Economic Value of Cultural Ecosystem Services from Recreation in Popa Mountain National Park, Myanmar: A Comparison of Two Rapid Valuation Techniques
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
- To preserve the unique dry zone ecosystem within the park;
- To conserve the existing cultural and religious sites within the park;
- To protect the watershed area for the reservoir in the park;
- To ensure the sustainable harvest of traditional medicinal plants;
- To maintain water supply from a network of natural springs;
- To promote nature-based recreation.
2.2. Data Collection
2.3. Data Analysis
2.3.1. Travel Cost Method
2.3.2. Econometric Models for Count Data
2.3.3. Model Variables
- For international visitors, TC1 = (Return airfare to Myanmar divided number of sites visited in Myanmar) + Return transport cost from Bagan to the park.
- For domestic visitors, TC1 = Individual return transport cost for those who travelled to visit the park only; and TC1 = Round trip transport cost divided by number of places visited for those who travelled to multiple places during the same trip to the park.
2.3.4. Zero-Truncated Poisson Regression
2.3.5. Willingness to Pay (WTP) and Consumer Surplus (CS)
2.3.6. TESSA (v. 1.2) Method
3. Results
3.1. Respondent Characteristics
3.2. Travel Cost Method (TCM)
3.2.1. Zero-Truncated Poisson Regression
3.2.2. Willingness to Pay (WTP) and Consumer Surplus (CS) Estimation
3.3. TESSA (v. 1.2) Approach
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pascual, U.; Balvanera, P.; Díaz, S.; Pataki, G.; Roth, E.; Stenseke, M.; Watson, R.T.; Başak Dessane, E.; Islar, M.; Kelemen, E.; et al. Valuing nature’s contributions to people: The IPBES approach. Curr. Opin. Environ. Sustain. 2017, 26, 7–16. [Google Scholar] [CrossRef] [Green Version]
- MA. Ecosystems and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- IPBES. Global Assessment Report on Biodiversity and Ecosystem Services; IPBES Secretariat: Bonn, Germany, 2019. [Google Scholar]
- TEEB. Ecological and Economic Foundations. Available online: http://www.teebweb.org/our-publications/teeb-study-reports/ecological-and-economic-foundations/ (accessed on 3 November 2019).
- Karki, M.; Senaratna Sellamuttu, S.; Okayasu, S.; Suzuki, W.; Acosta, L.A.; Alhafedh, Y.; Anticamara, J.A.; Ausseil, A.G.; Davies, K.; Gasparatos, A.; et al. Summary for Policymakers of the Regional Assessment Report on Biodiversity and Ecosystem Services for Asia and the Pacific of the Intergovernmental Science-Polcy Platform on Biodiversity and Ecosystem Services; IPBES Secretariat: Bonn, Germany, 2018; ISBN 978-3-947851-02-7. [Google Scholar]
- Archer, E.; Dziba, L.E.; Mulongoy, K.J.; Maoela, M.A.; Walters, M.; Biggs, R.; Cormier-Salem, M.-C.; DeClerck, F.; Diaw, M.C.; Dunham, A.E.; et al. Summary for Policymakers of the Regional Assessment Report on Biodiversity and Ecosystem Services for Africa of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; IPBES Secretariat: Bonn, Germany, 2018. [Google Scholar]
- Edwards, M. Guidance Note on Mainstreaming Environment into National Development Planning; UNDP-UNEP Poverty-Environment Facility: Nairobi, Kenya, 2009. [Google Scholar]
- Sustainable Development Goals Knowledge Platform. Sustainable Development Goals. Available online: https://sustainabledevelopment.un.org/sdgs (accessed on 5 November 2019).
- UNEP. Towards a Green Economy: Pathways to Sustainable Development and Poverty Eradication—A Synthesis for Policy Makers; Uited Nations Environment Programme: Paris, France, 2011. [Google Scholar]
- UN Environment. Global Environment Outlook—GEO-6: Healthy Planet, Healthy People; Cambridge University Press: Nairobi, Kenya, 2019. [Google Scholar]
- Bratman, G.N.; Anderson, C.B.; Berman, M.G.; Cochran, B.; de Vries, S.; Flanders, J.; Folke, C.; Frumkin, H.; Gross, J.J.; Hartig, T.; et al. Nature and mental health: An ecosystem service perspective. Sci. Adv. 2019, 5, eaax0903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sandifer, P.A.; Sutton-Grier, A.E.; Ward, B.P. Exploring connections among nature, biodiversity, ecosystem services, and human health and well-being: Opportunities to enhance health and biodiversity conservation. Ecosyst. Serv. 2015, 12, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Wood, M.E. Ecotourism: Principles, Practices and Policies for Sustainability, 1st ed.; United Nations Environment Programme: Paris, France, 2002. [Google Scholar]
- Vallecillo, S.; La Notte, A.; Zulian, G.; Ferrini, S.; Maes, J. Ecosystem services accounts: Valuing the actual flow of nature-based recreation from ecosystems to people. Ecol. Model. 2019, 392, 196–211. [Google Scholar] [CrossRef]
- Buckley, R. Tourism and environment. Annu. Rev. Environ. Resour. 2011, 36, 397–416. [Google Scholar] [CrossRef]
- Das, M.; Chatterjee, B. Ecotourism: A panacea or a predicament? Tour. Manag. Perspect. 2015, 14, 3–16. [Google Scholar] [CrossRef]
- Hermes, J.; Van Berkel, D.; Burkhard, B.; Plieninger, T.; Fagerholm, N.; von Haaren, C.; Albert, C. Assessment and valuation of recreational ecosystem services of landscapes. Ecosyst. Serv. 2018, 31, 289–295. [Google Scholar] [CrossRef]
- Peh, K.S.-H.; Balmford, A.; Bradbury, R.B.; Brown, C.; Butchart, S.H.M.; Hughes, F.M.R.; Stattersfield, A.; Thomas, D.H.L.; Walpole, M.; Bayliss, J.; et al. TESSA: A toolkit for rapid assessment of ecosystem services at sites of biodiversity conservation importance. Ecosyst. Serv. 2013, 5, 51–57. [Google Scholar] [CrossRef] [Green Version]
- Heagney, E.C.; Rose, J.M.; Ardeshiri, A.; Kovač, M. Optimising recreation services from protected areas—Understanding the role of natural values, built infrastructure and contextual factors. Ecosyst. Serv. 2018, 31, 358–370. [Google Scholar] [CrossRef]
- Weyland, F.; Laterra, P. Recreation potential assessment at large spatial scales: A method based in the ecosystem services approach and landscape metrics. Ecol. Indic. 2014, 39, 34–43. [Google Scholar] [CrossRef]
- Liu, W.; Chen, W.; Dong, C. Spatial decay of recreational services of urban parks: Characteristics and influencing factors. Urban For. Urban Green. 2017, 25, 130–138. [Google Scholar] [CrossRef]
- Sonter, L.J.; Watson, K.B.; Wood, S.A.; Ricketts, T.H. Spatial and temporal dynamics and value of nature-based recreation, estimated via social media. PLoS ONE 2016, 11, e0162372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liquete, C.; Piroddi, C.; Macías, D.; Druon, J.-N.; Zulian, G. Ecosystem services sustainability in the Mediterranean Sea: Assessment of status and trends using multiple modelling approaches. Sci. Rep. 2016, 6, 34162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, G.; Fagerholm, N. Empirical PPGIS/PGIS mapping of ecosystem services: A review and evaluation. Ecosyst. Serv. 2015, 13, 119–133. [Google Scholar] [CrossRef]
- Small, N.; Munday, M.; Durance, I. The challenge of valuing ecosystem services that have no material benefits. Glob. Environ. Chang. 2017, 44, 57–67. [Google Scholar] [CrossRef]
- Peh, K.S.-H.; Balmford, A.; Field, R.H.; Lamb, A.; Birch, J.C.; Bradbury, R.B.; Brown, C.; Butchart, S.H.M.; Lester, M.; Morrison, R.; et al. Benefits and costs of ecological restoration: Rapid assessment of changing ecosystem service values at a U.K. wetland. Ecol. Evol. 2014, 4, 3875–3886. [Google Scholar] [CrossRef] [Green Version]
- Peh, K.S.-H.; Balmford, A.; Birch, J.C.; Brown, C.; Butchart, S.H.M.; Daley, J.; Dawson, J.; Gray, G.; Hughes, F.M.R.; Mendes, S.; et al. Potential impact of invasive alien species on ecosystem services provided by a tropical forested ecosystem: A case study from Montserrat. Biol. Invasions 2015, 17, 461–475. [Google Scholar] [CrossRef] [Green Version]
- Peh, K.S.-H.; Thapa, I.; Basnyat, M.; Balmford, A.; Bhattarai, G.P.; Bradbury, R.B.; Brown, C.; Butchart, S.H.M.; Dhakal, M.; Gurung, H.; et al. Synergies between biodiversity conservation and ecosystem service provision: Lessons on integrated ecosystem service valuation from a Himalayan protected area, Nepal. Ecosyst. Serv. 2016, 22, 359–369. [Google Scholar] [CrossRef] [Green Version]
- Canedoli, C.; Bullock, C.; Collier, M.J.; Joyce, D.; Padoa-Schioppa, E. Public participatory mapping of cultural ecosystem services: Citizen perception and park management in the Parco Nord of Milan (Italy). Sustainability 2017, 9, 891. [Google Scholar] [CrossRef] [Green Version]
- Martín-López, B.; García-Llorente, M.; Palomo, I.; Montes, C. The conservation against development paradigm in protected areas: Valuation of ecosystem services in the Doñana social–ecological system (southwestern Spain). Ecol. Econ. 2011, 70, 1481–1491. [Google Scholar] [CrossRef]
- Herriges, J.A.; Kling, C.L. Valuing Recreation and the Environment: Revealed Preference Methods in Theory and Practice; E. Elgar Pub.: Cheltenham, UK, 1999. [Google Scholar]
- Chae, D.-R.; Wattage, P.; Pascoe, S. Recreational benefits from a marine protected area: A travel cost analysis of Lundy. Tour. Manag. 2012, 33, 971–977. [Google Scholar] [CrossRef]
- Benson, C.; Watson, P.; Taylor, G.; Cook, P.; Hollenhorst, S. Who visits a national park and what do they get out of it? A joint visitor cluster analysis and travel cost model for Yellowstone national park. Environ. Manag. 2013, 52, 917–928. [Google Scholar] [CrossRef] [PubMed]
- Birch, J.C.; Thapa, I.; Balmford, A.; Bradbury, R.B.; Brown, C.; Butchart, S.H.M.; Gurung, H.; Hughes, F.M.R.; Mulligan, M.; Pandeya, B.; et al. What benefits do community forests provide, and to whom? A rapid assessment of ecosystem services from a Himalayan forest, Nepal. Ecosyst. Serv. 2014, 8, 118–127. [Google Scholar] [CrossRef]
- Merriman, J.C.; Gurung, H.; Adhikari, S.; Butchart, S.H.M.; Khatri, T.B.; Pandit, R.S.; Ram, A.K.; Thomas, D.H.L.; Thapa, I. Rapid ecosystem service assessment of the impact of Koshi Tappu Wildlife Reserve on wetland benefits to local communities. Wetl. Ecol. Manag. 2018, 26, 491–507. [Google Scholar] [CrossRef]
- Hein, L. Economic benefits generated by protected areas: The case of the Hoge Veluwe Forest, The Netherlands. Ecol. Soc. 2011, 16, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Hearne, R.R.; Salinas, Z.M. The use of choice experiments in the analysis of tourist preferences for ecotourism development in Costa Rica. J. Environ. Manag. 2002, 65, 153–163. [Google Scholar] [CrossRef]
- Baral, N.; Stern, M.J.; Bhattarai, R. Contingent valuation of ecotourism in Annapurna conservation area, Nepal: Implications for sustainable park finance and local development. Ecol. Econ. 2008, 66, 218–227. [Google Scholar] [CrossRef]
- Mancini, F.; Coghill, G.M.; Lusseau, D. Using social media to quantify spatial and temporal dynamics of nature-based recreational activities. PLoS ONE 2018, 13, e0200565. [Google Scholar] [CrossRef] [Green Version]
- Johnson, D.N.; van Riper, C.J.; Chu, M.; Winkler-Schor, S. Comparing the social values of ecosystem services in US and Australian marine protected areas. Ecosyst. Serv. 2019, 37, 100919. [Google Scholar] [CrossRef]
- Jobstvogt, N.; Watson, V.; Kenter, J.O. Looking below the surface: The cultural ecosystem service values of UK marine protected areas (MPAs). Ecosyst. Serv. 2014, 10, 97–110. [Google Scholar] [CrossRef] [Green Version]
- Ellingson, L.; Seidl, A. Comparative analysis of non-market valuation techniques for the Eduardo Avaroa Reserve, Bolivia. Ecol. Econ. 2007, 60, 517–525. [Google Scholar] [CrossRef]
- Christie, M.; Fazey, I.; Cooper, R.; Hyde, T.; Kenter, J.O. An evaluation of monetary and non-monetary techniques for assessing the importance of biodiversity and ecosystem services to people in countries with developing economies. Ecol. Econ. 2012, 83, 67–78. [Google Scholar] [CrossRef]
- Mandle, L.; Wolny, S.; Hamel, P.; Helsingen, H.; Bhagabati, N.; Dixon, A. Natural Connections: How Natural Capital Supports Myanmar’s People and Economy; WWF-Myanmar: Yangon, Myanmar, 2016; p. 71. [Google Scholar]
- Mandle, L.; Wolny, S.; Bhagabati, N.; Helsingen, H.; Hamel, P.; Bartlett, R.; Dixon, A.; Horton, R.; Lesk, C.; Manley, D.; et al. Assessing ecosystem service provision under climate change to support conservation and development planning in Myanmar. PLoS ONE 2017, 12, e0184951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Estoque, R.C.; Myint, S.W.; Wang, C.; Ishtiaque, A.; Aung, T.T.; Emerton, L.; Ooba, M.; Hijioka, Y.; Mon, M.S.; Wang, Z.; et al. Assessing environmental impacts and change in Myanmar’s mangrove ecosystem service value due to deforestation (2000–2014). Glob. Chang. Biol. 2018, 24, 5391–5410. [Google Scholar] [CrossRef] [PubMed]
- OECD. OECD. OECD Investment policy reviews: Myanmar 2014. In OECD Investment Policy Reviews; OECD: Paris, France, 2014; ISBN 978-92-64-20643-4. [Google Scholar]
- Ministry of Hotels and Tourism Myanmar. Myanmar Tourism Statistics; Ministry of Hotels and Tourism Myanmar: Yangon, Myanmar, 2018.
- National Biodiversity Strategy and Action Plan 2015–2020. ESCAP Policy Documents Management. Available online: https://policy.asiapacificenergy.org/node/2942 (accessed on 6 November 2019).
- GGGI. Green Growth Potential Assessment—Myanmar Country Report; GGGI—Global Green Growth Institute: Seoul, Korea, 2017. [Google Scholar]
- Karki, S.; Thandar, A.M.; Uddin, K.; Tun, S.; Aye, W.M.; Aryal, K.; Kandel, P.; Chettri, N. Impact of land use land cover change on ecosystem services: A comparative analysis on observed data and people’s perception in Inle Lake, Myanmar. Environ. Syst. Res. 2018, 7, 25. [Google Scholar] [CrossRef] [Green Version]
- Feurer, M.; Heinimann, A.; Schneider, F.; Jurt, C.; Myint, W.; Zaehringer, J.G. Local perspectives on ecosystem service trade-offs in a forest frontier landscape in Myanmar. Land 2019, 8, 45. [Google Scholar] [CrossRef] [Green Version]
- Tsujita, K. Economic Valuation of Ecosystem Services Provided by Wetlands. Available online: https://www.eaaflyway.net/economic-valuation-of-ecosystem-services-provided-by-wetlands/ (accessed on 3 November 2019).
- Htun, N.Z.; Mizoue, N.; Yoshida, S. Classifying tropical deciduous vegetation: A comparison of multiple approaches in Popa Mountain Park, Myanmar. Int. J. Remote Sens. 2011, 32, 8935–8948. [Google Scholar] [CrossRef]
- Istituto Oikos; BANCA. Myanmar Protected Areas: Context, Current Status and Challenges; Ancora Libr.: Milan, Italy, 2011. [Google Scholar]
- Htun, N.Z.; Mizoue, N.; Yoshida, S. Determinants of local people’s perceptions and attitudes toward a protected area and Its management: A case study from Popa Mountain Park, Central Myanmar. Soc. Nat. Resour. 2012, 25, 743–758. [Google Scholar] [CrossRef]
- Anderson, D.M. Estimating the Economic value of ice climbing in Hyalite Canyon: An application of travel cost count data models that account for excess zeros. J. Environ. Manag. 2010, 91, 1012. [Google Scholar] [CrossRef] [Green Version]
- Curtis, J.A. Demand for water-based leisure activity. J. Environ. Plan. Manag. 2003, 46, 65–77. [Google Scholar] [CrossRef]
- Maitima, J.; Rodríguez, L.C.; Kshatriya, M.; Mugatha, S.M. Guidelines for Assessing Environmental and Socio-Economic Impacts of Tsetse and Trypanosomiasis Interventions; International Livestock Research Institute (ILRI): Nairobi, Kenya, 2007. [Google Scholar]
- Bateman, I.J.; Lovett, A.A.; Brainard, J.S. Applied Environmental Economics. Available online: /core/books/applied-environmental-economics/e7dbeaf8778fcdfb24a1ef08b5ec9ad6 (accessed on 5 November 2019).
- Creel, M.D.; Loomis, J.B. Theoretical and empirical advantages of truncated count data estimators for analysis of deer hunting in California. Am. J. Agric. Econ. 1990, 72, 434. [Google Scholar] [CrossRef]
- Khoshakhlagh, R.; Akbari, N.; Safaeifard, S.V. Estimating recreation value of Darband Area in Tehran (Iran). Int. J. Acad. Res. Bus. Soc. Sci. 2013, 3, 250–259. [Google Scholar]
- Prayaga, P.; Rolfe, J.; Stoeckl, N. The value of recreational fishing in the Great Barrier Reef, Australia: A pooled revealed preference and contingent behaviour model. Mar. Policy 2010, 34, 244–251. [Google Scholar] [CrossRef]
- Timah, P.N. Non-Market Valuation of Beach Recreation Using the Travel Cost Method (TCM) in the Context of the Developing World: An Application to Visitors of the Ngoe Beach in Kribi, Cameroon; Swedish University of Agricultural Sciences: Uppsala, Sweden, 2011. [Google Scholar]
- Grogger, J.T.; Carson, R.T. Models for truncated counts. J. Appl. Econ. 1991, 6, 225–238. [Google Scholar] [CrossRef] [Green Version]
- Allen, P.G.; Stevens, T.H.; Barrett, S.A. The effects of variable omission in the travel cost technique. Land Econ. 1981, 57, 173–180. [Google Scholar] [CrossRef]
- Smith, V.K.; Desvousges, W.H.; McGivney, M.P. The opportunity cost of travel time in recreation demand models. Land Econ. 1983, 59, 259–278. [Google Scholar] [CrossRef]
- McConnell, K.E. On-site time in the demand for recreation. Am. J. Agric. Econ. 1992, 74, 918–925. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, X.H.; Nunes, P.A.L.D.; Ma, C. The recreational value of gold coast beaches, Australia: An application of the travel cost method. Ecosyst. Serv. 2015, 11, 106–114. [Google Scholar] [CrossRef]
- Xue, D.; Cook, A.; Tisdell, C. Biodiversity and a Travel Cost Evaluation of Tourism: The Case of Changbaishan Mountain Biosphere Reserve, China; Discussion Papers; Department of Economics, The University of Queensland: Brisbane, Australia, 2000. [Google Scholar]
- Ward, F.A.; Beal, D. Valuing Nature with Travel Cost Models; Edward Elgar Publishing: Cheltenham, UK, 2000. [Google Scholar]
- Cameron, A.C.; Trivedi, P.K. Microeconometrics Using Stata; Stata Press: College Station, TX, USA, 2010; ISBN 978-1-59718-073-3. [Google Scholar]
- Blackwell, B. The value of a recreational beach visit: An application to Mooloolaba Beach and comparisons with other outdoor recreation sites. Econ. Anal. Policy 2007, 37, 77–98. [Google Scholar] [CrossRef]
- Toolkit for Ecosystem Services Site-based Assessment V. 1.2. Available online: http://tessa.tools/ (accessed on 6 November 2019).
- Christie, M.; Hanley, N.; Hynes, S. Valuing enhancements to forest recreation using choice experiment and contingent behaviour methods. J. For. Econ. 2007, 13, 75–102. [Google Scholar] [CrossRef]
- Termansen, M.; McClean, C.J.; Jensen, F.S. Modelling and mapping spatial heterogeneity in forest recreation services. Ecol. Econ. 2013, 92, 48–57. [Google Scholar] [CrossRef]
- Brouwer, R.; Spaninks, F.A. The validity of environmental benefits transfer: Further empirical testing. Environ. Resour. Econ. 1999, 14, 95–117. [Google Scholar] [CrossRef]
- Söderqvist, T.; Eggert, H.; Olsson, B.; Soutukorva, Å. Economic valuation for sustainable development in the Swedish coastal zone. AMBIO 2005, 34, 169–175. [Google Scholar] [CrossRef] [PubMed]
Variable | Definition |
---|---|
Number of visits | Number of times the person visited the park in the past 12 months |
TC1 | Travel expenses per person (USD) |
TC2 | TC1 + Opportunity cost of travel time (USD) |
TC3 | TC2 + Opportunity cost of time spent on-site (USD) |
TC4 | TC2 + On-site expenditure (USD) |
TC5 | TC3 + On-site expenditure (USD) |
TC6 | TC1 + On-site expenditure (USD) |
Gender | Gender of respondent; 0 = Male; 1 = Female |
Age | Age of respondent (Years) |
Education level | 1 = No high school education; 2 = Completed some high School; 3 = High school graduate; 4 = Bachelor’s degree; 5 = Master’s degree and above |
Household income | Average monthly income (USD) |
Travel time | Travelling time to the park (number of hours) |
Number in party | Number of people in travelling group |
Park rating | Perception of quality of recreation in the park: Lowest score = 0 (very poor) to the Highest score = 10 (excellent) |
Substitute site | Respondent visiting a similar site in the past 12 months; 0 = Had not visited; 1 = Had visited |
Visitor type | 0 = Domestic visitor; 1 = International visitor |
Visitor Type | Number of Places Visited | Number of Visitors | Fraction of Visitors (%) |
---|---|---|---|
International | 3 | 3 | 7.1 |
4 | 10 | 23.8 | |
5 | 9 | 21.4 | |
6 | 8 | 19.1 | |
7 | 5 | 11.9 | |
8 | 3 | 7.1 | |
9 | 3 | 7.1 | |
10 | 1 | 2.4 | |
Total | 42 | ||
Domestic | 1 | 9 | 12.5 |
2 | 52 | 72.2 | |
3 | 6 | 8.3 | |
4 | 4 | 5.6 | |
5 | 1 | 1.4 | |
Total | 72 |
Variable | Entire Sample (n = 114) | International Visitors (n = 42) | Domestic Visitors (n = 72) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | Std. dev. | Min | Max | Mean | Std. dev. | Min | Max | Mean | Std.dev. | Min | Max | |
Number_of_visits | 1.41 | 0.77 | 1.00 | 4.00 | 1.00 | 0.00 | 1.00 | 1.00 | 1.65 | 0.89 | 1.00 | 4.00 |
TC1 (USD) | 69.76 | 89.87 | 0.35 | 357.00 | 177.26 | 59.10 | 85.40 | 357.00 | 7.05 | 3.63 | 0.35 | 16.67 |
TC2 (USD) | 103.00 | 133.07 | 1.46 | 472.00 | 257.55 | 99.80 | 122.25 | 472.00 | 12.84 | 7.69 | 1.46 | 39.48 |
TC3 (USD) | 134.92 | 189.82 | 2.92 | 1008.67 | 333.06 | 186.10 | 152.25 | 1008.67 | 19.34 | 24.03 | 2.92 | 164.48 |
TC4 (USD) | 119.38 | 143.15 | 5.00 | 512.00 | 281.75 | 113.43 | 128.92 | 512.00 | 24.67 | 22.18 | 5.00 | 170.83 |
TC5 (USD) | 151.30 | 206.14 | 5.00 | 1108.67 | 357.26 | 214.41 | 153.25 | 1108.67 | 31.17 | 36.86 | 5.00 | 258.33 |
TC6 (USD) | 86.14 | 100.82 | 5.00 | 377.00 | 201.46 | 75.87 | 85.40 | 377.00 | 18.87 | 19.93 | 5.00 | 156.25 |
Gender (1 = Female) | 0.42 | 0.50 | 0.00 | 1.00 | 0.45 | 0.50 | 0.00 | 1.00 | 0.40 | 0.49 | 0.00 | 1.00 |
Age (Years) | 42.24 | 14.14 | 17.00 | 73.00 | 48.79 | 15.80 | 20.00 | 73.00 | 38.42 | 11.56 | 17.00 | 65.00 |
Education_level (Range 1–5) | 3.61 | 1.02 | 1.00 | 5.00 | 4.17 | 0.58 | 3.00 | 5.00 | 3.29 | 1.08 | 1.00 | 4.00 |
Household_income (USD) | 2403.68 | 3169.06 | 241.67 | 20,000.00 | 5481.62 | 3454.69 | 1600.00 | 20,000.00 | 608.22 | 467.54 | 241.67 | 2916.67 |
Travel_time (Hours) | 7.35 | 2.85 | 1.00 | 16.00 | 7.65 | 2.09 | 3.00 | 12.00 | 7.17 | 3.21 | 1.00 | 16.00 |
Number_in_party (Number) | 5.97 | 5.68 | 1.00 | 34.00 | 2.31 | 1.24 | 1.00 | 8.00 | 8.11 | 6.16 | 1.00 | 34.00 |
Park_rating (Range 1–10) | 5.94 | 1.24 | 2.00 | 9.00 | 5.50 | 1.15 | 2.00 | 7.00 | 6.19 | 1.23 | 2.00 | 9.00 |
Substitute_site (1 = Had visited) | 0.50 | 0.50 | 0.00 | 1.00 | 0.50 | 0.51 | 0.00 | 1.00 | 0.50 | 0.50 | 0.00 | 1.00 |
Visitor_type (1 = International) | 0.37 | 0.48 | 0.00 | 1.00 |
Park Rating | Domestic Visitors | International Visitors | Total Visitors | |||
---|---|---|---|---|---|---|
Frequency | Percentage (%) | Frequency | Percentage (%) | Frequency | Percentage (%) | |
0—Extremely poor | 0 | 0.0 | 0 | 0 | 0 | 0 |
1 | 0 | 0.0 | 0 | 0 | 0 | 0 |
2 | 1 | 1.4 | 1 | 2.4 | 1 | 2.4 |
3 | 1 | 1.4 | 1 | 2.4 | 1 | 2.4 |
4 | 1 | 1.4 | 3 | 7.1 | 3 | 7.1 |
5—Average | 18 | 25.0 | 18 | 42.9 | 18 | 42.9 |
6 | 20 | 27.8 | 9 | 21.4 | 9 | 21.4 |
7 | 22 | 30.6 | 10 | 23.8 | 10 | 23.8 |
8 | 8 | 11.1 | 0 | 0 | 0 | 0 |
9 | 1 | 1.4 | 0 | 0 | 0 | 0 |
10—Excellent | 0 | 0.0 | 0 | 0 | 0 | 0 |
Total | 72 | 100 | 42 | 100 | 42 | 100 |
Variable | Number of Visits | |
---|---|---|
TC4 | TC6 | |
TC4 | −0.00188 | |
(0.0198) | ||
TC6 | 0.00251 | |
(0.0151) | ||
Gender | −0.282 * | −0.285 * |
(0.144) | (0.150) | |
Age | 0.00300 | 0.00244 |
(0.00527) | (0.00549) | |
Education_level | ||
Completed some high school | 0.138 | 0.159 |
(0.276) | (0.250) | |
High school graduate | −0.170 | −0.172 |
(0.395) | (0.398) | |
Bachelor’s degree | −0.120 | −0.118 |
(0.197) | (0.197) | |
Master’s degree and above | −0.540 | −0.493 |
(0.699) | (0.545) | |
Household income | −2.88 × 10−5 | −8.08 × 10−5 |
(0.000397) | (0.000294) | |
Travel_time | −0.0616 * | −0.0661 *** |
(0.0357) | (0.0245) | |
Number in party | −0.0114 | −0.0118 |
(0.0119) | (0.0125) | |
Rating of park | 0.315 *** | 0.312 *** |
(0.0800) | (0.0822) | |
Substitute site | −2.001 *** | −2.046 *** |
(0.534) | (0.530) | |
Visitor type | −17.09 *** | −17.74 *** |
(3.241) | (2.145) | |
Constant | −0.975 | −0.944 |
(0.841) | (0.871) | |
Diagnostics | ||
Wald chi2 (13) | 6722.35 *** | 7193.23 *** |
Pseudo R2 | 0.5336 | 0.5337 |
Log pseudolikelihood | −53.027468 | −53.021331 |
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | |
---|---|---|---|---|---|---|
Variable | Number of visits | |||||
TC1 | −0.0440 ** | |||||
(0.0178) | ||||||
TC2 | −0.0496 *** | |||||
(0.0171) | ||||||
TC3 | −0.0409 ** | |||||
(0.0162) | ||||||
TC4 | −0.0019 | |||||
(0.0199) | ||||||
TC5 | −0.0064 | |||||
(0.0163) | ||||||
TC6 | 0.00251 | |||||
(0.0151) | ||||||
Gender | −0.209 | −0.250 * | −0.279 * | −0.282 * | −0.287 ** | −0.285 * |
(0.154) | (0.147) | (0.145) | (0.145) | (0.139) | (0.0151) | |
Age | 0.00819 | 0.0101 * | 0.00876 | 0.00300 | 0.00351 | 0.00244 |
(0.00596) | (0.00607) | (0.00589) | (0.00528) | (0.00512) | (0.00550) | |
Education_level | ||||||
Completed some high school | −0.0241 | −0.125 | −0.127 | 0.138 | 0.0994 | 0.159 |
(0.264) | (0.280) | (0.296) | (0.277) | (0.274) | (0.250) | |
High school graduate | −0.193 | −0.168 | −0.158 | −0.170 | −0.169 | −0.172 |
(0.364) | (0.362) | (0.352) | (0.396) | (0.389) | (0.399) | |
Bachelor’s degree | −0.0970 | −0.130 | −0.139 | −0.120 | −0.130 | −0.118 |
(0.173) | (0.204) | (0.215) | (0.197) | (0.194) | (0.197) | |
Household income | −0.000078 | 0.000200 | 0.000243 | −0.0000288 | 0.0000561 | −0.08 × 10−5 |
(0.000208) | (0.000196) | (0.000201) | (0.000398) | (0.000369) | (0.000295) | |
Travel time | −0.0281 | 0.00154 | −0.00770 | −0.0616 * | −0.0548 * | −0.0661 *** |
(0.0298) | (0.0316) | (0.0305) | (0.0358) | (0.0330) | (0.0246) | |
Number in party | −0.00991 | −0.0148 | −0.0155 | −0.0114 | −0.0117 | −0.0118 |
(0.0109) | (0.0119) | (0.0120) | (0.0120) | (0.0117) | (0.0125) | |
Park rating | 0.332 *** | 0.336 *** | 0.346 *** | 0.315 *** | 0.321 *** | 0.312 *** |
(0.0894) | (0.0892) | (0.0897) | (0.0802) | (0.0788) | (0.0824) | |
Substitute site | −1.968 *** | −1.853 *** | −1.750 *** | −2.001 *** | −1.924 *** | −2.046 *** |
(0.568) | (0.578) | (0.572) | (0.535) | (0.539) | (0.532) | |
Constant | −1.280 | −1.423 | −1.396 | −0.975 | −1.018 | −0.943 |
(0.919) | (0.908) | (0.902) | (0.843) | (0.828) | (0.874) | |
Diagnostics | ||||||
Wald chi2 (11) | 121.51 *** | 128.38 *** | 129.88 *** | 109.03 *** | 109.40 *** | 106.53 *** |
Pseudo R2 | 0.3733 | 0.3787 | 0.3814 | 0.3687 | 0.3699 | 0.3688 |
Log pseudolikelihood | −52.639242 | −52.189434 | −51.963804 | −53.027467 | −52.924537 | 53.021331 |
Value | TC1 | TC2 | TC3 |
---|---|---|---|
Individual (USD person−1) | 22.72 | 20.16 | 24.45 |
Total (USD year−1) | 18,176,000 | 16,128,000 | 19,560,000 |
Total per unit area (USD ha−1) | 1032 | 916 | 1111 |
Category | TCM | TESSA (v. 1.2) |
---|---|---|
Data needs | Travel costs On-site expenditures Opportunity costs Respondent characteristics Travel behavior | Travel costs On-site expenditures |
Analytical expertise | Advanced statistical skills | Basic statistical skills |
Advantages | Can factor park and trip quality characteristics (e.g., quality of park//experience) Widely accepted in academic literature | Can estimate values regardless of visitation rates Can use primary or secondary data Rapid assessment |
Disadvantages | Cannot estimate values of one-off visitors | Cannot factor the quality of ecosystem services related to recreation |
Application | Inform investments in park infrastructure and management practices | Estimate net consequences of a counterfactual to inform decision |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soe Zin, W.; Suzuki, A.; Peh, K.S.-H.; Gasparatos, A. Economic Value of Cultural Ecosystem Services from Recreation in Popa Mountain National Park, Myanmar: A Comparison of Two Rapid Valuation Techniques. Land 2019, 8, 194. https://doi.org/10.3390/land8120194
Soe Zin W, Suzuki A, Peh KS-H, Gasparatos A. Economic Value of Cultural Ecosystem Services from Recreation in Popa Mountain National Park, Myanmar: A Comparison of Two Rapid Valuation Techniques. Land. 2019; 8(12):194. https://doi.org/10.3390/land8120194
Chicago/Turabian StyleSoe Zin, Wai, Aya Suzuki, Kelvin S.-H. Peh, and Alexandros Gasparatos. 2019. "Economic Value of Cultural Ecosystem Services from Recreation in Popa Mountain National Park, Myanmar: A Comparison of Two Rapid Valuation Techniques" Land 8, no. 12: 194. https://doi.org/10.3390/land8120194