acquisition are also moderately
affected by moist conditions caused by rainfall few days before acquisition. The regression results for
all selected variables are temporally consistent except of those affected by moist conditions caused by
heavy precipitation.

As PolSAR-based AGB estimation at a higher level of forest biomass experiences saturation
of PolSAR signal [5,28,29], in this study SAR signal saturation was observed mainly at stand level
300 Mg ha−1. However, for few polarimetric parameters e.g., RVI, ph, and CSI saturation was observed
at stand level 400 Mg ha−1.

3.3. Model Validation—Reference Biomass vs Observed Biomass

Based on regression analysis, models for VSI, H, RVI, ph and γvol are selected for biomass mapping.
To do so, these models were inverted and from resultant models, the AGB of study site was estimated.

To get a more realistic outcome, a low pass filter was applied to get relatively smooth AGB maps.
Resultant biomass maps were validated using validation set (field based referenced biomass measurements).
Validation results are shown in Figure 9. The resultant R2 and RMSE are summarized in Table 5.
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Figure 9. Scatter-plots of referenced biomass vs. predicted biomass from polarimetric parameters
extracted from RadarSAT-2 scenes.

Table 5. Temporal AGB estimation with accuracy statistics.

VSI H RVI ph γvol

R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE

20 October 2018 0.76 34.43 0.73 36.88 0.71 41.88 0.70 39.56 0.68 39.87
13 November 2018 0.63 41.44 0.61 44.93 0.60 47.73 0.58 51.84 0.55 54.45
24 December 2018 0.71 34.76 0.67 38.33 0.66 44.11 0.64 44.43 0.58 46.53
31 December 2018 0.77 33.21 0.75 35.12 0.72 38.49 0.72 37.35 0.69 37.53

10 January 2019 0.73 34.88 0.71 36.98 0.70 42.42 0.66 40.43 0.66 41.23
17 January 2019 0.71 35.82 0.70 37.81 0.68 42.10 0.66 42.43 0.63 42.43

Validation results were found to be very promising with R2 ranging from 0.77 (under dry
conditions) to 0.63 (under moist conditions) and RMSE ranging from 34.43 Mg ha−1 to 35.82 Mg ha−1

for VSI. Similarly, H, RVI, ph and γvol validations results are also significant with R2 ranging
from 0.75–0.61, 0.72–0.60, 0.72–0.64, 0.69–0.55 and RMSE ranging from 35.12–44.44 Mg ha−1,
38.49–47.73 Mg ha−1, 37.35–51.84 Mg ha−1, 37.53–54.45 Mg ha−1 respectively during dry and wet
conditions. These results are consistent with other published research for forest AGB estimation [47,48].
However it can be seen from Figure 9, the estimated AGB is lower than referenced AGB.
As C-band mostly interacts with leaves, main branches and under perfectly dry conditions can
penetrate to the stem of tree, hence C-band is good to estimate AGB over low biomass regions.

3.4. Limitations

In this research, forest AGB was accurately estimated with the following limitations:

1. Referenced biomass data collected through the field is not uniformally distributed throughout
the study area. With more field data that are uniformally distributed throughput the study site
cover major tree species can comprehensive understanding of true biomass conditions. However
it is extremely difficult due to existence of wild-life.
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2. As region specific tree species allometric equations are not available for tree species in study site.
Generic region specific allometric was used to calculate AGB using field data. Species specific
allometric can give more accurate AGB estimates.

3. As C-band is mostly sensitive to leaves and main branches, more precise AGB estimation
can be done by developing synergy of polarimetric parameters extracted from C-
and L-band PolSAR data.

4. Conclusions

This study presents tropical peatland forest biomass estimation using polarimetric parameters
extracted from RadarSAT-2 images. Polarimetric parameters includes backscattering coefficient
(σo), eign-decomposition parameters (H, α), Yamaguchi decomposition parameters (γsur f , γvol)
and polarimetric indices (VSI, RVI, ph, CSI) were used to modeled AGB. A detailed methodology
for pro-processing of PolSAR images and AGB modeling is presented in this paper. Non-linear
regression was used to model AGB as a function of polarimetric parameters. The regression result
shows significant correlation between polarimetric parameters and referenced AGB. Selected regression
models based on polarimetric parameters (VSI, H, RVI, ph, γvol) were further used to generate biomass
maps. Resultant biomass maps were validated with strong correlated was found between referenced
AGB and predicted AGB with R2 ranging from 0.77 to 0.58 ranging from 33.21 Mg ha−1 to 37.53
under dry conditions, R2 ranging from 0.63 to 0.55 and RMSE ranging from 41.44 to 54.45 under
moist conditions.

PolSAR images acquired under perfectly dry conditions perform better than the ones acquired
under moist conditions. A saturation point was observed at 300 Mg ha−1 for VSI, H, γvol , α and σVH .
However, the saturation point for models developed using RVI, ph, CSI was observed at 400 Mg ha−1.
The selected models also shown temporally consistent behavior.
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