Mineral Soil Texture–Land Cover Dependency on Microwave Dielectric Models in an Arid Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site and Field Work
2.2. Soil Samples
- Measurement of the soil moisture of field sample under natural conditions by TDR weight, and then measurement of the dielectric constant.
- Complete drying of the soil inside an oven at 110 °C for 24 h.
- Introduction of the soil sample inside a regular cup and weighing it after sieving the gravel.
- Dielectric toolkit calibration.
- Measurement of ε′ parameters and computation of the dielectric constant.
- Introduction 27 mL of water (10% water content) uniformly distributed in the cavity.
- Weighing of the new sample for gravimetric soil moisture.
- Measurement of samples of the ε′ dielectric constant for each soil texture and computation of the dielectric constant for the next water content (e.g., 20%), and then repeating for the same soil texture.
- Then the dielectric constant of 36 soil samples was measured in a microwave remote sensing laboratory using a dielectric constant toolkit. All data were analyzed by integrating it with other geophysical data in GIS, such as land cover and soil textures.
2.3. Soil Dielectric Models
2.4. Dielectric Constant Measurement
3. Results
3.1. Dielectric Measurement for the 0.3–3 GHz Range
3.2. Analysis of the Simulated Dielectric Constants
3.3. Dielectric Dependency on Soil Texture and Land Cover Type
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ghosh, A.; Bihari, J.; Pyne, S. Dielectric parameters of dry and wet soils at 14.89 GHz. IJRSP 1998, 27, 130–134. [Google Scholar]
- Usowicz, B.; Marczewski, W.; Bogdan Usowicz, J.; Lipiec, J. Statistical Modelling of the Soil Dielectric constant. Geophys. Res. Abstr. 2020, 12, 6749. [Google Scholar]
- Lee, E.; Chase, T.N.; Rajagopalan, B.; Barry, R.G.; Biggs, T.W.; Lawrence, P.J. Effects of irrigation and vegetation activity on early Indian summer monsoon variability. Int. J. Clim. 2009, 29, 573–581. [Google Scholar] [CrossRef]
- Curtis, J.O. Moisture Effects on the Dielectric Properties of Soils. IEEE Trans. Geosci. Remote Sens. 2001, 39, 125–128. [Google Scholar] [CrossRef]
- Gadani, D.H.; Vyas, A.D. Measurement of complex dielectric constant of soils of Gujarat at X- and C-band microwave frequencies. IJRSP 2008, 37, 221–229. [Google Scholar]
- Chaudhari, H.C.; Shinde, V.J. Dielectric properties of soil at X-band microwave frequency. IJPAP 2012, 50, 64–66. [Google Scholar]
- Wang, J.R.; Schmugge, T.J. An Empirical Model for the Complex Dielectric Permittivity of Soils as a Function of Water Content. IEEE Trans. Geosci. Remote. Sens. 1980, 18, 288–295. [Google Scholar] [CrossRef] [Green Version]
- Campbell, J.E. Dielectric properties and influence of conductivity in soils at one to fifty megahertz. Soil Sci. Soc. Am. J. 1990, 54, 332–341. [Google Scholar] [CrossRef]
- Arya, L.M.; Paris, J.F. A Physicoempirical Model to Predict the Soil Moisture Characteristic from Particle-Size Distribution and Bulk Density Data. Soil Sci. Soc. Am. J. 1981, 45, 1023–1030. [Google Scholar] [CrossRef]
- WANG, L.; Qu, J.J. Satellite remote sensing applications for surface soil moisture monitoring: A review. Earth Sci. China 2009, 3, 237–247. [Google Scholar] [CrossRef]
- Hallikainen, M.; Ulaby, F.; Dobson, M.; El-Rayes, M.; Wu, L.-K. Microwave Dielectric Behavior of Wet Soil-Part 1: Empirical Models and Experimental Observations. IEEE Trans. Geosci. Remote. Sens. 1985, 23, 25–34. [Google Scholar] [CrossRef]
- Dobson, M.C.; Ulaby, F.T.; Hallikainen, M.T.; El-Rayes, M.A. Microwave dielectric behaviour of wet soils, Part II: Dielectric mixing models. IEEE Trans. Geosci. Remote. Sens. 1985, 23, 35–46. [Google Scholar] [CrossRef]
- Ulaby, F.T.; Dubois, P.C.; Van Zyl, J. Radar mapping of surface soil moisture. J. Hydrol. 1996, 184, 57–84. [Google Scholar] [CrossRef]
- Peplinski, N.; Ulaby, F.; Dobson, M. Dielectric properties of soils in the 0.3-1.3-GHz range. IEEE Trans. Geosci. Remote. Sens. 1995, 33, 803–807. [Google Scholar] [CrossRef]
- Baghdadi, N.; Zribi, M. Evaluation of radar backscatter models IEM, OH and Dubois using experimental observations. Int. J. Remote. Sens. 2006, 27, 3831–3852. [Google Scholar] [CrossRef]
- Calla, O.P.N.; Singh, R.K. Emission characteristics of dry and wet loamy sand soil layered packed at microwave frequencies. IJRSP 2002, 31, 285–292. [Google Scholar]
- Natural Resources Conservation Service (NRCS). Available online: http://www.nrcs.usda.gov (accessed on 24 February 2017).
- Li, Y.-Y.; Zhao, K.; Ren, J.-H.; Ding, Y.-L.; Wu, L.-L. Analysis of the Dielectric Constant of Saline-Alkali Soils and the Effect on Radar Backscattering Coefficient: A Case Study of Soda Alkaline Saline Soils in Western Jilin Province Using RADARSAT-2 Data. Sci. World J. 2014, 2014, 1–14. [Google Scholar] [CrossRef]
- Zribi, M.; Le Morvan, A.; Baghdadi, N. Dielectric Constant Modelling with Soil–Air Composition and Its Effect on Sar Radar Signal Backscattered over Soil Surface. Sensors 2008, 8, 6810–6824. [Google Scholar] [CrossRef]
- Mironov, V.L.; De Roo, R.D.; Savin, I.V. Temperature-dependable microwave dielectric model for an Arctic soil. IEEE Trans. Geosci. Remote Sens 2013, 48, 2544–2556. [Google Scholar] [CrossRef]
- Mironov, V.L.; Fomin, S.V. Temperature and Mineralogy Dependable Model for Microwave Dielectric Spectra of Moist Soils. PIERS Online 2009, 5, 411–415. [Google Scholar] [CrossRef] [Green Version]
- Mironov, V.L.; Dobson, M.C.; Kaupp, V.H.; Komarov, S.A.; Kleshchenko, V.N. Generalized refractive mixing dielectric model for moist soils. IEEE Trans. Geosci. Remote Sens. 2004, 42, 773–785. [Google Scholar] [CrossRef]
- Mironov, V.L.; Fomin, S.V. Temperature dependable microwave dielectric model for moist soils. PIERS Online 2009, 5, 831–835. [Google Scholar] [CrossRef] [Green Version]
- Mironov, V.; Kosolapova, L.; Fomin, S. Physically and Mineralogically Based Spectroscopic Dielectric Model for Moist Soils. IEEE Trans. Geosci. Remote. Sens. 2009, 47, 2059–2070. [Google Scholar] [CrossRef]
- Wang, S.G.; Li, X.; Han, X.J.; Jin, R. Estimation of surface soil moisture and roughness from multi-angular ASAR imagery in the Watershed Allied Telemetry Experimental Research (WATER). Hydrol. Earth Syst. Sci. 2011, 15, 1415–1426. [Google Scholar] [CrossRef] [Green Version]
- He, B.; Xing, M.; Bai, X. A Synergistic Methodology for Soil Moisture Estimation in an Alpine Prairie Using Radar and Optical Satellite Data. Remote. Sens. 2014, 6, 10966–10985. [Google Scholar] [CrossRef] [Green Version]
- Hajnsek, I.; Papathanassiou, K.P.; Jagdhuber, T.; Schon, H. Potential of Estimating Soil Moisture Under Vegetation Cover by Means of PolSAR. IEEE Trans. Geosci. Remote. Sens. 2009, 47, 442–454. [Google Scholar] [CrossRef] [Green Version]
- Gharechelou, S.; Tateishi, R.; Sumantyo, J.T.S. Interrelationship Analysis of L-Band Backscattering Intensity and Soil Dielectric Constant for Soil Moisture Retrieval Using PALSAR Data. Adv. Remote. Sens. 2015, 4, 15–24. [Google Scholar] [CrossRef] [Green Version]
- Gharechelou, S.; Tateishi, R.; Sumantyo J, T.S. Comparison of Simulated Backscattering Signal and ALOS PALSAR Backscattering over Arid Environment Using Experimental Measurement. Adv. Remote. Sens. 2015, 4, 224–233. [Google Scholar] [CrossRef] [Green Version]
- Gharechelou, S.; Tateishi, R.; Johnson, B.A. A Simple Method for the Parameterization of Surface Roughness from Microwave Remote Sensing. Remote. Sens. 2018, 10, 1711. [Google Scholar] [CrossRef] [Green Version]
- Gharechelou, S.; Tateishi, R.; Sharma, R.C.; Johnson, B.A. Soil Moisture Mapping in an Arid Area Using a Land Unit Area (LUA) Sampling Approach and Geostatistical Interpolation Techniques. ISPRS Int. J. Geo-Inf. 2016, 5, 35. [Google Scholar] [CrossRef] [Green Version]
- Mironov, V.L.; Kosolapova, L.G.; Lukin, Y.I.; Karavaysky, A.Y.; Molostov, I.P. Temperature-and texture-dependent dielectric model for frozen and thawed mineral soils at a frequency of 1.4 GHz. Remote Sens. Environ. 2017, 200, 240–249. [Google Scholar] [CrossRef]
- Mialon, A.; Richaume, P.; Leoroux, A.J.; Bircher, S.; Pellarin, T.; Wigneron, J.; Kerr, Y. Comparison of Dobson and Mironov Dielectric Models in the SMOS Soil Moisture Retrieval Algorithm. IEEE Trans. Geosci. Remote. Sens 2015, 53, 3084–3094. [Google Scholar] [CrossRef]
- Park, C.-H.; Montzka, C.; Jagdhuber, T.; Jonard, F.; De Lannoy, G.; Hong, J.; Jackson, T.J.; Wulfmeyer, V. A Dielectric Mixing Model Accounting for Soil Organic Matter. Vadose Zone J. 2019, 18, 190036. [Google Scholar] [CrossRef]
Field No | Soil Textures | Bulk Density (g/cm3) | TDR (SM %) | Gravimetric (SM %) | Land Cover |
---|---|---|---|---|---|
1 | Sandy | 1.73 | 2.3 | 1.8 | Bare land |
2 | Silty | 1.70 | 6.9 | 9.3 | Fallow land |
3 | Clay | 1.32 | 6.6 | 5.83 | Plowed land |
4 | Clay | 1.50 | 29.3 | 30.25 | Sparse vegetation |
5 | Clay | 1.45 | 20.7 | 18.81 | Sparse vegetation |
6 | Clay | 1.35 | 4.3 | 5.42 | Fallow land |
7 | Clay | 1.38 | 9 | 10.21 | Cropland |
8 | Clay | 1.28 | 11.2 | 11.74 | Fallow land |
9 | Silty clay | 1.50 | 25 | 27.11 | Sparse vegetation |
10 | Clay | 1.45 | 6.7 | 4.95 | Bare land |
11 | Clay | 1.38 | 19.7 | 18.26 | Bare land |
12 | Clay | 1.45 | 41.4 | 38.65 | Bare land |
13 | Clay | 1.42 | 42.6 | 36.79 | Bare land |
14 | clay | 1.60 | 10.6 | 9.6 | Bare land |
15 | Clay | 1.35 | 16.6 | 17.65 | Sparse vegetation |
16 | Silty | 1.55 | 5.8 | 5.36 | Bagh |
17 | Sandy | 1.7 | 8 | 7.66 | Bagh |
18 | Sandy | 1.72 | 7.3 | 9.45 | Bagh |
19 | Sandy | 1.83 | 1.1 | 0.85 | Sand dune |
20 | Silty | 1.9 | 9.8 | 8.26 | Bare land |
21 | Silt Loam | 1.82 | 8.6 | 7.92 | Bare land |
22 | Loam | 1.55 | 0.2 | 0.1 | Bare land |
23 | Loam | 1.58 | 3.3 | 4.12 | Sparse vegetation |
24 | Clay | 1.32 | 9.4 | 8.66 | Sparse vegetation |
25 | Loam | 1.42 | 8.5 | 7.54 | Sparse vegetation |
26 | Silty | 1.59 | 6.5 | 7.98 | Sparse vegetation |
27 | Clay | 1.36 | 10 | 11.25 | Sparse vegetation |
28 | Loam | 1.62 | 2.6 | 1.85 | Sparse vegetation |
29 | Loam | 1.53 | 15 | 13.55 | Bare land |
30 | Sandy | 1.65 | 2.7 | 1.75 | Sparse vegetation |
31 | Clay | 1.28 | 10.1 | 12.25 | Fallow land |
32 | Clay | 1.31 | 5.6 | 4.8 | Plowed land |
33 | Clay | 1.37 | 9.2 | 12.45 | Cropland |
34 | Loam | 1.61 | 2.5 | 2.12 | Sparse vegetation |
35 | Loam | 1.52 | 2.2 | 1.65 | Sparse vegetation |
36 | Loam | 1.67 | 7.2 | 3.25 | Bagh |
Soil Moisture Content (%) | Water Volume (mL) |
---|---|
40 | 157 |
30 | 24 |
20 | 41 |
10 | 57 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gharechelou, S.; Tateishi, R.; Johnson, B.A. Mineral Soil Texture–Land Cover Dependency on Microwave Dielectric Models in an Arid Environment. Land 2020, 9, 39. https://doi.org/10.3390/land9020039
Gharechelou S, Tateishi R, Johnson BA. Mineral Soil Texture–Land Cover Dependency on Microwave Dielectric Models in an Arid Environment. Land. 2020; 9(2):39. https://doi.org/10.3390/land9020039
Chicago/Turabian StyleGharechelou, Saeid, Ryutaro Tateishi, and Brian A. Johnson. 2020. "Mineral Soil Texture–Land Cover Dependency on Microwave Dielectric Models in an Arid Environment" Land 9, no. 2: 39. https://doi.org/10.3390/land9020039
APA StyleGharechelou, S., Tateishi, R., & Johnson, B. A. (2020). Mineral Soil Texture–Land Cover Dependency on Microwave Dielectric Models in an Arid Environment. Land, 9(2), 39. https://doi.org/10.3390/land9020039