Agent-Based Modeling for Integrating Human Behavior into the Food–Energy–Water Nexus
Abstract
:1. Introduction
- Which sectors and types of cross-sector interactions are modeled?
- For what purposes are ABMs used, and what are the justifications for using ABMs over other modeling approaches?
- To what extent do quantitative and qualitative data inform model development?
- What spatial and temporal scales, for both simulated environments and agents, are represented?
- Which agents are modeled and what drives their behavior?
- How are human behaviors and social interactions incorporated into and influence cross-sector interactions?
2. Materials and Methods
“(‘agent-based’ OR ‘multi-agent’) AND model* AND (((food OR agri*) AND water) OR ((food OR agri*) AND (biofuel OR *energy)) OR (water AND (biofuel OR *energy))) AND (system* OR nexus) AND (supply OR demand OR market OR efficien* OR sustainab*)”
3. Results
3.1. Research Context
3.1.1. Justifications for Using ABM
3.1.2. Model Purpose
3.1.3. Use of Empirical Data
3.2. Simulation Design
3.2.1. Agents
“Reactive agents are defined as those that do not learn or update their rules of behavior but respond passively to other agents and the environment. … They can be represented using a set of simple or complex rules to simulate their response to events in an environment. Alternatively, active agents are goal-directed and initiate actions to achieve individual goals. They may use an optimization methodology to select actions to satisfy a formalized goal or objective function.”(p. 3)
3.2.2. Agent and Model Environment Spatial and Temporal Scales
3.3. Incorporating Human Behavior
3.3.1. Agent Interactions
3.3.2. Use of Behavioral Theories, Agent Motivations, and Types of Decisions
3.3.3. Social Networks
3.4. ABM Innovations
3.5. ABM Limitations
4. Discussion
5. Conclusions
Supplementary Materials
Funding
Conflicts of Interest
Appendix A
- Bell, A.R.; Ward, P.S.; Shah, M.A.A. Increased water charges improve efficiency and equity in an irrigation system. Ecol. Soc. 2016, 21, doi:10.5751/ES-08642-210323.
- Bieber, N.; Ker, J.H.; Wang, X.; Triantafyllidis, C.; van Dam, K.H.; Koppelaar, R.H.E.M.; Shah, N. Sustainable planning of the energy-water-food nexus using decision making tools. Energy Policy 2018, 113, 584–607, doi:10.1016/j.enpol.2017.11.037.
- Farhadi, S.; Nikoo, M.R.; Rakhshandehroo, G.R.; Akhbari, M.; Alizadeh, M.R. An agent-based-nash modeling framework for sustainable groundwater management: A case study. Agric. Water Manag. 2016, 177, 348–358, doi:10.1016/j.agwat.2016.08.018.
- Fernandez-Mena, H.; Gaudou, B.; Pellerin, S.; MacDonald, G.K.; Nesme, T. Flows in Agro-food Networks (FAN): An agent-based model to simulate local agricultural material flows. Agric. Syst. 2020, 180, 102718, doi:https://doi.org/10.1016/j.agsy.2019.102718.
- Holtz, G.; Pahl-Wostl, C. An agent-based model of groundwater over-exploitation in the Upper Guadiana, Spain. Reg. Environ. Chang. 2012, 12, 95–121, doi:10.1007/s10113-011-0238-5.
- Khan, H.F.; Yang, Y.C.E.; Xie, H.; Ringler, C. A coupled modeling framework for sustainable watershed management in transboundary river basins. Hydrol. EARTH Syst. Sci. 2017, 21, 6275–6288, doi:10.5194/hess-21-6275-2017.
- Mo, W.; Lu, Z.; Dilkina, B.; Gardner, K.H.; Huang, J.-C.; Foreman, M.C. Sustainable and Resilient Design of Interdependent Water and Energy Systems: A Conceptual Modeling Framework for Tackling Complexities at the Infrastructure-Human-Resource Nexus. SUSTAINABILITY 2018, 10, doi:10.3390/su10061845.
- Namany, S.; Govindan, R.; Alfagih, L.; McKay, G.; Al-Ansari, T. Sustainable food security decision-making: An agent-based modelling approach. J. Clean. Prod. 2020, 255, doi:10.1016/j.jclepro.2020.120296.
- Ng, T.L.; Eheart, J.W.; Cai, X.; Braden, J.B. An agent-based model of farmer decision-making and water quality impacts at the watershed scale under markets for carbon allowances and a second-generation biofuel crop. Water Resour. Res. 2011, 47, doi:10.1029/2011WR010399.
- Perello-Moragues, A.; Noriega, P.; Poch, M. Modelling contingent technology adoption in farming irrigation communities. JASSS 2019, 22, doi:10.18564/jasss.4100.
- Utomo, D.S.; Onggo, B.S.; Eldridge, S. Applications of agent-based modelling and simulation in the agri-food supply chains. Eur. J. Oper. Res. 2018, 269, 794–805.
Appendix B
Journal | Count | Journal | Count |
---|---|---|---|
Journal of Cleaner Production | 3 | Global Change Biology—Bioenergy | 1 |
Agricultural Systems | 2 | Hydrology and Earth System Sciences | 1 |
Energy | 2 | Int. J. of Environment and Pollution | 1 |
Water Resources Management | 2 | Italian Journal of Agronomy | 1 |
Agronomy for Sustainable Development | 1 | Journal of Water Resources Planning and Management | 1 |
Applied Energy | 1 | Land Use Policy | 1 |
Bioenergy Research | 1 | Natural Hazards | 1 |
Earth’s Future | 1 | Science of the Total Environment | 1 |
Earth System Dynamics | 1 | Simulation | 1 |
Energy Policy | 1 | Sustainability Science | 1 |
Energies | 1 | Regional Environmental Change | 1 |
Environmental Modeling and Software | 1 | Water Resources Research | 1 |
Total | 29 |
References
- Bazilian, M.; Rogner, H.; Howells, M.; Hermann, S.; Arent, D.; Gielen, D.; Steduto, P.; Mueller, A.; Komor, P.; Tol, R.S.J.; et al. Considering the energy, water and food nexus: Towards an integrated modelling approach. Energy Policy 2011, 39, 7896–7906. [Google Scholar] [CrossRef]
- Ringler, C.; Bhaduri, A.; Lawford, R. The nexus across water, energy, land and food (WELF): Potential for improved resource use efficiency? Curr. Opin. Environ. Sustain. 2013, 5, 617–624. [Google Scholar] [CrossRef]
- Hussey, K.; Pittock, J. The Energy–Water Nexus: Managing the Links between Energy and Water for a Sustainable Future. Ecol. Soc. 2012, 17, art31. [Google Scholar] [CrossRef]
- McCarl, B.A.; Yang, Y.; Schwabe, K.; Engel, B.A.; Mondal, A.H.; Ringler, C.; Pistikopoulos, E.N. Model Use in WEF Nexus Analysis: A Review of Issues. Curr. Sustain. Energy Rep. 2017, 4, 144–152. [Google Scholar] [CrossRef]
- Miralles-Wilhelm, F. Development and application of integrative modeling tools in support of food-energy-water nexus planning—A research agenda. J. Environ. Stud. Sci. 2016, 6, 3–10. [Google Scholar] [CrossRef] [Green Version]
- Allain, S.; Ndong, G.O.; Lardy, R.; Leenhardt, D. Integrated assessment of four strategies for solving water imbalance in an agricultural landscape. Agron. Sustain. Dev. 2018, 38. [Google Scholar] [CrossRef] [Green Version]
- Albrecht, T.R.; Crootof, A.; Scott, C.A. The Water-Energy-Food Nexus: A systematic review of methods for nexus assessment. Environ. Res. Lett. 2018, 13, 43002. [Google Scholar] [CrossRef]
- Yang, J.; Yang, Y.C.E.; Khan, H.F.; Xie, H.; Ringler, C.; Ogilvie, A.; Seidou, O.; Djibo, A.G.; van Weert, F.; Tharme, R. Quantifying the Sustainability of Water Availability for the Water-Food-Energy-Ecosystem Nexus in the Niger River Basin. Earths Futur. 2018, 6, 1292–1310. [Google Scholar] [CrossRef]
- Hering, J.G.; Waite, T.D.; Luthy, R.G.; Drewes, J.E.; Sedlak, D.L. A changing framework for urban water systems. Environ. Sci. Technol. 2013, 47, 10721–10726. [Google Scholar] [CrossRef]
- Bieber, N.; Ker, J.H.; Wang, X.; Triantafyllidis, C.; van Dam, K.H.; Koppelaar, R.H.E.M.; Shah, N. Sustainable planning of the energy-water-food nexus using decision making tools. Energy Policy 2018, 113, 584–607. [Google Scholar] [CrossRef]
- Kragt, M.E.; Robson, B.J.; Macleod, C.J.A. Modellers’ roles in structuring integrative research projects. Environ. Model. Softw. 2013, 39, 322–330. [Google Scholar] [CrossRef] [Green Version]
- Endo, A.; Tsurita, I.; Burnett, K.; Orencio, P.M. A review of the current state of research on the water, energy, and food nexus. J. Hydrol. Reg. Stud. 2017, 11, 20–30. [Google Scholar] [CrossRef] [Green Version]
- Namany, S.; Al-Ansari, T.; Govindan, R. Sustainable energy, water and food nexus systems: A focused review of decision-making tools for efficient resource management and governance. J. Clean. Prod. 2019, 225, 610–626. [Google Scholar] [CrossRef]
- Kaiser, K.E.; Flores, A.N.; Hillis, V. Identifying emergent agent types and effective practices for portability, scalability, and intercomparison in water resource agent-based models. Environ. Model. Softw. 2020, 127, 104671. [Google Scholar] [CrossRef]
- Pfenninger, S.; Hawkes, A.; Keirstead, J. Energy systems modeling for twenty-first century energy challenges. Renew. Sustain. Energy Rev. 2014, 33, 74–86. [Google Scholar] [CrossRef]
- Koch, J.; Friedman, J.R.; Paladino, S.; Plassin, S.; Spencer, K. Conceptual modeling for improved understanding of the Rio Grande/Río Bravo socio-environmental system. Soc. Environ. Syst. Model. 2019, 1, 16127. [Google Scholar] [CrossRef]
- Abrahamse, W.; Steg, L. How do socio-demographic and psychological factors relate to households’ direct and indirect energy use and savings? J. Econ. Psychol. 2009, 30, 711–720. [Google Scholar] [CrossRef]
- Adnan, N.; Nordin, S.M.; Rahman, I. Adoption of PHEV/EV in Malaysia: A critical review on predicting consumer behaviour. Renew. Sustain. Energy Rev. 2017, 72, 849–862. [Google Scholar] [CrossRef]
- Karatasou, S.; Santamouris, M. Detection of low-dimensional chaos in buildings energy consumption time series. Commun. Nonlinear Sci. Numer. Simul. 2010, 15, 1603–1612. [Google Scholar] [CrossRef]
- Onwezen, M.C.; Antonides, G.; Bartels, J. The Norm Activation Model: An exploration of the functions of anticipated pride and guilt in pro-environmental behaviour. J. Econ. Psychol. 2013, 39, 141–153. [Google Scholar] [CrossRef]
- Manson, S.M.; Jordan, N.R.; Nelson, K.C.; Brummel, R.F. Modeling the effect of social networks on adoption of multifunctional agriculture. Environ. Model. Softw. 2016, 75, 388–401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niamir, L.; Ivanova, O.; Filatova, T.; Voinov, A. Tracing Macroeconomic Impacts of Individual Behavioral Changes through Model Integration. IFAC-PapersOnLine 2018. [Google Scholar] [CrossRef]
- Gray, S.; Voinov, A.; Paolisso, M.; Jordan, R.; BenDor, T.; Bommel, P.; Glynn, P.; Hedelin, B.; Hubacek, K.; Introne, J.; et al. Purpose, processes, partnerships, and products: Four Ps to advance participatory socio-environmental modeling. Ecol. Appl. 2018, 28, 46–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voinov, A.; Jenni, K.; Gray, S.; Kolagani, N.; Glynn, P.D.; Bommel, P.; Prell, C.; Zellner, M.; Paolisso, M.; Jordan, R.; et al. Tools and methods in participatory modeling: Selecting the right tool for the job. Environ. Model. Softw. 2018, 109, 232–255. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Chen, X.; Li, Y.; Ding, W.; Fu, G. Water-energy-food nexus: Concepts, questions and methodologies. J. Clean. Prod. 2018, 195, 625–639. [Google Scholar] [CrossRef]
- Bell, A.R.; Ward, P.S.; Shah, M.A.A. Increased water charges improve efficiency and equity in an irrigation system. Ecol. Soc. 2016, 21. [Google Scholar] [CrossRef] [Green Version]
- Perello-Moragues, A.; Noriega, P.; Poch, M. Modelling contingent technology adoption in farming irrigation communities. JASSS 2019, 22. [Google Scholar] [CrossRef]
- Mo, W.; Lu, Z.; Dilkina, B.; Gardner, K.H.; Huang, J.-C.; Foreman, M.C. Sustainable and Resilient Design of Interdependent Water and Energy Systems: A Conceptual Modeling Framework for Tackling Complexities at the Infrastructure-Human-Resource Nexus. Sustainability 2018, 10, 1845. [Google Scholar] [CrossRef] [Green Version]
- Müller, B.; Bohn, F.; Dreßler, G.; Groeneveld, J.; Klassert, C.; Martin, R.; Schlüter, M.; Schulze, J.; Weise, H.; Schwarz, N. Describing human decisions in agent-based models − ODD + D, an extension of the ODD protocol. Environ. Model. Softw. 2013, 48, 37–48. [Google Scholar] [CrossRef]
- Berglund, E.Z. Using Agent-Based Modeling for Water Resources Planning and Management. J. Water Resour. Plan. Manag. 2015, 141, 04015025. [Google Scholar] [CrossRef]
- Becu, N.; Neef, A.; Schreinemachers, P.; Sangkapitux, C. Participatory computer simulation to support collective decision-making: Potential and limits of stakeholder involvement. Land Use Policy 2008, 25, 498–509. [Google Scholar] [CrossRef]
- Fernandez-Mena, H.; Gaudou, B.; Pellerin, S.; MacDonald, G.K.; Nesme, T. Flows in Agro-food Networks (FAN): An agent-based model to simulate local agricultural material flows. Agric. Syst. 2020, 180, 102718. [Google Scholar] [CrossRef]
- Allen, P.; Robinson, M.; Butans, E.; Varga, L. Innovations for sustainable lifestyles: An agent-based model approach. Sustain. Sci. 2019, 14, 341–354. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.; Hu, G.; Chennault, C.; Su, L.; Brandes, E.; Heaton, E.; Schulte, L.; Wang, L.; Tyndall, J. Agent-based modeling of bioenergy crop adoption and farmer decision-making. Energy 2016, 115, 1188–1201. [Google Scholar] [CrossRef]
- Guillem, E.E.; Murray-Rust, D.; Robinson, D.T.; Barnes, A.; Rounsevell, M.D.A. Modelling farmer decision-making to anticipate tradeoffs between provisioning ecosystem services and biodiversity. Agric. Syst. 2015, 137, 12–23. [Google Scholar] [CrossRef]
- Bithell, M.; Brasington, J. Coupling agent-based models of subsistence farming with individual-based forest models and dynamic models of water distribution. Environ. Model. Softw. 2009, 24, 173–190. [Google Scholar] [CrossRef]
- Grubic, T.; Varga, L.; Hu, Y.; Tewari, A. Micro-generation technologies and consumption of resources: A complex systems’ exploration. J. Clean. Prod. 2020, 247. [Google Scholar] [CrossRef]
- Zhuge, C.; Yu, M.; Wang, C.; Cui, Y.; Liu, Y. An agent-based spatiotemporal integrated approach to simulating in-home water and related energy use behaviour: A test case of Beijing, China. Sci. Total Environ. 2020, 708. [Google Scholar] [CrossRef]
- Tourigny, A.; Filion, Y. Sensitivity Analysis of an Agent-Based Model Used to Simulate the Spread of Low-Flow Fixtures for Residential Water Conservation and Evaluate Energy Savings in a Canadian Water Distribution System. J. Water Resour. Plan. Manag. 2019, 145. [Google Scholar] [CrossRef]
- Guo, M.; van Dam, K.H.; Touhami, N.O.; Nguyen, R.; Delval, F.; Jamieson, C.; Shah, N. Multi-level system modelling of the resource-food-bioenergy nexus in the global south. Energy 2020, 197. [Google Scholar] [CrossRef]
- Ng, T.L.; Eheart, J.W.; Cai, X.; Braden, J.B. An agent-based model of farmer decision-making and water quality impacts at the watershed scale under markets for carbon allowances and a second-generation biofuel crop. Water Resour. Res. 2011, 47. [Google Scholar] [CrossRef]
- Agusdinata, D.B.; Lee, S.; Zhao, F.; Thissen, W. Simulation modeling framework for uncovering system behaviors in the biofuels supply chain network. Simulation 2014, 90, 1103–1116. [Google Scholar] [CrossRef]
- Shastri, Y.; Rodriguez, L.; Hansen, A.; Ting, K.C. Agent-Based Analysis of Biomass Feedstock Production Dynamics. Bioenergy Res. 2011, 4, 258–275. [Google Scholar] [CrossRef]
- Scheffran, J.; BenDor, T. Bioenergy and land use: A spatial-agent dynamic model of energy crop production in Illinois. Int. J. Environ. Pollut. 2009, 39, 4–27. [Google Scholar] [CrossRef]
- Balbi, S.; Bhandari, S.; Gain, A.K.; Giupponi, C. Multi-agent agro-economic simulation of irrigation water demand with climate services for climate change adaptation. Ital. J. Agron. 2013, 8, 175–185. [Google Scholar] [CrossRef]
- Shu, K.; Schneider, U.A.; Scheffran, J. Bioenergy and Food Supply: A Spatial-Agent Dynamic Model of Agricultural Land Use for Jiangsu Province in China. Energies 2015, 8, 13284–13307. [Google Scholar] [CrossRef] [Green Version]
- Nikolic, V.V.; Simonovic, S.P.; Milicevic, D.B. Analytical Support for Integrated Water Resources Management: A New Method for Addressing Spatial and Temporal Variability. Water Resour. Manag. 2013, 27, 401–417. [Google Scholar] [CrossRef]
- Khan, H.F.; Yang, Y.C.E.; Xie, H.; Ringler, C. A coupled modeling framework for sustainable watershed management in transboundary river basins. Hydrol. Earth Syst. Sci. 2017, 21, 6275–6288. [Google Scholar] [CrossRef] [Green Version]
- Cheng, K.; Fu, Q.; Li, T.; Jiang, Q.; Liu, W. Regional food security risk assessment under the coordinated development of water resources. Nat. Hazards 2015, 78, 603–619. [Google Scholar] [CrossRef]
- Moncada, J.A.; Lukszo, Z.; Junginger, M.; Faaij, A.; Weijnen, M. A conceptual framework for the analysis of the effect of institutions on biofuel supply chains. Appl. Energy 2017, 185, 895–915. [Google Scholar] [CrossRef] [Green Version]
- Namany, S.; Govindan, R.; Alfagih, L.; McKay, G.; Al-Ansari, T. Sustainable food security decision-making: An agent-based modelling approach. J. Clean. Prod. 2020, 255. [Google Scholar] [CrossRef]
- Dermody, B.J.; Sivapalan, M.; Stehfest, E.; van Vuuren, D.P.; Wassen, M.J.; Bierkens, M.F.P.; Dekker, S.C. A framework for modelling the complexities of food and water security under globalisation. Earth Syst. Dyn. 2018, 9, 103–118. [Google Scholar] [CrossRef] [Green Version]
- Brown, D.G.; Pontius, R.G.; Lange, M.D. Opportunities to improve impact, integration, and evaluation of land change models. Curr. Opin. Environ. Sustain. 2013, 5, 452–457. [Google Scholar] [CrossRef]
- Parker, D.C.; Manson, S.M.; Janssen, M.A.; Hoffmann, M.J.; Deadman, P. Multi-agent systems for the simulation of land-use and land-cover change: A review. Ann. Assoc. Am. Geogr. 2003, 93, 314–337. [Google Scholar] [CrossRef] [Green Version]
- Falconer, R.E.; Haltas, I.; Varga, L.; Forbes, P.J.; Abdel-Aal, M.; Panayotov, N. Anaerobic Digestion of food waste: Eliciting sustainable water-energy-food nexus practices with Agent Based Modelling and visual analytics. J. Clean. Prod. 2020, 255. [Google Scholar] [CrossRef]
- Nouri, A.; Saghafian, B.; Delavar, M.; Bazargan-Lari, M.R. Agent-Based Modeling for Evaluation of Crop Pattern and Water Management Policies. Water Resour. Manag. 2019, 33, 3707–3720. [Google Scholar] [CrossRef]
- Schulze, J.; Gawel, E.; Nolzen, H.; Weise, H.; Frank, K. The expansion of short rotation forestry: Characterization of determinants with an agent-based land use model. Glob. Chang. Biol. Bioenergy 2017, 9, 1042–1056. [Google Scholar] [CrossRef] [Green Version]
- Holtz, G.; Pahl-Wostl, C. An agent-based model of groundwater over-exploitation in the Upper Guadiana, Spain. Reg. Environ. Chang. 2012, 12, 95–121. [Google Scholar] [CrossRef]
- Grimm, V.; Railsback, S.F.; Vincenot, C.E.; Berger, U.; Gallagher, C.; DeAngelis, D.L.; Edmonds, B.; Ge, J.; Giske, J.; Groeneveld, J.; et al. The ODD Protocol for Describing Agent-Based and Other Simulation Models: A Second Update to Improve Clarity, Replication, and Structural Realism. J. Artif. Soc. Soc. Simul. 2020, 23, 7. [Google Scholar] [CrossRef] [Green Version]
- Edmonds, B.; Le Page, C.; Bithell, M.; Chattoe-Brown, E.; Grimm, V.; Meyer, R.; Montañola-Sales, C.; Ormerod, P.; Root, H.; Squazzoni, F. Different modelling purposes. J. Artif. Soc. Soc. Simul. 2019, 22. [Google Scholar] [CrossRef] [Green Version]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool Theoretical Documentation Version 2009; Texas Water Resources Institute: College Station, TX, USA, 2011. [Google Scholar]
- McDonald, M.G.; Harbaugh, A.W. A Modular Three-Dimensional Finite-Difference Ground-Water Flow Model; US Geological Survey: Reston, VA, USA, 1988.
- USACE-HEC. Hydrologic Modeling System HEC-HMS Technical Reference Manual; US Army Corps of Engineers, Hydrologic Engineering Centre (HEC): Davis, CA, USA, 2000.
- Becu, N.; Perez, P.; Walker, A.; Barreteau, O.; Le Page, C. Agent based simulation of a small catchment water management in northern Thailand description of the CATCHSCAPE model. Ecol. Model. 2003, 170, 319–331. [Google Scholar] [CrossRef]
- Ten Broeke, G.; van Voorn, G.; Ligtenberg, A. Which Sensitivity Analysis Method Should I Use for My Agent-Based Model? J. Artif. Soc. Soc. Simul. 2016, 19. [Google Scholar] [CrossRef] [Green Version]
- Magliocca, N.; McConnell, V.; Walls, M. Integrating Global Sensitivity Approaches to Deconstruct Spatial and Temporal Sensitivities of Complex Spatial Agent-Based Models. J. Artif. Soc. Soc. Simul. 2018, 21. [Google Scholar] [CrossRef] [Green Version]
- Ligmann-Zielinska, A.; Siebers, P.O.; Maglioccia, N.; Parker, D.; Grimm, V.; Du, E.J.; Cenek, M.; Radchuk, V.T.; Arbab, N.N.; Li, S.; et al. ‘One size does not fit all’: A roadmap of purpose-driven mixed-method pathways for sensitivity analysis of agent-based models. J. Artif. Soc. Soc. Simul. 2020, 23. [Google Scholar] [CrossRef] [Green Version]
- Edmonds, B.; ní Aodha, L. Using Agent-Based Modelling to Inform Policy—What Could Possibly Go Wrong? In Lecture Notes in Computer Science; Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics; Springer: Berlin/Heidelberg, Germany, 2019; Volume 11463, pp. 1–16. [Google Scholar]
- Saltelli, A.; Bammer, G.; Bruno, I.; Charters, E.; Di Fiore, M.; Didier, E.; Nelson Espeland, W.; Kay, J.; Lo Piano, S.; Mayo, D.; et al. Five ways to ensure that models serve society: A manifesto. Nature 2020, 582, 482–484. [Google Scholar] [CrossRef]
- Robinson, D.T.; Brown, D.G.; Parker, D.C.; Schreinemachers, P.; Janssen, M.A.; Huigen, M.; Wittmer, H.; Gotts, N.; Promburom, P.; Irwin, E.; et al. Comparison of empirical methods for building agent-based models in land use science. J. Land Use Sci. 2007, 2, 31–55. [Google Scholar] [CrossRef]
- Elsawah, S.; Filatova, T.; Jakeman, A.J.; Kettner, A.J.; Zellner, M.L.; Athanasiadis, I.N.; Hamilton, S.H.; Axtell, R.L.; Brown, D.G.; Gilligan, J.M.; et al. Eight grand challenges in socio-environmental systems modeling. Socio-Environ. Syst. Model. 2020, 2, 16226. [Google Scholar] [CrossRef] [Green Version]
- Manson, S.M.; Sander, H.A.; Ghosh, D.; Oakes, J.M.; Orfield, M.W., Jr.; Craig, W.J.; Luce, T.F., Jr.; Myott, E.; Sun, S. Parcel Data for Research and Policy. Geogr. Compass 2009, 3, 698–726. [Google Scholar] [CrossRef]
- Filatova, T.; Verburg, P.H.; Parker, D.C.; Stannard, C.A. Spatial agent-based models for socio-ecological systems: Challenges and prospects. Environ. Model. Softw. 2013, 45, 1–7. [Google Scholar] [CrossRef]
- An, L. Modeling human decisions in coupled human and natural systems: Review of agent-based models. Ecol. Model. 2012, 229, 25–36. [Google Scholar] [CrossRef]
- Groeneveld, J.; Müller, B.; Buchmann, C.M.; Dressler, G.; Guo, C.; Hase, N.; Hoffmann, F.; John, F.; Klassert, C.; Lauf, T.; et al. Theoretical foundations of human decision-making in agent-based land use models—A review. Environ. Model. Softw. 2017, 87, 39–48. [Google Scholar] [CrossRef] [Green Version]
- Schlüter, M.; Baeza, A.; Dressler, G.; Frank, K.; Groeneveld, J.; Jager, W.; Janssen, M.A.; McAllister, R.R.J.; Müller, B.; Orach, K.; et al. A framework for mapping and comparing behavioural theories in models of social-ecological systems. Ecol. Econ. 2017, 131, 21–35. [Google Scholar] [CrossRef]
- Lopez, B.E.; Magliocca, N.R.; Crooks, A.T.; Lopez, B.E.; Magliocca, N.R.; Crooks, A.T. Challenges and Opportunities of Social Media Data for Socio-Environmental Systems Research. Land 2019, 8, 107. [Google Scholar] [CrossRef] [Green Version]
- Bell, A.; Ward, P.; Tamal, M.E.H.; Killilea, M. Assessing recall bias and measurement error in high-frequency social data collection for human-environment research. Popul. Environ. 2019, 40, 325–345. [Google Scholar] [CrossRef] [Green Version]
- Robinson, D.T.; Di Vittorio, A.; Alexander, P.; Arneth, A.; Michael Barton, C.; Brown, D.G.; Kettner, A.; Lemmen, C.; O’Neill, B.C.; Janssen, M.; et al. Modelling feedbacks between human and natural processes in the land system. Earth Syst. Dyn. 2018, 9, 895–914. [Google Scholar] [CrossRef] [Green Version]
- McCarl, B.A.; Yang, Y.; Srinivasan, R.; Pistikopoulos, E.N.; Mohtar, R.H. Data for WEF Nexus Analysis: A Review of Issues. Curr. Sustain. Energy Rep. 2017, 4, 137–143. [Google Scholar] [CrossRef]
- Berger, T. Agent-based spatial models applied to agriculture: A simulation tool for technology diffusion, resource use changes and policy analysis. Agric. Econ. 2001, 25, 245–260. [Google Scholar] [CrossRef]
- Rounsevell, M.D.A.; Arneth, A.; Alexander, P.; Brown, D.G.; De Noblet-Ducoudré, N.; Ellis, E.; Finnigan, J.; Galvin, K.; Grigg, N.; Harman, I.; et al. Towards decision-based global land use models for improved understanding of the Earth system. Earth Syst. Dyn. 2014, 5. [Google Scholar] [CrossRef] [Green Version]
- Waldherr, A.; Wijermans, N. Communicating social simulation models to sceptical minds. J. Artif. Soc. Soc. Simul. 2013, 16, 13. [Google Scholar] [CrossRef] [Green Version]
- Akanle, O.M.; Zhang, D.Z. Agent-based model for optimising supply-chain configurations. Int. J. Prod. Econ. 2008, 115, 444–460. [Google Scholar] [CrossRef]
- Nair, A.; Narasimhan, R.; Choi, T.Y. Supply Networks as a Complex Adaptive System: Toward Simulation-Based Theory Building on Evolutionary Decision Making. Decis. Sci. 2009, 40, 783–815. [Google Scholar] [CrossRef]
- Giannakis, M.; Louis, M. A multi-agent based framework for supply chain risk management. J. Purch. Supply Manag. 2011, 17, 23–31. [Google Scholar] [CrossRef]
- Parker, D.C.; Entwisle, B.; Rindfuss, R.R.; Vanwey, L.K.; Manson, S.M.; Moran, E.; An, L.; Deadman, P.; Evans, T.P.; Linderman, M.; et al. Case studies, cross-site comparisons, and the challenge of generalization: Comparing agent-based models of land-use change in frontier regions. J. Land Use Sci. 2008, 3, 41–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
FEWS Sectors | Articles | FEWS Priority |
---|---|---|
Food–Energy | 7 | 0-7 |
Food–Energy–Other | 5 | 2-3-0 |
Energy–Water | 2 | 0-2 |
Energy–Water–Other | 1 | 1-0-0 |
Food–Water | 5 | 3-2 |
Food–Water–Other | 4 | 3-1-0 |
Food–Energy–Water | 1 | 0-0-1 |
Food–Energy–Water-Other | 4 | 2-0-2-0 |
Total | 29 | 29 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Magliocca, N.R. Agent-Based Modeling for Integrating Human Behavior into the Food–Energy–Water Nexus. Land 2020, 9, 519. https://doi.org/10.3390/land9120519
Magliocca NR. Agent-Based Modeling for Integrating Human Behavior into the Food–Energy–Water Nexus. Land. 2020; 9(12):519. https://doi.org/10.3390/land9120519
Chicago/Turabian StyleMagliocca, Nicholas R. 2020. "Agent-Based Modeling for Integrating Human Behavior into the Food–Energy–Water Nexus" Land 9, no. 12: 519. https://doi.org/10.3390/land9120519
APA StyleMagliocca, N. R. (2020). Agent-Based Modeling for Integrating Human Behavior into the Food–Energy–Water Nexus. Land, 9(12), 519. https://doi.org/10.3390/land9120519