Deep Tillage Improves Degraded Soils in the (Sub) Humid Ethiopian Highlands
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Tillage Treatments and Monitoring
2.2.1. Identification of the Restrictive Hardpan Layer
2.2.2. Experimental Setup
2.2.3. Data Collected
2.3. Data Analysis
3. Results
3.1. Soil Penetration Resistance and Bulk Density
3.2. Changes in Soil Chemical Properties
3.3. Infiltration Rate and Soil Moisture Content
3.4. Runoff and Soil Loss
3.5. Agricultural Productivity of Maize as Function of Tillage Treatments
4. Discussion
4.1. Effect of Deep Tillage on Soil Erosion and Runoff
4.2. Effect of Deep Tillage on Maize Production
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hurni, H. Degradation and conservation of the resources in the Ethiopian highlands. Mt. Res. Dev. 1988, 8, 123–130. [Google Scholar] [CrossRef]
- Hurni, H. Land degradation, famine, and land resource scenarios in Ethiopia. In World Soil Erosion and Conservation. Cambridge Studies in Applied Ecology and Resource Management; Cambridge University Press: Cambridge, UK, 1993; pp. 27–61. [Google Scholar]
- Mekuria, W.; Veldkamp, E.; Haile, M.; Nyssen, J.; Muys, B.; Gebrehiwot, K. Effectiveness of exclosures to restore degraded soils as a result of overgrazing in Tigray, Ethiopia. J. Arid Environ. 2007, 69, 270–284. [Google Scholar] [CrossRef]
- Keesstra, S.; Mol, G.; De Leeuw, J.; Okx, J.; Molenaar, C.; De Cleen, M.; Visser, S. Soil-related sustainable development goals: Four concepts to make land degradation neutrality and restoration work. Land 2018, 7, 133. [Google Scholar] [CrossRef]
- Tefera, B.; Ayele, G.; Atnafe, Y.; Jabbar, M.A.; Dubale, P. Nature and Causes of Land Degradation in Oromiya Region, Ethiopia—A Review; Socio-economics and Policy Research Working Paper 36; ILRI (International Livestock Research Institute): Nairobi, Kenya, 2002; Volume 82, p. 6. [Google Scholar]
- Raper, R.; Schwab, E.; Dabney, S. Measurement and variation of site-specific hardpans. In 2001 ASAE Annual Meeting; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 1998. [Google Scholar]
- Mwendera, E.; Saleem, M.M. Hydrologic response to cattle grazing in the Ethiopian highlands. Agric. Ecosyst. Environ. 1997, 64, 33–41. [Google Scholar] [CrossRef]
- Tebebu, T.Y.; Bayabil, H.K.; Stoof, C.R.; Giri, S.K.; Gessess, A.A.; Tilahun, S.A.; Steenhuis, T.S. Characterization of degraded soils in the humid Ethiopian highlands. Land Degrad. Dev. 2017, 28, 1891–1901. [Google Scholar] [CrossRef]
- Lal, R. Long-term tillage and maize monoculture effects on a tropical Alfisol in western Nigeria. I. Crop yield and soil physical properties. Soil Tillage Res. 1997, 42, 145–160. [Google Scholar] [CrossRef]
- Guzman, C.D.; Tilahun, S.A.; Dagnew, D.C.; Zegeye, A.D.; Yitaferu, B.; Kay, R.W.; Steenhuis, T.S. Developing soil conservation strategies with technical and community knowledge in a degrading sub-humid mountainous landscape. Land Degrad. Dev. 2017, 29, 749–764. [Google Scholar] [CrossRef]
- Mosaddeghi, M.; Mahboubi, A.; Safadoust, A. Short-term effects of tillage and manure on some soil physical properties and maize root growth in a sandy loam soil in western Iran. Soil Tillage Res. 2009, 104, 173–179. [Google Scholar] [CrossRef]
- Duiker, S. Diagnosing Soil Compaction Using a Penetrometer (Soil Compaction Tester). 2002. Available online: https://extension.psu.edu/diagnosing-soil-compaction-using-a-penetrometer-soil-compaction-tester (accessed on 23 October 2019).
- Burayu, W.; Chinawong, S.; Suwanketnikom, R.; Mala, T.; Juntakool, S. Conservation tillage and crop rotation: Win-win option for sustainable maize production in the dryland central Rift Valley of Ethiopia. Kamphaengsaen Acad. J. 2006, 4, 48–60. [Google Scholar]
- Sharma, A.; Behera, U. Modern Concepts of Agriculture; Conservation Tillage; Indian Agricultural Research Institute: New Delhi, India, 2008. [Google Scholar]
- Hamza, M.; Anderson, W. Soil compaction in cropping systems: A review of the nature, causes and possible solutions. Soil Tillage Res. 2005, 82, 121–145. [Google Scholar] [CrossRef]
- Busscher, W.; Bauer, P. Soil strength, cotton root growth and lint yield in a southeastern USA coastal loamy sand. Soil Tillage Res. 2003, 74, 151–159. [Google Scholar] [CrossRef]
- Sadegh-Zadeh, F.; Wahid, S.A.; Seh-Bardan, B.J.; Seh-Bardan, E.J.; Bah, A. Alternative management practices for water conservation in dryland farming: A case study in Bijar, Iran. Water Conserv. 2011, 47. [Google Scholar] [CrossRef]
- Scanlon, B.; Reedy, R.; Baumhardt, R.; Strassberg, G. Impact of deep plowing on groundwater recharge in a semiarid region: Case study, High Plains, Texas. Water Resour. Res. 2008, 44. [Google Scholar] [CrossRef] [Green Version]
- Atwell, B. Response of roots to mechanical impedance. Environ. Exp. Bot. 1993, 33, 27–40. [Google Scholar] [CrossRef]
- Javeed, H.; Zamir, M.; Tanveer, A.; Yaseen, M. Soil physical properties and grain yield of spring maize (Zea mays L.) as influence by tillage practices and mulch treatments. Cercet. Agron. Mold. 2013, 46, 69–75. [Google Scholar] [CrossRef]
- Ji, B.; Zhao, Y.; Mu, X.; Liu, K.; Li, C. Effects of tillage on soil physical properties and root growth of maize in loam and clay in central China. PlantSoil Environ. 2013, 59, 295–302. [Google Scholar] [CrossRef]
- Varsa, E.; Chong, S.; Abolaji, J.; Farquhar, D.; Olsen, F. Effect of deep tillage on soil physical characteristics and corn (Zea mays L.) root growth and production. Soil Tillage Res. 1997, 43, 219–228. [Google Scholar] [CrossRef]
- Rasmussen, K. Impact of ploughless soil tillage on yield and soil quality: A Scandinavian review. Soil Tillage Res. 1999, 53, 3–14. [Google Scholar] [CrossRef]
- Guzha, A. Effects of tillage on soil microrelief, surface depression storage and soil water storage. Soil Tillage Res. 2004, 76, 105–114. [Google Scholar] [CrossRef]
- Dagnew, D.C.; Guzman, C.D.; Zegeye, A.D.; Tebebu, T.Y.; Getaneh, M.; Abate, S.; Zimale, F.A.; Ayana, E.K.; Tilahun, S.A.; Steenhuis, T.S. Impact of conservation practices on runoff and soil loss in the sub-humid Ethiopian Highlands: The Debre Mawi watershed. J. Hydrol. Hydromech. 2015, 63, 210–219. [Google Scholar] [CrossRef] [Green Version]
- Tilahun, S.A.; Guzman, C.D.; Zegeye, A.D.; Ayana, E.K.; Collick, A.S.; Yitaferu, B.; Steenhuis, T.S. Patterns of Soil Erosion in the Semi-humid Ethiopian Highlands: A Case Study of Debre Mawi Watershed. In Nile River Basin: Ecohydrological Challenges, Climate Change and Hydropolitics; Assefa, M., Abtew, W., Setegn, S.G., Eds.; Springer: Cham, Switzerland, 2014; pp. 149–164. [Google Scholar]
- Moges, M.A.; Schmitter, P.; Tilahun, S.A.; Langan, S.; Dagnew, D.C.; Akale, A.T.; Steenhuis, T.S. Suitability of watershed models to predict distributed hydrologic response in the Awramba watershed in Lake Tana basin. Land Degrad. Dev. 2017, 28, 1386–1397. [Google Scholar] [CrossRef]
- Yao, Y.; Schiettecatte, W.; Lu, J.; Wang, Y.; Wu, H.; Jin, K.; Cai, D.; Gabriels, D.; Hartmann, R.; Cornelis, W. Influence of tillage practices on yield, water conservation and soil loss: Results of field experiments in the Eastern Loess Plateau (Henan Province, China). In Proceedings of the 13th International Soil Conservation Organisation Conference, Brisbane, Australia, 4–9 July 2004. [Google Scholar]
- Schneider, F.; Don, A.; Hennings, I.; Schmittmann, O.; Seidel, S.J. The effect of deep tillage on crop yield–What do we really know? Soil Tillage Res. 2017, 174, 193–204. [Google Scholar] [CrossRef]
- Chen, Y.; Cavers, C.; Tessier, S.; Monero, F.; Lobb, D. Short-term tillage effects on soil cone index and plant development in a poorly drained, heavy clay soil. Soil Tillage Res. 2005, 82, 161–171. [Google Scholar] [CrossRef]
- Steenhuis, T.S.; Collick, A.S.; Easton, Z.M.; Leggesse, E.S.; Bayabil, H.K.; White, E.D.; Awulachew, S.B.; Adgo, E.; Ahmed, A.A. Predicting discharge and sediment for the Abay (Blue Nile) with a simple model. Hydrol. Process. 2009, 23, 3728–3737. [Google Scholar] [CrossRef]
Field Code | Soil Profile Depth (m) | Elevation (m a.s.l.) | Soil Depth (cm) | Pretreatment Resistance (MPa) |
---|---|---|---|---|
P1 | 0.6 | 1850 | 0–20 | 1.38 |
20–40 | 2.42 | |||
40–60 | 2.62 | |||
P2 | >3.5 | 1863 | 0–20 | 1.38 |
20–40 | 1.93 | |||
40–60 | 2.21 | |||
P3 | >3.5 | 1873 | 0–20 | 1.38 |
20–40 | 2.07 | |||
40–60 | 2.42 | |||
P4 | >3.5 | 1930 | 0–20 | NA |
20–40 | NA | |||
40–60 | NA | |||
P5 | 0.8 | 1976 | 0–20 | 2.21 |
20–40 | 2.62 | |||
40–60 | 2.69 | |||
All plots | 0–20 | 1.58 | ||
20–40 | 2.26 | |||
40–60 | 2.48 |
Soil Depth (cm) | 2015 | 2016 | ||||
---|---|---|---|---|---|---|
DT | CT | NT | DT | CT | NT | |
0–20 | 1.20 a | 1.43 b | 1.47 bc | 1.20 a | 1.53 c | 1.55 c |
20–40 | 1.20 a | 1.40 b | 1.51 c | 1.21 a | 1.57 cd | 1.62 d |
40–60 | 1.22 a | 1.46 b | 1.52 b | 1.23 a | 1.61 c | 1.69 c |
Soil Depth (cm) | Pretreatment Resistance (MPa) | 2015 | 2016 | ||||
---|---|---|---|---|---|---|---|
DT (MPa) | CT (MPa) | NT (MPa) | DT (MPa) | CT (MPa) | NT (MPa) | ||
0–20 | 1.58 a | 0.26 b | 0.93 c | 1.60 a | 0.07 b | 0.22 bd | 0.41 d |
20–40 | 2.26 a | 0.65 b | 1.67 c | 2.13 a | 1.13 d | 1.68 c | 1.75 c |
40–60 | 2.48 a | 1.17 b | 2.24 a | 2.41 a | 2.13 a | 2.32 a | 2.22 a |
Tillage Treatment | 2015 | 2016 |
---|---|---|
DT | 36 ± 24 a | 34 ± 13 a |
CT | 85 ± 77 b | 82 ± 352 b |
NT | 91 ± 87 b | 113 ± 71 b |
Lead to | Yield (Mg ha−1) | Root Depth (cm) | |||||||
---|---|---|---|---|---|---|---|---|---|
2015 | 2016 | 2016 | |||||||
DT | CT | NT | DT | CT | NT | DT | CT | NT | |
P1 | 4.2 | 3.6 | 3.2 | 3.7 | 2.2 | 2.2 | 57 | 25 | 21 |
P2 | 6.3 | 5.7 | 6.1 | 2.8 | 3.8 | 2.7 | 52 | 28 | 28 |
P3 | 7.8 | 6.0 | 4.9 | 5.3 | 6.2 | 3.2 | 49 | 34 | 17 |
P4 | 2.9 | 2.6 | 1.6 | 3.5 | 3.7 | 2.7 | 56 | 29 | 25 |
P5 | 3.1 | 2.8 | 1.3 | 3.5 | 3.3 | 3.1 | 43 | 27 | 23 |
Average | 4.9 ± 2.1 a | 4.1 ± 1.6 a | 3.4 ± 2.1 a | 3.8 ± 0.9 a | 3.8 ± 1.5 a | 2.8 ± 0.4 a | 51 ± 6 a | 29 ± 3 b | 23 ± 4 b |
CV% | 44.1 | 38.8 | 60.6 | 24.7 | 38.0 | 14.5 | 11 | 12 | 18 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abidela Hussein, M.; Muche, H.; Schmitter, P.; Nakawuka, P.; Tilahun, S.A.; Langan, S.; Barron, J.; Steenhuis, T.S. Deep Tillage Improves Degraded Soils in the (Sub) Humid Ethiopian Highlands. Land 2019, 8, 159. https://doi.org/10.3390/land8110159
Abidela Hussein M, Muche H, Schmitter P, Nakawuka P, Tilahun SA, Langan S, Barron J, Steenhuis TS. Deep Tillage Improves Degraded Soils in the (Sub) Humid Ethiopian Highlands. Land. 2019; 8(11):159. https://doi.org/10.3390/land8110159
Chicago/Turabian StyleAbidela Hussein, Misbah, Habtamu Muche, Petra Schmitter, Prossie Nakawuka, Seifu A. Tilahun, Simon Langan, Jennie Barron, and Tammo S. Steenhuis. 2019. "Deep Tillage Improves Degraded Soils in the (Sub) Humid Ethiopian Highlands" Land 8, no. 11: 159. https://doi.org/10.3390/land8110159