Land-Use Threats and Protected Areas: A Scenario-Based, Landscape Level Approach
Abstract
:1. Introduction
1.1. Land Use and Land Cover Scenarios
2. Study Region
3. Methods
3.1. Protected Areas
3.2. State-and-Transition Modeling
3.3. Model Initiation
Dataset | Date | Description | Reference |
---|---|---|---|
National Land Cover Dataset (NLCD) | 1992 20012006 | Land cover databases | [77] [78] [79] |
NLCD Retro Product | 1992, 2001 | 1992–2001 retrofitted land cover change database | [80] |
LANDFIRE’s Vegetation Change Tracker (VCT) | 1984–2010 | Annual forest disturbance | [81] |
Web-enabled Landsat Data (WELD) | 2006–2011 | Forest declines over 5-year period | [82] |
Cropland Data Layer (CDL) | 2010, 2011 | Crop specific estimates of crop acreage | [83] |
Monitoring Trends in Burn Severity (MTBS) | 1984–2010 | Annual burn severity and wildfire perimeters | [84] |
Forest Cover Types | 1991 | 25 classes of forest cover as well as water and non-forested lands | [85] |
3.4. Model Parameterization
Spatial Multiplier | Description | Datasets and Reference |
---|---|---|
Forest Harvest | Sets parameters for allowable forest harvest transition based on distance to historic harvest (1984–2009 cumulative harvest from VCT), a majority filter of 8 pixels, and conversions on protected lands were restricted (GAP 1 & 2). | VCT [81] PAD-US [68] |
Agriculture to Grassland/Shrubland | Sets probabilities of conversion based on distance to existing grassland/shrublands, low crop capability, a majority filter of 8 pixels, and restricts conversion on protected lands (GAP 1 & 2) | Harmonized LULC [75] Crop Capability [88] PAD-US [68] |
To Developed | Sets probabilities of conversion into developed land with highest probability occurring on land closest to existing, high density development (>80 people/km2). Distance to development was calculated and pixels >20 km2 away from existing development were excluded. A majority filter of 8 pixels was also applied. Distance to development and distance to high population density were multiplied to produce final probability map. Conversions not allowed on protected lands (GAP Status 1 & 2) | Harmonized LULC [75] Population Density [89] PAD-US [68] |
To Agriculture | Sets probabilities of conversion into agriculture based on distance to existing agriculture and crop capability. Restricts conversion on protected lands (GAP 1 & 2). | Harmonized LULC [75] PAD-US [68] |
3.5. Processing Model Output
3.6. Land Conversion Potential and Conversion Threat Mapping
4. Results
4.1. Changes in Development and Agricultural Land Use over the Modeled Period
To Class | From Class | LULC Scenarios | ||||||
---|---|---|---|---|---|---|---|---|
A1B | A2 | B1 | B2 | Trends 86–92 | Trends 92–00 | Trends Random | ||
Developed | Forest | 5745 | 8104 | 3360 | 2051 | 6600 | 6500 | 5565 |
Agriculutre | 2810 | 3907 | 2086 | 1140 | 4412 | 2902 | 2900 | |
Grassland/Shrubland | 950 | 978 | 943 | 741 | 800 | 900 | 760 | |
All Other | 796 | 679 | 673 | 681 | 574 | 769 | 568 | |
Total | 10,301 | 13,668 | 7062 | 4613 | 12,386 | 11,071 | 9793 | |
Agriculture | Forest | 4800 | 9465 | 1171 | 1442 | 2494 | 900 | 1913 |
Grassland/Shubland | 1831 | 1871 | 1395 | 1086 | 500 | 1199 | 904 | |
Wetlands | 641 | 826 | 308 | 324 | 618 | 200 | 255 | |
Total | 7272 | 12,162 | 2874 | 2852 | 3612 | 2299 | 3072 | |
Developed and Agriculture | Total | 17,573 | 25,830 | 9936 | 7465 | 15,998 | 13,370 | 12,865 |
4.2. Forest Harvest
LULC Scenarios | Forest Harvest Intensity | |||||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | Total | |||||
A1B | 66,972 | 21.0% | 57,931 | 18.1% | 2162 | 0.7% | 127,065 | 39.8% |
A2 | 70,573 | 22.1% | 36,845 | 11.5% | 574 | 0.2% | 107,992 | 33.8% |
B1 | 66,705 | 20.9% | 25,730 | 8.1% | 216 | 0.1% | 92,651 | 29.0% |
B2 | 69,412 | 21.7% | 46,750 | 14.6% | 1304 | 0.4% | 117,466 | 36.8% |
Trends 86–92 | 60,064 | 18.8% | 48,033 | 15.0% | 1714 | 0.5% | 109,811 | 34.4% |
Trends 92–00 | 54,534 | 17.1% | 21,316 | 6.7% | 317 | 0.1% | 76,167 | 23.8% |
Trends Random | 61,287 | 19.2% | 21,833 | 6.8% | 124 | 0.0% | 83,244 | 26.0% |
4.3. Conversion Potential
Ecoregion | Conversion Potential | % Area in 7 | ||||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | ||
Coast Range | 2417 | 1390 | 2041 | 3342 | 5104 | 8386 | 17,132 | 31.7% |
Puget Lowland | 1664 | 1110 | 656 | 599 | 1263 | 2729 | 3298 | 20.0% |
Willamette Valley | 2875 | 1440 | 687 | 598 | 865 | 1292 | 1836 | 12.3% |
Cascades | 2613 | 2722 | 3918 | 5082 | 5462 | 5873 | 5951 | 12.8% |
Sierra Nevada | 6966 | 4083 | 2705 | 2083 | 1794 | 978 | 231 | 0.4% |
East Cascades | 7244 | 4956 | 4765 | 4097 | 3413 | 3899 | 4699 | 8.4% |
North Cascades | 2072 | 1787 | 1775 | 1927 | 1671 | 1367 | 1620 | 5.3% |
Klamath Mountains | 6805 | 5375 | 4508 | 3594 | 3061 | 2507 | 1628 | 3.4% |
TOTAL | 32,656 | 22,863 | 21,055 | 21,322 | 22,633 | 27,031 | 36,395 | 11.4% |
4.4. Protected Areas
Ecoregion | Area (km2) | GAP 1 (km2) | GAP 2 (km2) | Total Protected (km2) | Total Protected (%) |
---|---|---|---|---|---|
Coast Range | 53,979 | 2799 | 2238 | 5037 | 9.3% |
Puget Lowland | 16,456 | 29 | 301 | 330 | 2.0% |
Willamette Valley | 14,874 | 0 | 186 | 186 | 1.2% |
Cascades | 46,437 | 2196 | 7119 | 9315 | 20.1% |
Sierra Nevada | 52,866 | 12,775 | 3179 | 15,954 | 30.2% |
East Cascades | 56,115 | 283 | 2598 | 2881 | 5.1% |
North Cascades | 30,312 | 3536 | 9618 | 13,154 | 43.4% |
Klamath Mountains | 48,544 | 5127 | 2149 | 7276 | 15.0% |
Total | 319,583 | 26,745 | 27,388 | 54,133 | 16.9% |
4.5. Conversion Threat Index
CTI Value | ||||||||
---|---|---|---|---|---|---|---|---|
Low | Medium | High | Very High | |||||
Coast Range | 5230 | 9.7% | 10,385 | 19.2% | 9264 | 17.2% | 11,728 | 21.7% |
Puget Lowland | 1697 | 10.3% | 2605 | 15.8% | 2267 | 13.8% | 2676 | 16.3% |
Willamette Valley | 1743 | 11.7% | 1918 | 12.9% | 1273 | 8.6% | 888 | 6.0% |
Cascades | 5963 | 12.8% | 11,118 | 23.9% | 6058 | 13.0% | 5083 | 10.9% |
Sierra Nevada | 5893 | 11.1% | 3529 | 6.7% | 674 | 1.3% | 302 | 0.6% |
East Cascades | 8380 | 14.9% | 7609 | 13.6% | 3731 | 6.6% | 2787 | 5.0% |
North Cascades | 2784 | 9.2% | 3542 | 11.7% | 1604 | 5.3% | 1966 | 6.5% |
Klamath Mountains | 7785 | 16.0% | 7279 | 15.0% | 2330 | 4.8% | 1651 | 3.4% |
Total | 39,475 | 12.4% | 47,985 | 15.0% | 27,201 | 8.5% | 27,081 | 8.5% |
5. Discussion
6. Conclusions
Acknowledgments
Authors Contributions
Conflicts of Interest
Disclaimer
References
- Dale, V.H. The relationship between land-use change and climate change. Ecol. Appl. 1997, 7, 753–769. [Google Scholar] [CrossRef]
- Turner, B.L., II; Clark, W.C.; Kates, R.M.; Richards, J.F.; Mathews, J.T.; Meyer, M.B. (Eds.) The Earth as Transformed by Human Action: Global and Regional Changes in the Biosphere over the Past 300 Years; Cambridge University Press: Cambridge, UK, 1990; p. 713.
- Vitousek, P.M.; Mooney, H.A.; Lubchenco, J.; Melillo, J.M. Human domination of earth’s ecosystems. Science 1997, 277, 494–499. [Google Scholar] [CrossRef]
- Sala, O.E.; Chapin, F.S.; Armesto, J.J.; Berlow, E.; Bloomfield, J.; Dirzo, R.; Huber-Sanwald, E.; Huenneke, L.F.; Jackson, R.B.; Kinzig, A.; et al. Global biodiversity scenarios for the year 2100. Science 2000, 287, 1770–1774. [Google Scholar] [CrossRef]
- Soule, M.E. Conservation: Tactics for a constant crisis. Science 2001, 253, 744–750. [Google Scholar]
- Seabloom, E.W.; Dobson, A.P.; Stoms, D.M. Extinction rates under nonrandom patterns of habitat loss. Proc. Natl. Acade. Sci. USA 2002, 99, 11229–11234. [Google Scholar] [CrossRef]
- Swaty, R.; Blankenship, K.; Hagen, S.; Fargione, J.; Smith, J.; Patton, J. Accounting for ecosystem alteration doubles estimates of conservation risk in the conterminous United States. PLoS One 2011, 6, e23002. [Google Scholar]
- Davies, R.G.; Orme, D.L.; Olson, V.; Thomas, G.H.; Ross, S.G.; Ding, T.-S.; Rasmussen, P.C.; Stattersfield, A.J.; Bennett, P.M.; Blackburn, T.M.; et al. Human impacts and the global distribution of extinction risk. Proc. R. Soc. Biol. Sci. 2006, 273, 2127–2133. [Google Scholar] [CrossRef]
- Rittenhouse, C.D.; Pidgeon, A.M.; Albright, T.P.; Culbert, P.D.; Clayton, M.K.; Flather, C.H.; Masek, J.G.; Radeloff, V.C. Land-cover change and avian diversity in the conterminous United States. Conserv. Biol. 2012, 26, 821–829. [Google Scholar] [CrossRef]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef]
- Romero, H.; Ihl, M.; Rivera, A.; Zalazar, P.; Azocar, P. Rapid urban growth, land-use changes and air pollution in Santiago, Chile. Atmos. Environ. 1999, 33, 4039–4047. [Google Scholar] [CrossRef]
- Ross, Z.; English, P.B.; Scalf, R.; Gunier, R.; Smorodinsky, S.; Wall, S.; Jerrett, M. Nitrogen dioxide prediction in southern California use land use regression modeling: Potential for environmental health analyses. J. Expos. Sci. Environ. Epidemiol. 2006, 16, 106–114. [Google Scholar] [CrossRef]
- Houghton, R.A.; Hackler, J.L. Carbon Flux to the Atmosphere from Land-Use Changes: 1850 to 1990; ORNL/CDIAC-131, NDP-050/R1; Carbon Dioxide Information Analysis Center, U.S. Department of Energy, Oak Ridge National Laboratory: Oak Ridge, TN, USA, 2001; p. 18. [Google Scholar]
- Bonan, G.B. Effects of land use on the climate of the United States. Clim. Chang. 1997, 37, 449–486. [Google Scholar] [CrossRef]
- Pielke, R.A.; Marland, G.; Betts, R.A.; Chase, T.N.; Eastman, J.L.; Niles, J.O.; Niyogi, D.D.S.; Running, S.W. The influence of land-use change and landscape dynamics on the climate system: Relevance to climate-change policy beyond the radiative effect of greenhouse gases. Philos. Trans. R. Soc. Lond. 2002, 360, 1705–1719. [Google Scholar] [CrossRef]
- Lawrence, P.L.; Chase, T.N. Investigating the climate impacts of global land cover change in the community climate system model. Int. J. Clim. 2010, 30, 2066–2087. [Google Scholar] [CrossRef]
- Pitman, A.J.; Avila, F.B.; Abramowitz, G.; Wang, Y.P.; Phipps, S.J.; de Noblet-Ducoudre, N. Importance of background climate in determining the impact of land-cover change on regional climate. Nat. Clim. Chang. 2011, 1, 472–475. [Google Scholar] [CrossRef]
- Fischer, J.; Lindenmayer, D.B. Landscape modification and habitat fragmentation: A synthesis. Glob. Ecol. Biogeogr. 2007, 16, 265–280. [Google Scholar] [CrossRef]
- Sleeter, B.M.; Wilson, T.S.; Acevedo, W. (Eds.) Status and Trends of Land Change in the Western United States–1973 to 2000; Geological Survey Professional Paper 1794-A; U.S. Geological Survey: Reston, VA, USA, 2012; p. 324.
- Primack, R.B. Essentials of Conservation Biology, 5th ed.; Sinauer Associates, Inc.: Sunderland, MA, USA, 2010; p. 601. [Google Scholar]
- Cole, D.N.; Landres, P.B. Threats to wilderness ecosystems: Impacts and research needs. Ecol. Appl. 1996, 6, 168–184. [Google Scholar] [CrossRef]
- Hansen, A.J.; DeFries, R. Ecological mechanisms linking protected areas to surrounding lands. Ecol. Appl. 2007, 17, 974–988. [Google Scholar] [CrossRef]
- Hansen, A.J.; Rasker, R.; Maxwell, B.; Rotella, J.J.; Johnson, J.D.; Parmenter, A.W.; Langner, U.; Cohen, W.B.; Lawrence, R.L.; Kraska, M.P.V. Ecological causes and consequences of demographic change in the New West. BioScience 2002, 52, 151–162. [Google Scholar] [CrossRef]
- Joppa, L.N.; Loarie, S.R.; Pimm, S.L. On the protection of “protected areas.”. Proc. Natl. Acad. Sci. USA 2008, 105, 6673–6678. [Google Scholar] [CrossRef]
- Radeloff, V.C.; Nelson, E.; Plantinga, A.J.; Lewis, D.J.; Helmers, D.; Lawler, J.J.; Withey, J.C.; Beaudry, F.; Martinuzzi, S.; Butsic, V.; et al. Economic-based projections of future land use in the conterminous United States under alternative policy scenarios. Ecol. Appl. 2012, 22, 1036–1049. [Google Scholar] [CrossRef]
- Hamilton, C.M.; Martinuzzi, S.; Plantinga, A.J.; Radeloff, V.C.; Lewis, D.J.; Thogmartin, W.E.; Heglund, P.J.; Pidgeon, A.M. Current and future land use around a nationwide protected area network. PLoS One 2013, 8, e55737. [Google Scholar] [CrossRef] [Green Version]
- Wade, A.A.; Theobald, D.M. Residential development encroachment on U.S. protected areas. Conserv. Biol. 2010, 24, 151–161. [Google Scholar] [CrossRef]
- Pitelka, L.F. Plant migration and climate change: A more realistic portrait of plant migration is essential to predicting biological responses to global warming in a world drastically altered by human activity. Am. Sci. 1997, 85, 464–473. [Google Scholar]
- Ritters, K.H.; Wickham, J.D. How far to the nearest road? Front. Ecol. Environ. 2003, 1, 125–129. [Google Scholar] [CrossRef]
- Radeloff, V.C.; Stewart, S.I.; Hawbaker, T.J.; Gimmi, U.; Pidgeon, A.M.; Flather, C.H.; Hammer, R.B.; Helmers, D.P. Housing growth in and near United States protected areas limits their conservation value. Proc. Natl. Acad. Sci. USA 2010, 107, 940–945. [Google Scholar] [CrossRef]
- Nagenda, H. Do parks work? Impact of protected areas on land cover clearing. AMBIO 2008, 37, 330–337. [Google Scholar] [CrossRef]
- McLaughlin, A.; Mineau, P. The impact of agricultural practices on biodiversity. Agric. Ecosyst. Environ. 1995, 55, 201–212. [Google Scholar] [CrossRef]
- Neary, D.G.; Hornbeck, J.W. Impacts of harvesting and associated practices on off-site environmental quality. In Impacts of Forest Harvesting on Long-Term Site Productivity, 1st ed.; Dyck, W.J., Cole, D.W., Comerford, N.B., Eds.; Chapman and Hall: Suffolk, VA, USA, 1994; pp. 81–118. [Google Scholar]
- Nave, L.E.; Vance, E.D.; Swanston, C.W.; Curtis, P.S. Harvest impacts on soil carbon storage in temperate forests. For. Ecol. Manag. 2010, 259, 857–866. [Google Scholar] [CrossRef]
- Ricketts, T.; Imhoff, M. Biodiversity, urban areas, and agriculture: Locating priority ecoregions for conservation. Conserv. Biol. 2003, 8, 1. [Google Scholar]
- Wilson, K.; Pressey, R.L.; Newton, A.; Burgman, M.; Possingham, H.; Weston, C. Measuring and incorporating vulnerability into conservation planning. Environ. Manag. 2005, 35, 527–543. [Google Scholar] [CrossRef]
- McDonald, R.I.; Yuan-Farrell, C.; Fievet, C.; Moeller, M.; Kareiva, P.; Foster, D.; Gragson, T.; Kinzig, A.; Kuby, L.; Redman, C. Estimating the effect of protected lands on the development and conservation of their surroundings. Conserv. Biol. 2007, 21, 1526–1536. [Google Scholar]
- Wilson, T.S.; Sleeter, B.M.; Davis, A.W. Projected future land use threats to California’s protected areas. Reg. Environ. Chang. 2014. under review. [Google Scholar]
- Gude, P.H.; Hansen, A.J.; Jones, D.A. Biodiversity consequences of alternative future land use scenarios in greater Yellowstone. Ecol. Appl. 2007, 17, 1004–1018. [Google Scholar] [CrossRef]
- Margules, C.R.; Pressey, R.L. Systematic conservation planning. Nature 2000, 405, 243–253. [Google Scholar] [CrossRef]
- Defries, R.; Hansen, A.; Turner, B.L.; Reid, R.; Liu, J. Land use change around protected areas: Management to balance human needs and ecological function. Ecol. Appl. 2007, 17, 1031–1038. [Google Scholar] [CrossRef]
- Newburn, D.; Reed, S.; Berck, P.; Merenlender, A. Economics and land-use change in prioritizing private land conservation. Conserv. Biol. 2005, 19, 1411–1420. [Google Scholar] [CrossRef]
- IPCC Special Report on Emission Scenarios; Nakicenovic, N.; Swart, R. (Eds.) Cambridge University Press: Cambridge, UK; p. 570.
- Heistermann, M.; Müller, C.; Ronneberger, K. Land in sight? Achievements, deficits, and potentials of continental to global scale land-use modeling. Agric. Ecosyst. Environ. 2006, 114, 141–158. [Google Scholar] [CrossRef]
- Rounsevell, M.D.A.; Reginster, I.; Araújo, M.B.; Carter, T.R.; Dendoncker, N.; Ewert, F.; House, J.I.; Kankaanpää, S.; Leemans, R.; Metzger, M.J.; et al. A coherent set of future land use change scenarios for Europe. Agric. Ecosyst. Environ. 2006, 114, 57–68. [Google Scholar] [CrossRef]
- Alcamo, J.; Kok, K.; Busch, G.; Priess, J. Searching for the future of land: Scenarios from the local to global scale. In Environmental Futures: The Practice of Environmental Scenario Analysis; Alcamo, J., Ed.; Elsevier: Amsterdam, The Netherlands, 2008; pp. 67–103. [Google Scholar]
- Luoto, M.; Virkkala, R.; Heikkinen, R.K. The role of land cover in bioclimatic models depends on spatial resolution. Glob. Ecol. Biogeogr. 2007, 16, 34–42. [Google Scholar] [CrossRef]
- Strayer, D.L.; Beighley, R.E.; Thompson, L.C.; Brooks, S.; Nilsson, C.; Pinay, G.; Naiman, R.J. Effects of land cover on stream ecosystems: Roles of empirical models and scaling issues. Ecosytems 2003, 6, 407–423. [Google Scholar] [CrossRef]
- Zhao, S.; Liu, S.; Sohl, T.; Young, C.; Werner, J. Land use and carbon dynamics in the southeastern United States from 1992 to 2050. Environ. Res. Lett. 2013, 8, 044022:9. [Google Scholar]
- Sohl, T.L.; Sayler, K.L.; Bouchard, M.A.; Reker, R.R.; Friesz, A.M.; Bennett, S.L.; Sleeter, B.M.; Sleeter, R.R.; Wilson, T.S.; Knuppe, M.; et al. Spatially explicit modeling of 1992 to 2100 land cover and forest stand age for the conterminous United States. Ecol. Appl. 2013. [Google Scholar] [CrossRef]
- Wear, D.N. Forecasts of County-Level Land Uses Under Three Future Scenarios: A Technical Document Supporting the Forest Service 2010 RPA Assessment; Gen. Tech. Rep. SRS-141; U.S. Department of Agriculture Forest Service, Southern Research Station: Asheville, NC, USA, 2011; p. 41. [Google Scholar]
- Zhu, Z. (Ed.) Baseline and Projected Future Carbon Storage and Greenhouse-Gas Fluxes in the Great Plains Region of the United States; U.S. Geological Survey Professional Paper 1787; U.S. Geological Survey: Reston, VA, USA, 2011; p. 28.
- Sleeter, B.M.; Sohl, T.L.; Wilson, T.S.; Sleeter, R.R.; Soulard, C.E.; Bouchard, M.A.; Sayler, K.L.; Reker, R.R.; Griffith, G.E. Projected land-use and land-cover change in the Western United States. In Baseline and Projected Future Carbon Storage and Greenhouse-Gas Fluxes in Ecosystems of the Western United States; U.S. Geological Survey Professional Paper 1797A; Zhu, Z., Reed, B.C., Eds.; U.S. Geological Survey: Reston, VA, USA, 2012; pp. 65–86. [Google Scholar]
- Sohl, T.L.; Sleeter, B.M.; Sayler, K.L.; Bouchard, M.A.; Reker, R.R.; Bennett, S.L.; Sleeter, R.R.; Kanengieter, R.L.; Zhu, Z. Spatially explicit land-use and land-cover scenarios for the Great Plains of the United States. Agric. Ecosyst. Environ. 2012, 153, 1–15. [Google Scholar] [CrossRef]
- Wilson, T.S.; Sleeter, B.S.; Sohl, T.L.; Griffith, G.; Acevedo, W.; Bennett, S.; Bouchard, M.; Reker, R.; Ryan, C.; Sayler, K.L.; et al. Future Scenarios of Land-Use and Land-Cover Change in the United States: The Marine West Coast Forests Ecoregion; U.S. Geological Survey Open File Report 2012–1252; U.S. Geological Survey: Reston, VA, USA, 2012; p. 14. [Google Scholar]
- Arnell, N.W.; Livermore, M.J.L.; Kovats, S.; Levy, P. Climate and socioeconomic scenarios for global-scale climate change impacts assessments: Characterizing the SRES storylines. Glob. Environ. Chang. 2004, 14, 3–20. [Google Scholar] [CrossRef]
- Gaffin, S.R.; Rosenzweig, C.; Xing, X.; Yetman, G. Downscaling and geo-spatial gridding of socio-economic projections from the IPCC Special Report on Emissions Scenarios (SRES). Glob. Environ. Chang. 2004, 14, 105–123. [Google Scholar] [CrossRef]
- Verburg, P.H.; Schulp, C.J.E.; Witte, N.; Veldkamp, A. Downscaling of land use change scenarios to assess the dynamics of European landscapes. Agric. Ecosyst. Environ. 2006, 114, 39–56. [Google Scholar] [CrossRef]
- Van Vuuren, D.P.; Lucas, P.L.; Hilderink, H. Downscaling drivers of global environmental change scenarios: Enabling use of the IPCC-SRES scenarios at the national and grid level. Glob. Environ. Chang. 2007, 17, 114–130. [Google Scholar] [CrossRef]
- Sleeter, B.M.; Sohl, T.L.; Bouchard, M.A.; Reker, R.R.; Soulard, C.E.; Acevedo, W.; Griffith, G.E.; Sleeter, R.R.; Auch, R.F.; Sayler, K.L.; et al. Scenarios of land use and land cover change in the conterminous Unites States: Utilizing the special report on emission scenarios at ecoregional scales. Glob. Environ. Chang. 2012, 22, 896–914. [Google Scholar] [CrossRef]
- Sleeter, B.M.; Sohl, T.L.; Loveland, T.R.; Auch, R.F.; Acevedo, W.; Drummond, M.A.; Sayler, K.L.; Stehman, S.V. Land-cover change in the conterminous United States from 1973–2000. Glob. Environ. Chang. 2013, 23, 733–748. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Level III Ecoregions of the Continental United States, Digital map, scale 1:250,000; U.S. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory: Corvallis, OR, USA, 2013. Available online: ftp://ftp.epa.gov/wed/ecoregions/us/us_eco_l3.zip (accessed on 1 April 2014).
- Sleeter, B.M.; Soulard, C.E.; Wilson, T.S.; Sorenson, D.G. Land-cover trends in the Western United States—1973 to 2000. In Status and Trends of Land Change in the Western United States—1973 to 2000; Professional Paper 1794-A; Sleeter, B.M., Wilson, T.S., Acevedo, W., Eds.; Geological Survey: Reston, VA, USA, 2012; pp. 3–29. [Google Scholar]
- Omernik, J.M. Ecoregions of the conterminous United States. Ann. Assoc. Am. Geogr. 1987, 77, 118–125. [Google Scholar] [CrossRef]
- Gallant, A.L.; Loveland, T.R.; Sohl, T.L.; Napton, D. Using a geographic framework for analyzing land cover issues. Environ. Manag. 2004, 34, 89–110. [Google Scholar] [CrossRef]
- Herger, L.G.; Weiss, A.; Augustine, S.; Hayslip, G. Modeling Fish Distributions in the Pacific Northwest Coast Range Ecoregion Using EMAP Data; U.S. Environmental Protection Agency: Seattle, WA, USA, 2003; pp. 1–48. [Google Scholar]
- Mote, P.W.; Parson, E.A.; Hamlet, A.F.; Keeton, W.S.; Lettenmaier, D.; Mantua, N.; Miles, E.L.; Peterson, D.W.; Peterson, D.L.; Slaughter, R.; et al. Preparing for climatic change: The water, salmon, and forests of the Pacific Northwest. Clim. Chang. 2003, 61, 45–88. [Google Scholar] [CrossRef]
- U.S. Geological Survey GAP. Protected Areas Database of the United States (PAD-US), version 1.3 Combined Feature Class. 2012. Available online: http://gapanalysis.usgs.gov/padus/ (accessed on 13 November 2013). [Google Scholar]
- Kerns, B.K.; Shlisky, A.J.; Daniel, C.J. Proceedings of the First Landscape State-and-Transition Simulation Modeling Conference, Portland, OR, USA, 14–16 June 2011; General Technical Report PNW-GTR-869. U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 2012; p. 215.
- Daniel, C.J.; Frid, L. Predicting landscape vegetation dynamics using state-and-transition simulation models. In Proceedings of the First Landscape State-and-Transition Simulation Modeling Conference, Portland, OR, USA, 14–16 June 2011; Kerns, B.K., Shlisky, A.J., Daniel, C.J., Eds.; U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 2012; pp. 5–22. [Google Scholar]
- Shlisky, A.J.; Vandendriesche, D. Use of state-and-transition modeling in National Forest planning in the Pacific Northwest, USA. In Proceedings of the First Landscape State-and-Transition Simulation Modeling Conference, Portland, OR, USA, 14–16 June 2011; Kerns, B.K., Shlisky, A.J., Daniel, C.J., Eds.; U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 2012; pp. 23–42. [Google Scholar]
- Publications Using State-and-Transition Simulation Models. Available online: http://wiki.syncrosim.com/index.php?title=Publications (accessed on 25 November 2013).
- Steele, C.M.; Bestelmeyer, B.T.; Burkett, L.M.; Smith, P.L.; Yanoff, S. Spatially explicit representation of state-and-transition models. Rangeland Ecol. Manag. 2012, 65, 213–222. [Google Scholar] [CrossRef]
- State-and-Transition Simulation Models, APEX Resource Management Solutions, Ottawa, ON, Canada. Available online: http://www.apexrms.com/projects/stsm (accessed on 10 November 2013).
- Soulard, C.E.; Acevedo, W. Multi-temporal harmonization of independent land-use/land-cover datasets for the conterminous United States. In Proceedings of the Presentation at the American Geophysical Union, San Francisco, CA, USA, 9–13 December 2013.
- Anderson, J.R.; Hardy, E.E.; Roach, J.T.; Witmer, R.E. A Land Use and Land Cover Classification Scheme for Use with Remote Sensor Data; Professional Paper 964; U.S. Geological Survey: Reston, VA, USA, 1976; p. 28. [Google Scholar]
- Vogelmann, J.E.; Howard, S.M.; Yang, L.; Larson, C.R.; Wylie, B.K.; van Driel, J.N. Completion of the 1990’s national land cover data set for the conterminous United States. Photogramm. Eng. Remote Sens. 2001, 67, 650–662. [Google Scholar]
- Homer, C.; Dewitz, J.; Fry, J.; Coan, M.; Hossain, N.; Larson, C.; Herold, N.; McKerrow, A.; VanDriel, J.N.; Wickham, J. Completion of the 2001 national land cover database for the conterminous United States. Photogramm. Eng. Remote Sens. 2007, 73, 337–341. [Google Scholar]
- Fry, J.; Xian, G.; Jin, S.; Dewitz, J.; Homer, C.; Yang, L.; Barnes, C.; Herold, N.; Wickham, J. Completion of the 2006 national land cover database for the conterminous United States. Photogramm. Eng. Remote Sens. 2011, 77, 858–864. [Google Scholar]
- Fry, J.A.; Coan, M.J.; Homer, C.G.; Meyer, D.K.; Wickham, J.D. Completion of the National Land Cover Database (NLCD) 1992–2001 Land Cover Change Retrofit Product; Open-File Report 2008–1379; U.S. Geological Survey: Reston, VA, USA, 2009; p. 18. [Google Scholar]
- Huang, C.; Goward, S.N.; Masek, J.G.; Thomas, N.; Zhu, Z.; Vogelmann, J.E. An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks. Remote Sens. Environ. 2010, 114, 183–198. [Google Scholar] [CrossRef]
- Roy, D.P.; Ju, J.; Kline, K.; Scaramuzza, P.L.; Kovalskyy, V.; Hansen, M.C.; Loveland, T.R.; Vermote, E.F.; Zhang, C. Web-enabled Landsat data (WELD): Landsat ETM+ composited mosaics of the conterminous United States. Remote Sens. Environ. 2010, 114, 35–49. [Google Scholar] [CrossRef]
- U.S. Department of Agriculture, National Agricultural Statistics Service (NASS). Cropland Data Layer for the United States; U.S. Department of Agriculture: Washington, DC, USA, 2011. [Google Scholar]
- Eidenshink, J.; Schwind, B.; Brewer, K.; Zhu, Z.; Quayle, B.; Howard, S. A project for monitoring trends in burn severity. Fire Ecol. Spec. Issue 2007, 3, 3–21. [Google Scholar]
- U.S. Department of Agriculture, Forest Service, U.S. Geological Survey. Forest Cover Types: National Atlas of the United States, Reston, VA, USA, 2002. Available online: http://nationalatlas.gov/metadata/foresti020l.faq.html (accessed on 15 December 2013).
- Villareal, M.L.; van Riper, C.; Petrakis, R.E. Conflation and aggregation of spatial data improve predictive models for species with limited habitats: A case of the threatened yellow-billed cuckoo in Arizona, USA. Appl. Geogr. 2014, 47, 57–69. [Google Scholar] [CrossRef]
- Pan, Y.; Chen, J.M.; Birdsey, R.; McCullough, K.; He, L.; Deng, F. Age structure and disturbance legacy of North American forests. Biogeosciences 2011, 8, 715–732. [Google Scholar] [CrossRef]
- Natural Resources Conservation Service. Soil Survey Geographic (SSURGO) Database; U.S. Department of Agriculture, 2011. Available online: http://soildatamart.nrcs.usda.gov (accessed on 22 November 2013).
- Sleeter, R.; Gould, M. Geographic Information System Software to Remodel Population Data Using Dasymetric Mapping Methods; U.S. Geological Survey Techniques and Methods 11-C2; U.S. Geological Survey: Reston, VA, USA, 2007; p. 15. [Google Scholar]
- Beaumont, L.J.; Duursma, D. Global projections of 21st century land-use changes in regions adjacent to protected areas. PLoS One 2012, 7, e43714. [Google Scholar] [CrossRef]
- Daniels, J.M. The Rise and Fall of the Pacific Northwest Log Export Market; General Technical Report, PNW-GTR-624; U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 2005; p. 84. [Google Scholar]
- Klausmeyer, K.R.; Shaw, M.R.; MacKenzie, J.B.; Cameron, D.R. Landscape-scale indicators of biodiversity’s vulnerability to climate change. Ecosphere 2011, 2, 1–18. [Google Scholar]
- Hansen, A.J.; Neilson, R.P.; Dale, V.H.; Flather, C.H.; Iverson, L.R.; Currie, D.J.; Shafer, S.; Cook, R.; Bartlein, P.J. Global change in forests: Responses of species, communities, and biomes. BioScience 2001, 51, 765–779. [Google Scholar] [CrossRef]
- Nelson, D.B.; Abbott, M.B.; Steinman, B.; Polissar, P.J.; Stansell, N.D.; Ortiz, J.D.; Rosenmeier, M.F.; Finney, B.P.; Riedel, J. Drought variability in the Pacific Northwest from a 6000-yr lake sediment record. Proc. Natl. Acad. Sci. USA 2011. [Google Scholar] [CrossRef]
- Carroll, C.; Dunk, J.R.; Moilanen, A. Optimizing resiliency of reserve networks to climate change: Multispecies conservation planning in the Pacific Northwest, USA. Glob. Chang. Biol. 2010, 16, 891–904. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Wilson, T.S.; Sleeter, B.M.; Sleeter, R.R.; Soulard, C.E. Land-Use Threats and Protected Areas: A Scenario-Based, Landscape Level Approach. Land 2014, 3, 362-389. https://doi.org/10.3390/land3020362
Wilson TS, Sleeter BM, Sleeter RR, Soulard CE. Land-Use Threats and Protected Areas: A Scenario-Based, Landscape Level Approach. Land. 2014; 3(2):362-389. https://doi.org/10.3390/land3020362
Chicago/Turabian StyleWilson, Tamara S., Benjamin M. Sleeter, Rachel R. Sleeter, and Christopher E. Soulard. 2014. "Land-Use Threats and Protected Areas: A Scenario-Based, Landscape Level Approach" Land 3, no. 2: 362-389. https://doi.org/10.3390/land3020362
APA StyleWilson, T. S., Sleeter, B. M., Sleeter, R. R., & Soulard, C. E. (2014). Land-Use Threats and Protected Areas: A Scenario-Based, Landscape Level Approach. Land, 3(2), 362-389. https://doi.org/10.3390/land3020362