Ecological Network Construction in the Central Urban Area of Fuzhou: A Perspective of Green Infrastructure Supply and Demand
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Research Methods
2.3.1. Measurement of GI Supply
2.3.2. Measurement of GI Demand
2.3.3. MSPA Identification and Landscape Connectivity Analysis
2.4. Construction of the Ecological Network
2.4.1. Identification of Ecological Sources
2.4.2. Construction of the Comprehensive Resistance Surface
2.4.3. Construction of Ecological Corridors
2.4.4. Identification of Ecological Nodes
3. Results
3.1. Analysis of GI Supply and Demand Dynamics
3.2. Analysis of GI Spatial Pattern
3.3. Ecological Network Construction and Centrality Analysis
3.3.1. Ecological Sources
3.3.2. Comprehensive Resistance Surface
3.3.3. Ecological Corridors
3.3.4. Ecological Nodes
3.4. Analysis and Optimization of GI Ecological Network Construction
4. Discussion
4.1. Factors Affecting GI Equilibrium
4.2. Innovation
4.3. Limitations and Improvement
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marando, F.; Heris, M.P.; Zulian, G.; Udías, A.; Mentaschi, L.; Chrysoulakis, N.; Parastatidis, D.; Maes, J. Urban heat island mitigation by green infrastructure in European functional urban areas. Sust. Cities Soc. 2022, 77, 103564. [Google Scholar] [CrossRef]
- Cai, Y.; Chen, Y.; Tong, C. Spatiotemporal evolution of urban green space and its impact on the urban thermal environment based on remote sensing data: A case study of Fuzhou city, China. Urban For. Urban Green. 2019, 41, 333–343. [Google Scholar] [CrossRef]
- Cai, Y.; Zhang, H.; Zheng, P.; Pan, W. Quantifying the impact of land use/land cover changes on the urban heat island: A case study of the natural wetlands distribution area of Fuzhou city, China. Wetlands 2016, 36, 285–298. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Z.; Wang, Y.; Zheng, X.; Deng, X. Building green infrastructure for mitigating urban flood risk in Beijing, China. Urban For. Urban Green. 2024, 93, 128218. [Google Scholar] [CrossRef]
- Liu, N.; Zhang, F. Urban green spaces and flood disaster management: Toward sustainable urban design. Front. Public Health 2025, 13, 1583978. [Google Scholar] [CrossRef] [PubMed]
- Liu, O.Y.; Russo, A. Assessing the contribution of urban green spaces in green infrastructure strategy planning for urban ecosystem conditions and services. Sust. Cities Soc. 2021, 68, 102772. [Google Scholar] [CrossRef]
- Wang, D.; Xu, P.; An, B.; Guo, Q. Urban green infrastructure: Bridging biodiversity conservation and sustainable urban development through adaptive management approach. Front. Ecol. Evol. 2024, 12, 1440477. [Google Scholar] [CrossRef]
- Lourdes, K.T.; Hamel, P.; Gibbins, C.N.; Sanusi, R.; Azhar, B.; Lechner, A.M. Planning for green infrastructure using multiple urban ecosystem service models and multicriteria analysis. Landsc. Urban Plan. 2022, 226, 104500. [Google Scholar] [CrossRef]
- Tzoulas, K.; Korpela, K.; Venn, S.; Yli-Pelkonen, V.; Kazmierczak, A.; Niemela, J.; James, P. Promoting ecosystem and human health in urban areas using green infrastructure: A literature review. Landsc. Urban Plan. 2007, 81, 167–178. [Google Scholar] [CrossRef]
- Li, B.; Wang, Y.; Wang, T.; He, X.; Kazak, J.K. Scenario analysis for resilient urban green infrastructure. Land 2022, 11, 1481. [Google Scholar] [CrossRef]
- Kong, J.; Gao, M.; Deusen, D. Evaluating landscape ecological risk through supply-demand balance in ecosystem services Evidence from China. Ecol. Indic. 2025, 173, 113355, Corrigendum in Ecol. Indic. 2025, 177, 113664. [Google Scholar] [CrossRef]
- Zhou, L.; Zhou, C.; Che, L.; Wang, B. Spatio-temporal evolution and influencing factors of urban green development efficiency in China. J. Geogr. Sci. 2020, 30, 724–742. [Google Scholar] [CrossRef]
- Qin, X.; Liu, W.; Ling, H.; Zhang, G.; Gong, Y.; Meng, X.; Shan, Q. Construction and optimization of ecological security pattern in the mainstream of the tarim river basin, China. J. Arid. Land 2025, 17, 735–753. [Google Scholar] [CrossRef]
- Cai, Y.; Li, H.; Li, W. Optimization of a “social-ecological” system pattern from the perspective of ecosystem service supply and demand: A case study of Jilin province. Land 2024, 13, 1716. [Google Scholar] [CrossRef]
- Liu, X.; Han, Y.; Li, Y.; Li, L.; Liu, Y. Construction of ecological network in Daihai basin based on ecological security pattern and ecological service accessibility. Ecol. Front. 2024, 44, 1224–1231. [Google Scholar] [CrossRef]
- Shi, J.; Zhang, D.; Yin, J.; Wang, Z.; Feng, H.; Liu, Y.; Shi, P. Regional ecosystem health improvement pathway design based on ecological network optimization. Ecol. Indic. 2025, 173, 113377. [Google Scholar] [CrossRef]
- Zhang, L.; Li, J. Identifying priority areas for biodiversity conservation based on marxan and invest model. Landsc. Ecol. 2022, 37, 3043–3058. [Google Scholar] [CrossRef]
- Jiang, H.; Peng, J.; Dong, J.; Zhang, Z.; Xu, Z.; Meersmans, J. Linking ecological background and demand to identify ecological security patterns across the Guangdong-Hong Kong-Macao greater bay area in China. Landsc. Ecol. 2021, 36, 2135–2150. [Google Scholar] [CrossRef]
- Ma, J.; Yu, Q.; Wang, H.; Yang, L.; Wang, R.; Fang, M. Construction and optimization of wetland landscape ecological network in Dongying city, China. Land 2022, 11, 1226. [Google Scholar] [CrossRef]
- Shen, Z.; Wu, W.; Tian, S.; Wang, J. A multi-scale analysis framework of different methods used in establishing ecological networks. Landsc. Urban Plan. 2022, 228, 104579. [Google Scholar] [CrossRef]
- Nie, W.; Xu, B.; Yang, F.; Shi, Y.; Liu, B.; Wu, R.; Lin, W.; Pei, H.; Bao, Z. Simulating future land use by coupling ecological security patterns and multiple scenarios. Sci. Total Environ. 2023, 859, 160262. [Google Scholar] [CrossRef]
- Wang, T.; Huang, Y.; Cheng, J.; Xiong, H.; Ying, Y.; Feng, Y.; Wang, J. Construction and optimization of watershed-scale ecological network based on complex network method: A case study of Erhai lake basin in China. Ecol. Indic. 2024, 160, 111794. [Google Scholar] [CrossRef]
- Chen, H.; Yan, W.; Li, Z.; Wende, W.; Xiao, S. A framework for integrating ecosystem service provision and connectivity in ecological spatial networks: A case study of the shanghai metropolitan area. Sust. Cities Soc. 2024, 100, 105018. [Google Scholar] [CrossRef]
- An, Y.; Liu, S.; Sun, Y.; Shi, F.; Beazley, R. Construction and optimization of an ecological network based on morphological spatial pattern analysis and circuit theory. Landsc. Ecol. 2021, 36, 2059–2076. [Google Scholar] [CrossRef]
- Lumia, G.; Praticò, S.; Di Fazio, S.; Cushman, S.; Modica, G. Combined use of urban atlas and corine land cover datasets for the implementation of an ecological network using graph theory within a multi-species approach. Ecol. Indic. 2023, 148, 110150. [Google Scholar] [CrossRef]
- Huang, K.; Peng, L.; Wang, X.; Deng, W. Integrating circuit theory and landscape pattern index to identify and optimize ecological networks: A case study of the Sichuan basin, China. Environ. Sci. Pollut. Res. 2022, 29, 66874–66887. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Wang, F.; Fu, M. Research progress and prospects for constructing ecological security pattern based on ecological network. Ecol. Indic. 2024, 168, 112800. [Google Scholar] [CrossRef]
- Zeng, W.; He, Z.; Bai, W.; He, L.; Chen, X.; Chen, J. Identification of ecological security patterns of alpine wetland grasslands based on landscape ecological risks: A study in zoigê county. Sci. Total Environ. 2024, 928, 172302. [Google Scholar] [CrossRef]
- Yuan, Y.; Wang, J.; Qiao, N.; Huang, Y.; Bai, Z. Identifying ecological strategic points based on multi-functional ecological networks: A case study of Changzhi city, China. Appl. Geogr. 2023, 159, 103002. [Google Scholar] [CrossRef]
- Guo, Z.; Zhu, C.; Fan, X.; Li, M.; Xu, N.; Yuan, Y.; Guan, Y.; Lyu, C.; Bai, Z. Analysis of ecological network evolution in an ecological restoration area with the MSPA-MCR model: A case study from Ningwu county, China. Ecol. Indic. 2025, 170, 113067. [Google Scholar] [CrossRef]
- De Montis, A.; Caschili, S.; Mulas, M.; Modica, G.; Ganciu, A.; Bardi, A.; Ledda, A.; Dessena, L.; Laudari, L.; Fichera, C.R. Urban—rural ecological networks for landscape planning. Land Use Policy 2016, 50, 312–327. [Google Scholar] [CrossRef]
- Weber, T.; Sloan, A.; Wolf, J. Maryland’s green infrastructure assessment: Development of a comprehensive approach to land conservation. Landsc. Urban Plan. 2006, 77, 94–110. [Google Scholar] [CrossRef]
- Tang, Y.; Gao, C.; Wu, X. Urban ecological corridor network construction: An integration of the least cost path model and the invest model. ISPRS Int. J. Geo-Inf. 2020, 9, 33. [Google Scholar] [CrossRef]
- Huang, X.; Wang, H.; Shan, L.; Xiao, F. Constructing and optimizing urban ecological network in the context of rapid urbanization for improving landscape connectivity. Ecol. Indic. 2021, 132, 108319. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, S.; Zhu, J.; Huang, S.; Cheng, L.; Dong, J.; Sun, Y. A comprehensive evaluation of supply and demand in urban parks along “luck greenway” in Fuzhou. Sustainability 2023, 15, 2250. [Google Scholar] [CrossRef]
- Chen, X.; Kang, B.; Li, M.; Du, Z.; Zhang, L.; Li, H. Identification of priority areas for territorial ecological conservation and restoration based on ecological networks: A case study of Tianjin city, China. Ecol. Indic. 2023, 146, 109809. [Google Scholar] [CrossRef]
- Chi, Y.; Zhang, Z.; Wang, J.; Xie, Z.; Gao, J. Island protected area zoning based on ecological importance and tenacity. Ecol. Indic. 2020, 112, 106139. [Google Scholar] [CrossRef]
- Xie, G.; Zhang, C.; Zhen, L.; Zhang, L. Dynamic changes in the value of China’s ecosystem services. Ecosyst. Serv. 2017, 26, 146–154. [Google Scholar] [CrossRef]
- Zhao, L.; Fan, X. Effects of land use changes on ecosystem service values: A case study in Guilin, China. Pol. J. Environ. Stud. 2020, 29, 1483–1492. [Google Scholar] [CrossRef]
- Xie, H.; Zhu, Z.; Li, Z. Spatial divergence analysis of ecosystem service value in hilly mountainous areas: A case study of Ruijin city. Land 2022, 11, 768. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Z.; Li, S.; Li, X.; Wang, W. Spatiotemporal patterning and matching of ecosystem services’ supply and demand in Changchun, China. Land 2023, 12, 2101. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, S.; Shi, F.; An, Y.; Li, M.; Liu, Y. Spatio-temporal variations and coupling of human activity intensity and ecosystem services based on the four-quadrant model on the Qinghai-Tibet plateau. Sci. Total Environ. 2020, 743, 140721. [Google Scholar]
- Zhu, Y.; Tian, D.; Yan, F. Effectiveness of entropy weight method in decision-making. Math. Probl. Eng. 2020, 2020, 3564835. [Google Scholar] [CrossRef]
- Soille, P.; Vogt, P. Morphological segmentation of binary patterns. Pattern Recognit. Lett. 2009, 30, 456–459. [Google Scholar] [CrossRef]
- Dong, J.; Guo, F.; Lin, M.; Zhang, H.; Zhu, P. Optimization of green infrastructure networks based on potential green roof integration in a high-density urban area—A case study of Beijing, China. Sci. Total Environ. 2022, 834, 155307. [Google Scholar] [CrossRef]
- Yu, Y.P.; Yin, H.W.; Kong, F.H.; Wang, J.J.; Xu, W.B. Scale effect of Nanjing urban green infrastructure network pattern and connectivity analysis. Chin. J. Appl. Ecol. 2016, 27, 2119–2127. [Google Scholar]
- Geng, J.; Yu, K.; Sun, M.; Xie, Z.; Huang, R.; Wang, Y.; Zhao, Q.; Liu, J. Construction and optimisation of ecological networks in high-density central urban areas: The case of Fuzhou city, China. Remote Sens. 2023, 15, 5666. [Google Scholar] [CrossRef]
- Ma, B.; Zeng, C.; Lv, T.; Liu, W.; Yang, W. Prioritization of ecological conservation and restoration areas through ecological networks: A case study of Nanchang city, China. Land 2024, 13, 878. [Google Scholar] [CrossRef]
- Adriaensen, F.; Chardon, J.P.; De Blust, G.; Swinnen, E.; Villalba, S.; Gulinck, H.; Matthysen, E. The application of ‘least-cost’ modelling as a functional landscape model. Landsc. Urban Plan. 2003, 64, 233–247. [Google Scholar] [CrossRef]
- Chen, F.; Li, L.; Niu, J.; Lin, A.; Chen, S.; Hao, L. Evaluating ecosystem services supply and demand dynamics and ecological zoning management in Wuhan, China. Int. J. Environ. Res. Public Health 2019, 16, 2332. [Google Scholar] [CrossRef]
- Wang, X.; Qiu, X.; Wang, Z.; Feng, C.; Fan, Z.; He, W. Construction of a social ecological security pattern based on the supply and demand of ecosystem services. J. Nat. Conserv. 2025, 86, 126962. [Google Scholar] [CrossRef]
- Ren, Q.; Ni, J.; Li, H.; Mao, G.; Hsu, W.; Yang, J. Analysis on spatial characteristics of supply-demand relationship of amenities in expanding central urban areas-a case study of Huai’an, China. Land 2022, 11, 1137. [Google Scholar] [CrossRef]
- Yan, Y.; Li, J.; Li, J.; Jiang, T. Spatiotemporal changes in the supply and demand of ecosystem services in the Kaidu-kongque river basin, China. Sustainability 2023, 15, 8949. [Google Scholar] [CrossRef]
- Cai, Y.; Zhang, H.; Pan, W.; Chen, Y.; Wang, X. Land use pattern, socio-economic development, and assessment of their impacts on ecosystem service value: Study on natural wetlands distribution area (NWDA) in Fuzhou city, southeastern China. Environ. Monit. Assess. 2013, 185, 5111–5123. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, H.; Yang, X.; Wang, Y.; Wang, X.; Cai, Y. Identifying priority areas for the conservation of ecosystem services using GIS-based multicriteria evaluation. Pol. J. Ecol. 2013, 61, 415–430. [Google Scholar]
- Dickson, B.G.; Albano, C.M.; Anantharaman, R.; Beier, P.; Fargione, J.; Graves, T.A.; Gray, M.E.; Hall, K.R.; Lawler, J.J.; Leonard, P.B.; et al. Circuit-theory applications to connectivity science and conservation. Conserv. Biol. 2019, 33, 239–249. [Google Scholar] [CrossRef]
- Wang, Y.; Pan, J. Building ecological security patterns based on ecosystem services value reconstruction in an arid inland basin: A case study in Ganzhou district, NW China. J. Clean. Prod. 2019, 241, 118337. [Google Scholar] [CrossRef]
- Li, L.; Huang, X.; Wu, D.; Wang, Z.; Yang, H. Optimization of ecological security patterns considering both natural and social disturbances in China’s largest urban agglomeration. Ecol. Eng. 2022, 180, 106647. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Q.; Wang, J.; Wu, T.; Li, M. Constructing ecological security patterns using remote sensing ecological index and circuit theory: A case study of the Changchun-Jilin-tumen region. J. Environ. Manage. 2025, 373, 123693. [Google Scholar] [CrossRef]
- Zhou, G.; Huan, Y.; Wang, L.; Lan, Y.; Liang, T.; Shi, B.; Zhang, Q. Linking ecosystem services and circuit theory to identify priority conservation and restoration areas from an ecological network perspective. Sci. Total Environ. 2023, 873, 162261. [Google Scholar] [CrossRef]
- Mcrae, B.H.; Beier, P. Circuit theory predicts gene flow in plant and animal populations. Proc. Natl. Acad. Sci. USA 2007, 104, 19885–19890. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, W.; Min, M.; Zhao, K.; Zhang, S.; Liu, T. Optimization of ecological connectivity and construction of supply-demand network in Wuhan metropolitan area, China. Ecol. Indic. 2023, 146, 109799. [Google Scholar] [CrossRef]
- Peng, J.; Yang, Y.; Liu, Y.; Hu, Y.; Du, Y.; Meersmans, J.; Qiu, S. Linking ecosystem services and circuit theory to identify ecological security patterns. Sci. Total Environ. 2018, 644, 781–790. [Google Scholar] [CrossRef]
- Kang, J.; Qing, Y.; Lu, W. Construction and optimization of the Saihanba ecological network. Ecol. Indic. 2023, 153, 110401. [Google Scholar] [CrossRef]
- Huo, J.; Shi, Z.; Zhu, W.; Li, T.; Xue, H.; Chen, X.; Yan, Y.; Ma, R. Construction and optimization of an ecological network in Zhengzhou metropolitan area, China. Int. J. Environ. Res. Public Health 2022, 19, 8066. [Google Scholar] [CrossRef]
- Yu, Q.; Yue, D.; Wang, Y.; Kai, S.; Fang, M.; Ma, H.; Zhang, Q.; Huang, Y. Optimization of ecological node layout and stability analysis of ecological network in desert oasis: A typical case study of ecological fragile zone located at Deng Kou county (inner Mongolia). Ecol. Indic. 2018, 84, 304–318. [Google Scholar] [CrossRef]
- Yang, H.; Xu, W.; Chen, Z.; Xie, X.; Yu, J.; Lei, X.; Guo, S.; Ding, Z. Ecological network construction for bird communities in high-density urban areas: A perspective of integrated approaches. Ecol. Indic. 2024, 158, 111592. [Google Scholar] [CrossRef]
- Xu, X.; Wang, S.; Rong, W. Construction of ecological network in Suzhou based on the plus and MSPA models. Ecol. Indic. 2023, 154, 110740. [Google Scholar] [CrossRef]
- Wei, Q.; Halike, A.; Yao, K.; Chen, L.; Balati, M. Construction and optimization of ecological security pattern in Ebinur lake basin based on MSPA-MCR models. Ecol. Indic. 2022, 138, 108857. [Google Scholar] [CrossRef]
- Shi, N.N.; Han, Y.; Wang, Q.; Quan, Z.J.; Xiao, N.W. Construction and optimization of ecological network for protected areas in Qinghai province. Chin. J. Ecol. 2018, 37, 1910–1916. [Google Scholar]
- Atrbac, S.; Kašanin-Grubin, M.; Pezo, L.; Stojić, N.; Lončar, B.; určić, L.; Pucarević, M. Green infrastructure designed through nature-based solutions for sustainable urban development. Int. J. Environ. Res. Public Health 2023, 20, 1102. [Google Scholar] [CrossRef]
- Bradecki, T.; Opania, S. Functional-environmental evaluation of pocket parks in urbanized areas—The case study of Gliwice. Civ. Environ. Eng. Rep. 2022, 32, 50–72. [Google Scholar] [CrossRef]
- Jia, D.; Guo, R.; Qiu, W.; Wu, Z.; Lin, S.; Hu, X. Impact of different grade roads on ecological networks: A case study of Fuzhou city, China. Chin. J. Appl. Ecol. 2024, 35, 489–500. [Google Scholar]
- Das, M.; Das, A.; Saikh, S. Estimating supply-demand mismatches for optimization of sustainable land use planning in a rapidly growing urban agglomeration (India). Land Use Policy 2024, 139, 107061. [Google Scholar] [CrossRef]
- Li, M.; Chen, T.; Li, J.; Yang, G.; Zhao, L.; Cao, Q.; Yang, L.; Sun, Y. Advancing sustainability in urban planning by measuring and matching the supply and demand of urban green space ecosystem services. Sustainability 2024, 16, 10306. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Q.; Feng, Y.; Sun, Y.; Liu, N.; Yan, S. The Spatio-temporal evolution of spatial structure and supply-demand relationships of the ecological network in the yellow river delta region of China. J. Clean. Prod. 2024, 471, 143388. [Google Scholar] [CrossRef]
- Zeng, J.; Cui, X.; Chen, W.; Yao, X. Impact of urban expansion on the supply-demand balance of ecosystem services: An analysis of prefecture-level cities in China. Environ. Impact Assess. Rev. 2023, 99, 107003. [Google Scholar] [CrossRef]
- Huang, H.; Fu, D.; Ding, G.; Yan, C.; Xie, X.; Gao, Y.; Liu, Q. Construction and optimization of green infrastructure network in mountainous cities: A case study of Fuzhou, China. Sci. Rep. 2024, 14, 11936. [Google Scholar] [CrossRef]











| Service Types | Detailed Indicators | Forest Land | Grass Land | Water | |||
|---|---|---|---|---|---|---|---|
| Equivalence Coefficient | Supply Coefficient | Equivalence Coefficient | Supply Coefficient | Equivalence Coefficient | Supply Coefficient | ||
| Provisioning services | Food | 0.29 | 690.21 | 0.22 | 523.61 | 0.80 | 1904.02 |
| Materials | 0.66 | 1570.82 | 0.33 | 785.41 | 0.23 | 547.41 | |
| Water | 0.34 | 809.21 | 0.18 | 428.41 | 8.29 | 19,730.45 | |
| Regulating services | Air quality regulation | 2.17 | 5164.67 | 1.14 | 2713.23 | 0.77 | 1832.62 |
| Climate regulations | 6.50 | 15,470.20 | 3.02 | 7187.69 | 2.29 | 5450.27 | |
| Waste treatment | 1.93 | 4593.46 | 1.00 | 2380.03 | 5.55 | 13,209.17 | |
| Regulation of water flows | 4.74 | 11,281.34 | 2.21 | 5259.87 | 102.24 | 243,334.27 | |
| Support services | Erosion prevention | 2.65 | 6307.08 | 1.39 | 3308.24 | 0.93 | 2213.43 |
| Maintenance of soil fertility | 0.2 | 476.01 | 0.11 | 261.80 | 0.07 | 166.60 | |
| Habitat services | 2.41 | 5735.87 | 1.27 | 3022.64 | 2.55 | 6069.08 | |
| Cultural services | Cultural &amenity services | 1.06 | 2522.83 | 0.56 | 1332.82 | 1.89 | 4498.26 |
| Paddy | Sweet Potato | Potato | Total | |
|---|---|---|---|---|
| Output (t) | 240,409 | 167,403 | 57,403 | 465,215 |
| (ha) | 39,674 | 26,153 | 11,853 | 77,680 |
| (t ha−1) | 6.059 | 6.401 | 4.843 | 17.303 |
| (yuan t−1) | 3012 | 2500 | 2640 | 8152 |
| (yuan ha−1) | 1331.676 | 769.655 | 278.696 | 2380.027 |
| Items | Indicator | Information Entropy Value e | Information Utility Value d | Weight Coefficient w (%) |
| Social demand | Population density | 0.9412 | 0.0588 | 41.94 |
| Economic demand | Night light | 0.9448 | 0.0552 | 39.37 |
| Land development intensity | 0.9738 | 0.0262 | 18.69 |
| Factors | Resistance Value | Weight | ||||
|---|---|---|---|---|---|---|
| 1 | 20 | 60 | 80 | 100 | ||
| DEM | ≤200 | (200,400] | (400,600] | (600,800] | >800 | 0.15 |
| Slope | ≤8 | (8,15] | (15,25] | (25,35] | >35 | 0.2 |
| Land use | Forest land | Water | Grass land | Cropland | Others | 0.15 |
| GI demand | ≤0.05 | (0.05,0.15] | (0.15,0.25] | (0.25,0.4] | >0.4 | 0.5 |
| Landscape Type | Area (km2) | Ratio (%) |
|---|---|---|
| Cores | 940.54 | 87.02 |
| Islet | 9.59 | 0.89 |
| Perforation | 28.27 | 2.62 |
| Edge | 71.38 | 6.60 |
| Loop | 7.67 | 0.71 |
| Bridge | 5.93 | 0.55 |
| Branch | 17.38 | 1.61 |
| Rank | Number | dPC | Area | Centrality | Grade |
|---|---|---|---|---|---|
| 1 | 13 | 52.113 | 274.741 | 70.829 | Important |
| 2 | 23 | 40.311 | 184.505 | 62.892 | Important |
| 3 | 27 | 37.354 | 157.758 | 141.602 | Core |
| 4 | 26 | 34.315 | 121.219 | 165.309 | Core |
| 5 | 17 | 27.150 | 52.987 | 59.599 | Important |
| 6 | 21 | 9.224 | 44.481 | 244.970 | Core |
| 7 | 24 | 5.832 | 28.910 | 63.346 | Important |
| 8 | 7 | 1.584 | 7.491 | 53.260 | Important |
| 9 | 1 | - | 5.388 | 0 | General |
| 10 | 12 | 1.337 | 3.055 | 75.665 | Important |
| 11 | 3 | - | 2.527 | 48.595 | Important |
| 12 | 9 | 0.985 | 2.323 | 60.611 | Important |
| 13 | 22 | 0.569 | 2.136 | 35.948 | General |
| 14 | 18 | 0.518 | 1.939 | 84.960 | Important |
| 15 | 4 | 0.487 | 1.768 | 26 | General |
| 16 | 28 | 0.442 | 1.695 | 39.894 | General |
| 17 | 2 | - | 1.626 | 42.722 | General |
| 18 | 11 | 0.383 | 1.620 | 83.831 | Important |
| 19 | 5 | 0.276 | 1.545 | 0 | General |
| 20 | 16 | 0.269 | 1.308 | 27.826 | General |
| 21 | 29 | 0.246 | 1.202 | 33.746 | General |
| 22 | 14 | 0.225 | 1.193 | 29.635 | General |
| 23 | 20 | 0.224 | 1.127 | 38.758 | General |
| 24 | 8 | 0.167 | 1.047 | 56.707 | Important |
| 25 | 10 | 0.144 | 1.023 | 91.153 | Core |
| 26 | 6 | 0.139 | 0.974 | 38.042 | General |
| 27 | 19 | 0.138 | 0.859 | 51.327 | Important |
| 28 | 25 | 0.125 | 0.558 | 41.199 | General |
| 29 | 15 | 0.109 | 0.510 | 26 | General |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Hong, C.; Chen, Y.; Cai, Y.; Pan, W. Ecological Network Construction in the Central Urban Area of Fuzhou: A Perspective of Green Infrastructure Supply and Demand. Land 2026, 15, 46. https://doi.org/10.3390/land15010046
Hong C, Chen Y, Cai Y, Pan W. Ecological Network Construction in the Central Urban Area of Fuzhou: A Perspective of Green Infrastructure Supply and Demand. Land. 2026; 15(1):46. https://doi.org/10.3390/land15010046
Chicago/Turabian StyleHong, Chenyao, Yanhong Chen, Yuanbin Cai, and Wenbin Pan. 2026. "Ecological Network Construction in the Central Urban Area of Fuzhou: A Perspective of Green Infrastructure Supply and Demand" Land 15, no. 1: 46. https://doi.org/10.3390/land15010046
APA StyleHong, C., Chen, Y., Cai, Y., & Pan, W. (2026). Ecological Network Construction in the Central Urban Area of Fuzhou: A Perspective of Green Infrastructure Supply and Demand. Land, 15(1), 46. https://doi.org/10.3390/land15010046

