Interpretable Machine Learning and Remote Sensing Data Reveal Soil Biogeochemistry Patterns in Agricultural Systems
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Sampling and Analyses
2.3. Digital Mapping Procedure
2.4. Model Validation and Interpretability
3. Results
3.1. Morphological Description of Soil Profile
3.2. Summary Statistics of Soil Properties
3.3. Soil Predictive Models
3.4. Spatial Predictions
4. Discussion
4.1. Soil Properties Across Land Use Types
4.2. Spatial Predictions of Soil Properties
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Subedi, Y.R.; Kristiansen, P.; Cacho, O. Drivers and consequences of agricultural land abandonment and its reutilisation pathways: A systematic review. Environ. Dev. 2022, 42, 100681. [Google Scholar] [CrossRef]
- Cao, J.; Zhang, M.; Chen, E. The Dynamic Effects of Ecosystem Services Supply and Demand on Air Quality: A Case Study of the Yellow River Basin, China. Pol. J. Environ. Stud. 2025. [Google Scholar] [CrossRef]
- Prishchepov, A.V.; Müller, D.; Dubinin, M.; Baumann, M.; Radeloff, V.C. Determinants of agricultural land abandonment in post-Soviet European Russia. Land Use Policy 2013, 30, 873–884. [Google Scholar] [CrossRef]
- Prishchepov, A.V.; Ponkina, E.V.; Sun, Z.; Bavorova, M.; Yekimovskaja, O.A. Revealing the intentions of farmers to recultivate abandoned farmland: A case study of the Buryat Republic in Russia. Land Use Policy 2021, 107, 105513. [Google Scholar] [CrossRef]
- Novara, A.; Gristina, L.; Sala, G.; Galati, A.; Crescimanno, M.; Cerdà, A.; Badalamenti, E.; La Mantia, T. Agricultural land abandonment in Mediterranean environment provides ecosystem services via soil carbon sequestration. Sci. Total Environ. 2017, 576, 420–429. [Google Scholar] [CrossRef]
- Bell, S.M.; Barriocanal, C.; Terrer, C.; Rosell-Melé, A. Management opportunities for soil carbon sequestration following agricultural land abandonment. Environ. Sci. Policy 2020, 108, 104–111. [Google Scholar] [CrossRef]
- Romero-Díaz, A.; Pérez-Morales, A.; Marín-Sanleandro, P. Prevalence, causes, and consequences of agricultural land abandonment: A case study in the Region of Murcia, Spain. Catena 2024, 241, 108071. [Google Scholar] [CrossRef]
- Rodrigo-Comino, J.; Martínez-Hernández, C.; Iserloh, T.; Cerdà, A. Contrasted impact of land abandonment on soil erosion in Mediterranean agriculture fields. Pedosphere 2018, 28, 617–631. [Google Scholar] [CrossRef]
- Nadal-Romero, E.; Rubio, P.; Kremyda, V.; Absalah, S.; Cammeraat, E.; Jansen, B.; Lasanta, T. Effects of agricultural land abandonment on soil organic carbon stocks and composition of soil organic matter in the Central Spanish Pyrenees. Catena 2021, 205, 105441. [Google Scholar] [CrossRef]
- Rebola, L.C.; Paz, C.P.; Gamarra, L.V.; Burslem, D.F.R.P. Land use intensity determines soil properties and biomass recovery after abandonment of agricultural land in an Amazonian biodiversity hotspot. Sci. Total Environ. 2021, 801, 149487. [Google Scholar] [CrossRef]
- Wu, L.; Ren, C.; Jiang, H.; Zhang, W.; Chen, N.; Zhao, X.; Wei, G.; Shu, D. Land abandonment transforms soil microbiome stability and functional profiles in apple orchards of the Chinese Losses Plateau. Sci. Total Environ. 2024, 906, 167556. [Google Scholar] [CrossRef]
- Rautiainen, A.; Virtanen, T.; Kauppi, P.E. Land cover change on the Isthmus of Karelia 1939–2005: Agricultural abandonment and natural succession. Environ. Sci. Policy 2016, 55, 127–134. [Google Scholar] [CrossRef]
- Andreeva, O.V.; Kust, G.S. Land assessment in Russia based on the concept of land degradation neutrality. Reg. Res. Russ. 2020, 10, 593–602. [Google Scholar] [CrossRef]
- Ageenko, P.A. The problem of rational land use as a factor in ensuring food security in the Republic of Karelia. Bull. Fac. Land Manag. St.-Petersburg State Agrar. Univ. 2020, 6, 47–50. [Google Scholar]
- Kotova, Z.P.; Kotov, S.E.; Kuznetsova, L.A. Dynamics of soil fertility indicators’ changes in agricultural lands of Karelia. Proc. Petrozavodsk. State Univ. 2017, 2, 32–38. [Google Scholar]
- Frieva, N.A. The efficiency of use of land as a factor of development of the agrarian sector of the European North of Russia. Sci. Bull. South. Inst. Manag. 2018, 4, 33–44. [Google Scholar] [CrossRef]
- Svidskaia, I.A.S.; Khorolskii, I.V. Involvement of unused or inefficiently used land in the economic turnover as a way to manage territories. Experience of Karelia. Prop. Relat. Russ. Fed. 2021, 9, 21–25. [Google Scholar]
- Polunin, G.A. Establishing unfavorable territories for agricultural production, depending on the suitability of the land. Econ. Labor Manag. Agric. 2020, 11, 81–87. [Google Scholar] [CrossRef]
- Moshkina, Y.V.; Medvedeva, M.V.; Tuyunen, A.V.; Karpechko, A.Y.; Genikova, N.V.; Dubrovina, I.A.; Mamai, A.V.; Sidorova, V.A.; Tolstoguzov, O.V.; Kulakova, L.M. Patterns of natural forest ecosystem regeneration in abandoned farmland (the case of the southern agro-climatic district of Karelia). Biosfera 2019, 11, 134–145. [Google Scholar]
- Sidorova, V.A. Evaluation of possibilities of using fallow land in agriculture in Karelia. Mod. Sci. Success 2016, 5, 146–149. [Google Scholar]
- Enchilik, P.R.; Chechenkov, P.D.; Yu, G.-H.; Semenkov, I.N. Partitioning of Available P and K in Soils During Post-Agricultural Pine and Spruce Reforestation in Smolensk Lakeland National Park, Russia. Forests 2025, 16, 845. [Google Scholar] [CrossRef]
- Nizamutdinov, T.; Yang, S.; Abakumov, E. Post-Agricultural Shifts in Soils of Subarctic Environment on the Example of Plaggic Podzols Chronosequence. Agronomy 2025, 15, 584. [Google Scholar] [CrossRef]
- Bryk, M. Study on the Physical Properties of a Forest Glossic Retisol Developed from Loess in the Lublin Upland, SE Poland. Soil Sci. Ann. 2023, 74, 1–17. [Google Scholar] [CrossRef]
- Kochiieru, M.; Lamorski, K.; Feizienė, D.; Feiza, V.; Šlepetienė, A.; Volungevičius, J. Land Use and Soil Types Affect Macropore Network, Organic Carbon and Nutrient Retention, Lithuania. Geoderma Reg. 2022, 28, e00473. [Google Scholar] [CrossRef]
- Muraškienė, M.; Armolaitis, K.; Varnagirytė-Kabašinskienė, I.; Baliuckas, V.; Aleinikovienė, J. Evaluation of Soil Organic Carbon Stability in Different Land Uses in Lithuania. Sustainability 2023, 15, 16042. [Google Scholar] [CrossRef]
- Mulder, V.L.; de Bruin, S.; Schaepman, M.E.; Mayr, T.R. The Use of Remote Sensing in Soil and Terrain Mapping—A Review. Geoderma 2011, 162, 1–19. [Google Scholar] [CrossRef]
- Odebiri, O.; Odindi, J.; Mutanga, O. Basic and Deep Learning Models in Remote Sensing of Soil Organic Carbon Estimation: A Brief Review. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102389. [Google Scholar] [CrossRef]
- Babaeian, E.; Sadeghi, M.; Jones, S.B.; Montzka, C.; Vereecken, H.; Tuller, M. Ground, Proximal, and Satellite Remote Sensing of Soil Moisture. Rev. Geophys. 2019, 57, 530–616. [Google Scholar] [CrossRef]
- Suleymanov, A.; Gabbasova, I.; Abakumov, E.; Kostecki, J. Soil Salinity Assessment from Satellite Data in the Trans-Ural Steppe Zone (Southern Ural, Russia). Soil Sci. Annu. 2021, 72, 132233. [Google Scholar] [CrossRef]
- Wang, J.; Zhen, J.; Hu, W.; Chen, S.; Lizaga, I.; Zeraatpisheh, M.; Yang, X. Remote Sensing of Soil Degradation: Progress and Perspective. Int. Soil Water Conserv. Res. 2023, 11, 429–454. [Google Scholar] [CrossRef]
- Kebebew, S.; Bedadi, B.; Erkossa, T.; Yimer, F.; Wogi, L. Effect of Different Land-Use Types on Soil Properties in Cheha District, South-Central Ethiopia. Sustainability 2022, 14, 1323. [Google Scholar] [CrossRef]
- Suleymanov, A.; Abakumov, E.; Polyakov, V.; Kozlov, A.; Saby, N.; Kuzmenko, P.; Telyagissov, S.; Coblinski, J. Estimation and Mapping of Soil pH in Urban Landscapes. Geoderma Reg. 2025, 40, e00919. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources. In International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, 4th ed.; International Union of Soil Sciences: Vienna, Austria, 2022. [Google Scholar]
- Piikki, K.; Wetterlind, J.; Söderström, M.; Stenberg, B. Perspectives on Validation in Digital Soil Mapping of Continuous Attributes—A Review. Soil Use Manag. 2021, 37, 7–21. [Google Scholar] [CrossRef]
- Khaledian, Y.; Miller, B.A. Selecting Appropriate Machine Learning Methods for Digital Soil Mapping. Appl. Math. Model. 2020, 81, 401–418. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Gregorutti, B.; Michel, B.; Saint-Pierre, P. Correlation and Variable Importance in Random Forests. Stat. Comput. 2017, 27, 659–678. [Google Scholar] [CrossRef]
- Lundberg, S.; Lee, S.-I. A Unified Approach to Interpreting Model Predictions. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 4768–4777. [Google Scholar]
- Dubrovina, I.A.; Moshkina, E.V.; Tuyunen, A.V.; Genikova, N.V.; Karpechko, A.Y.; Medvedeva, M.V. Dynamics of soil properties and ecosystem carbon stocks for different types of land use (Middle Taiga of Karelia). Eurasian Soil Sci. 2022, 55, 1209–1221. [Google Scholar] [CrossRef]
- Dubrovina, I.A.; Moshkina, E.V.; Tuyunen, A.V.; Genikova, N.V.; Karpechko, A.Y.; Medvedeva, M.V. Ecosystem carbon stock in iron-metamorphic soils with different types of land use in South Karelia. Eurasian Soil Sci. 2024, 57, 1567–1578. [Google Scholar] [CrossRef]
- Dubrovina, I.A.; Sidorova, V.A.; Moshkina, E.V.; Tuyunen, A.V.; Karpechko, A.Y.; Genikova, N.V.; Medvedeva, M.V.; Mamai, A.V.; Tolstoguzov, O.V.; Kulakova, L.M. The impact of land use on soil properties and structure of ecosystem carbon stocks in the Middle Taiga Subzone of Karelia. Eurasian Soil Sci. 2021, 54, 1756–1769. [Google Scholar] [CrossRef]
- Dorosinsky, L.M. Competitive ability of nodule bacteria. In Biological Nitrogen in Agriculture of the USSR; Mishustin, E.N., Ed.; Nauka: Moscow, Russia, 1989; pp. 27–34. [Google Scholar]
- Dubrovina, I.A. Change in the content of total carbon, nitrogen and phosphorus in the boreal soils of the Republic of Karelia when used in agriculture. Tomsk. State Univ. J. Biol. 2018, 41, 27–41. [Google Scholar] [CrossRef]
- Žížala, D.; Minařík, R.; Skála, J.; Beitlerová, H.; Juřicová, A.; Reyes Rojas, J.; Penížek, V.; Zádorová, T. High-Resolution Agriculture Soil Property Maps from Digital Soil Mapping Methods, Czech Republic. CATENA 2022, 212, 106024. [Google Scholar] [CrossRef]
- Heuvelink, G.B.M. Uncertainty and Uncertainty Propagation in Soil Mapping and Modelling. In Pedometrics; McBratney, A.B., Minasny, B., Stockmann, U., Eds.; Progress in Soil Science; Springer International Publishing: Cham, Switzerland, 2018; pp. 439–461. ISBN 978-3-319-63439-5. [Google Scholar]
- Liu, F.; Wu, H.; Zhao, Y.; Li, D.; Yang, J.-L.; Song, X.; Shi, Z.; Zhu, A.-X.; Zhang, G.-L. Mapping High Resolution National Soil Information Grids of China. Sci. Bull. 2022, 67, 328–340. [Google Scholar] [CrossRef]
- Suleymanov, A.; Suleymanov, R.; Gabbasova, I.; Saifullin, I. Field-Scale Digital Mapping of Top- and Subsoil Chernozem Properties. Precis. Agric. 2024, 25, 1636–1657. [Google Scholar] [CrossRef]
- Castaldi, F.; Palombo, A.; Santini, F.; Pascucci, S.; Pignatti, S.; Casa, R. Evaluation of the Potential of the Current and Forthcoming Multispectral and Hyperspectral Imagers to Estimate Soil Texture and Organic Carbon. Remote Sens. Environ. 2016, 179, 54–65. [Google Scholar] [CrossRef]
- Mahmoudabadi, E.; Karimi, A.; Haghnia, G.H.; Sepehr, A. Digital Soil Mapping Using Remote Sensing Indices, Terrain Attributes, and Vegetation Features in the Rangelands of Northeastern Iran. Environ. Monit. Assess. 2017, 189, 500. [Google Scholar] [CrossRef] [PubMed]
- Urbina-Salazar, D.; Vaudour, E.; Baghdadi, N.; Ceschia, E.; Richer-de-Forges, A.C.; Lehmann, S.; Arrouays, D. Using Sentinel-2 Images for Soil Organic Carbon Content Mapping in Croplands of Southwestern France. The Usefulness of Sentinel-1/2 Derived Moisture Maps and Mismatches between Sentinel Images and Sampling Dates. Remote Sens. 2021, 13, 5115. [Google Scholar] [CrossRef]
- Žížala, D.; Minařík, R.; Zádorová, T. Soil Organic Carbon Mapping Using Multispectral Remote Sensing Data: Prediction Ability of Data with Different Spatial and Spectral Resolutions. Remote Sens. 2019, 11, 2947. [Google Scholar] [CrossRef]
- Vaudour, E.; Gomez, C.; Fouad, Y.; Lagacherie, P. Sentinel-2 Image Capacities to Predict Common Topsoil Properties of Temperate and Mediterranean Agroecosystems. Remote Sens. Environ. 2019, 223, 21–33. [Google Scholar] [CrossRef]
- Kasraei, B.; Schmidt, M.G.; Zhang, J.; Bulmer, C.E.; Filatow, D.S.; Arbor, A.; Pennell, T.; Heung, B. A Framework for Optimizing Environmental Covariates to Support Model Interpretability in Digital Soil Mapping. Geoderma 2024, 445, 116873. [Google Scholar] [CrossRef]
- Dvornikov, Y.A.; Vasenev, V.I.; Romzaykina, O.N.; Grigorieva, V.E.; Litvinov, Y.A.; Gorbov, S.N.; Dolgikh, A.V.; Korneykova, M.V.; Gosse, D.D. Projecting the Urbanization Effect on Soil Organic Carbon Stocks in Polar and Steppe Areas of European Russia by Remote Sensing. Geoderma 2021, 399, 115039. [Google Scholar] [CrossRef]
- Hu, B.; Geng, Y.; Shi, K.; Xie, M.; Ni, H.; Zhu, Q.; Qiu, Y.; Zhang, Y.; Bourennane, H. Fine-Resolution Baseline Maps of Soil Nutrients in Farmland of Jiangxi Province Using Digital Soil Mapping and Interpretable Machine Learning. CATENA 2025, 249, 108635. [Google Scholar] [CrossRef]
- Chinilin, A.; Lozbenev, N.; Shilov, P.; Fil, P.; Levchenko, E.; Kozlov, D. Synergetic Use of Bare Soil Composite Imagery and Multitemporal Vegetation Remote Sensing for Soil Mapping (A Case Study from Samara Region’s Upland). Land 2024, 13, 2229. [Google Scholar] [CrossRef]
- Maynard, J.J.; Levi, M.R. Hyper-Temporal Remote Sensing for Digital Soil Mapping: Characterizing Soil-Vegetation Response to Climatic Variability. Geoderma 2017, 285, 94–109. [Google Scholar] [CrossRef]
- Heuvelink, G.B.M.; Webster, R. Spatial Statistics and Soil Mapping: A Blossoming Partnership under Pressure. Spat. Stat. 2022, 50, 100639. [Google Scholar] [CrossRef]
Bands/Spectral Index | Resolution | Central Wavelength | Description |
---|---|---|---|
B2 | 10 m | 490 nm | Blue |
B3 | 10 m | 560 nm | Green |
B4 | 10 m | 665 nm | Red |
B5 | 20 m | 705 nm | Red edge 1 |
B6 | 20 m | 740 nm | Red edge 2 |
B7 | 20 m | 783 nm | Red edge 3 |
B8 | 10 m | 842 nm | Near-infrared 1 (NIR) |
B8a | 20 m | 865 nm | Near-infrared 2 (NIR) |
B11 | 20 m | 1610 nm | Short-wave Infrared 1 (SWIR) |
B12 | 20 m | 2190 nm | Short-wave Infrared 2 (SWIR) |
NDVI | 20 m | - | Normalized Difference Vegetation Index |
Soil Property/Land Use Type | Cropland | Haying | Forest |
---|---|---|---|
Corg, % | 2.4 ± 1.1 | 1.9 ± 0.8 | 6.1 ± 4.3 |
Kmob, % | 38.2 ± 15.6 | 58.9 ± 36.7 | 78.3 ± 42.1 |
N, mg/100 g | 7.6 ± 3.2 | 15.2 ± 8.9 | 31.2 ± 14.5 |
Ptot, % | 0.075 ± 0.024 | 0.058 ± 0.019 | 0.046 ± 0.021 |
Pmob, % | 0.023 ± 0.015 | 0.017 ± 0.008 | 0.005 ± 0.003 |
Soil Property | Model | RMSE 1 | R2 | RPD |
---|---|---|---|---|
Corg | RF | 2.15 | 0.53 | 1.38 |
Kmob | Cubist | 31.92 | 0.29 | 1.16 |
N | RF | 9.87 | 0.55 | 1.50 |
Ptot | KNN | 0.02 | 0.19 | 1.22 |
Pmob | RF | 0.01 | 0.49 | 1.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suleymanov, R.; Yurkevich, M.; Bakhmet, O.; Popova, T.; Kungurtsev, A.; Zakirov, D.; Vittsenko, A.; Mishra, G.; Suleymanov, A. Interpretable Machine Learning and Remote Sensing Data Reveal Soil Biogeochemistry Patterns in Agricultural Systems. Land 2025, 14, 1881. https://doi.org/10.3390/land14091881
Suleymanov R, Yurkevich M, Bakhmet O, Popova T, Kungurtsev A, Zakirov D, Vittsenko A, Mishra G, Suleymanov A. Interpretable Machine Learning and Remote Sensing Data Reveal Soil Biogeochemistry Patterns in Agricultural Systems. Land. 2025; 14(9):1881. https://doi.org/10.3390/land14091881
Chicago/Turabian StyleSuleymanov, Ruslan, Marija Yurkevich, Olga Bakhmet, Tatiana Popova, Andrey Kungurtsev, Denis Zakirov, Anastasia Vittsenko, Gaurav Mishra, and Azamat Suleymanov. 2025. "Interpretable Machine Learning and Remote Sensing Data Reveal Soil Biogeochemistry Patterns in Agricultural Systems" Land 14, no. 9: 1881. https://doi.org/10.3390/land14091881
APA StyleSuleymanov, R., Yurkevich, M., Bakhmet, O., Popova, T., Kungurtsev, A., Zakirov, D., Vittsenko, A., Mishra, G., & Suleymanov, A. (2025). Interpretable Machine Learning and Remote Sensing Data Reveal Soil Biogeochemistry Patterns in Agricultural Systems. Land, 14(9), 1881. https://doi.org/10.3390/land14091881