Soil C-CO2 Emissions Across Different Land Uses in a Peri-Urban Area of Central Croatia
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design and Management
2.3. Soil Sampling, CO2 Concentration Measurement and Agro-Ecological Factors
2.4. Soil Analysis
2.5. Data Analysis
3. Results
3.1. Effects of Season, Land Use, and Their Interaction on Soil C-CO2 Emissions
3.2. Seasonal Correlation Patterns of Soil C-CO2 Emissions and Soil Properties in Different Land Use Systems
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ANOVA | Analysis of variance |
CO2 | Carbon dioxide |
CHN | Carbon–Hydrogen–Nitrogen |
EC | Electrical Conductivity |
FAAS | Flame Atomic Absorption Spectrometry |
ICP-OES | Inductively Coupled Plasma Optical Emission Spectrometry |
LSD | Last significant difference |
KAN | Calcium Ammonium Nitrate |
NPK | Nitrogen–Phosphorus–Potassium |
R2 | R square |
SAS | Statistical Analysis System |
TOC | Total Organic Carbon |
References
- Jones, A.B.; Smith, C.D.; Brown, E.F. National contributions to climate change due to historical emissions of carbon dioxide, methane, and nitrous oxide since 1850. Nat. Commun. 2023, 10, 155. [Google Scholar] [CrossRef] [PubMed]
- EPA. Report on Greenhouse Gases. Available online: https://www.epa.gov/report-environment/greenhouse-gases (accessed on 1 July 2025).
- Galic, M. Dinamika Disanja tla u Vegetaciji Ratarskih Kultura. Doctoral Dissertation, University of Zagreb Faculty of Agriculture, Zagreb, Croatia, 2024. Available online: https://repozitorij.agr.unizg.hr/en/islandora/object/agr%3A3499 (accessed on 1 July 2025).
- Kopittke, P.M.; Dalal, R.C.; McKenna, B.A.; Smith, P.; Wang, P.; Weng, Z.; van der Bom, F.J.T.; Menzies, N.W. Soil is a major contributor to global greenhouse gas emissions and climate change. Soil 2024, 10, 873–885. [Google Scholar] [CrossRef]
- Thornton, P.E.; Lamarque, J.F.; Rosenbloom, N.A.; Mahowald, N.M. Influence of carbon-nitrogen cycle coupling on land model response to CO2 fertilization and climate variability. Glob. Biogeochem. Cycles 2007, 21, GB4018. [Google Scholar] [CrossRef]
- Stockmann, U.; Adams, M.A.; Crawford, J.W.; Field, D.J.; Henakaarchchi, N.; Jenkins, M.; Minasny, B.; McBratney, A.B.; Courcelles, V.D.R.D.; Singh, K.; et al. The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agric. Ecosyst. Environ. 2013, 164, 80–99. [Google Scholar] [CrossRef]
- Galic, M.; Bilandzija, D.; Zgorelec, Z. Influence of Long-Term Soil Management Practices on Carbon Emissions from Corn (Zea mays L.) Production in Northeast Croatia. Agronomy 2023, 13, 2051. [Google Scholar] [CrossRef]
- Telo da Gama, J. The Role of Soils in Sustainability, Climate Change, and Ecosystem Services: Challenges and Opportunities. Ecologies 2023, 4, 552–567. [Google Scholar] [CrossRef]
- Zeng, W.; Chen, J.; Liu, H.; Wang, W. Soil respiration and its autotrophic and heterotrophic components in response to nitrogen addition among different degraded temperate grasslands. Soil Biol. Biochem. 2018, 124, 255–265. [Google Scholar] [CrossRef]
- Rankin, T.E.; Roulet, N.T.; Moore, T.R. Controls on autotrophic and heterotrophic respiration in an ombrotrophic bog. Biogeosciences 2022, 19, 3285–3303. [Google Scholar] [CrossRef]
- Riutta, T.; Khoon Kho, L.; Arn The, Y.; Ewers, R.; Majalap, N.; Malhi, Y. Major and persistent shifts in below-ground carbon dynamics and soil respiration following logging in tropical forests. Glob. Chan. Biolog. 2021, 27, 2225–2240. [Google Scholar] [CrossRef]
- Isbell, F.; Craven, D.; Connolly, J.; Loreau, M.; Schmid, B.; Beierkuhnlein, C.; Bezemer, T.M.; Bonin, C.; Bruelheide, H.; de Luca, E.; et al. Biodiversity increases the resistance of ecosystem carbon fluxes to climate extremes. Nat. Commun. 2019, 10, 112. [Google Scholar]
- Bai, Y.; Cotrufo, M.F. Grassland soil carbon sequestration: Current understanding, challenges, and solutions. Science 2022, 377, 603–608. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Deng, L.; Gunina, A.; Alharbi, S.; Wang, K.; Li, J.; Liu, Y.; Shangguan, Z.; Kuzyakov, Y. Carbon stabilization pathways in soil aggregates during long-term forest succession: Implications from δ13C signatures. Soil Biol. Biochem. 2023, 180, 108988. [Google Scholar] [CrossRef]
- Chen, L.; Gong, J.; Fu, B.; Huang, Z.; Huang, Y.; Gui, L. Effect of land use conversion on soil organic carbon sequestration in the loess hilly area, Loess Plateau of China. Ecol. Res. 2007, 22, 641–648. [Google Scholar] [CrossRef]
- Li, B.; Li, P.; Yang, X.; Xiao, H.; Xu, M.; Liu, G. Land-use conversion changes deep soil organic carbon stock in the Chinese Loess Plateau. Land Degrad. Dev. 2020, 32, 505–517. [Google Scholar] [CrossRef]
- Lan, G.; Liu, C.; Wang, H.; Cao, J.; Hu, B. The effect of land use change and soil redistribution on soil organic carbon dynamics in karst graben basin of China. J. Soils Sediments 2021, 21, 2511–2524. [Google Scholar] [CrossRef]
- Brusseau, M.L.; Peng, S.; Schnaar, G.; Costanza-Robinson, M.S. Relationships among air–water interfacial area, capillary pressure, and water saturation for a sandy porous medium. Water Resour. Res. 2006, 42, W03501. [Google Scholar] [CrossRef]
- Hamamoto, S.; Ohko, Y.; Ohtake, Y.; Moldrup, P.; Nishimura, T. Water- and air-filled pore networks and transport parameters under drying and wetting processes. Vadose Zone J. 2022, 21, e20205. [Google Scholar] [CrossRef]
- Yan, Z.; Liu, C.; Todd-Brown, K.E.; Liu, Y.; Bond-Lamberty, B.; Bailey, V.B. Pore-scale investigation on the response of heterotrophic respiration to moisture conditions in heterogeneous soils. Biogeochemistry 2016, 130, 121–134. [Google Scholar] [CrossRef]
- Gui, W.; You, Y.; Yang, F.; Zhang, M. Soil Bulk Density and Matric Potential Regulate Soil CO2 Emissions by Altering Pore Characteristics and Water Content. Land 2023, 12, 1646. [Google Scholar] [CrossRef]
- Silva, S.R.; da Silva, I.R.; de Barros, N.F.; de Sá Mendonça, E. Effect of compaction on microbial activity and carbon and nitrogen transformations in two oxisols with different mineralogy. Rev. Bras. Ciênc. Solo 2011, 35, 1141–1149. [Google Scholar] [CrossRef]
- Azevedo, L.C.B.; Bertini, S.C.B.; Ferreira, A.S.; Rodovalho, N.S.; Ferreira, L.F.R.; Kumar, A. Author 2, B.; Author Microbial contribution to the carbon flux in the soil: A literature review. Soil Biolog. 2024, 48, e0230065. [Google Scholar]
- Bogunovic, I.; Pereira, P.; Kisic, I.; Sajko, K.; Sraka, M. Agricultural and Forest Land-Use Impact on Soil Properties in Zagreb Periurban Area (Croatia). Agronomy 2020, 10, 1331. [Google Scholar] [CrossRef]
- Ozlu, E.; Arriaga, F.J.; Bilen, S.; Gozukara, G.; Babur, E. Carbon footprint management by agricultural practices. Biology 2022, 11, 1453. [Google Scholar] [CrossRef]
- Rossi, F.S.; La Scala, N.; Capristo-Silva, F.G.; Della-Silva, J.L.; Pereira Ribeiro Teodoro, L.; Almeida, G.; Vicente Tiago, A.; Teodoro, P.E.; da Silva Junior, C.A. Implications of CO2 emissions on the mainland and forest uses in the Brazilian Amazon. Environ. Res. 2023, 227, 115729. [Google Scholar] [CrossRef]
- Buragiene, S.; Šarauskis, E.; Romaneckas, K.; Adamavičiene, A.; Kriaučiiuiene, Z.; Avižienyte, D.; Marozas, V.; Naujokiene, V. Relationship between CO2 emissions and soil properties of differently tilled soils. Sci. Total Environ. 2019, 662, 786–795. [Google Scholar] [CrossRef]
- Kurganova, I.N.; Lopes de Gerenyu, V.O.; Myakshina, T.N.; Sapronov, D.V.; Khoroshaev, D.A.; Ableeva, V.A. Temperature sensitivity of soil respiration in grasslands in temperate continental climate zone: Analysis of 25-year-long monitoring data. Eurasian Soi. Sci. 2023, 56, 1232–1246. [Google Scholar] [CrossRef]
- Raich, J.W.; Kaiser, M.S.; Dornbush, M.E.; Martin, J.G.; Valverde-Barrantes, J. Multiple factors co-limit short-term in situ soil carbon dioxide emissions. PLoS ONE 2023, 18, e0279839. [Google Scholar] [CrossRef] [PubMed]
- Galic, M.; Mesic, M.; Zgorelec, Z. Influence of Organic and Mineral Fertilization on Soil Greenhouse Gas Emissions. A Review. Agric. Conspec. Sci. 2020, 85, 1–8. [Google Scholar]
- Liu, C.; He, C.; Chang, S.X.; Chen, X.; An, S.; Wang, D.; Yan, J.; Zhang, Y.; Li, P. Fertilization and tillage influence on soil organic carbon fractions: A global meta-analysis. Catena 2024, 246, 108404. [Google Scholar] [CrossRef]
- Wiesmeier, M.; Urbanski, L.; Hobley, E.; Lang, B.; von Lützow, M.; Marin-Spiotta, E.; van Wesemael, B.; Rabot, E.; Ließ, M.; Garcia-Franco, N.; et al. Soil organic carbon storage as a key function of soils—A review of drivers and indicators at various scales. Geoderma 2019, 333, 149–162. [Google Scholar] [CrossRef]
- Denvir, A.; García-Oliva, F.; Arima, E.Y.; Latorre-Cárdenas, M.C.; González-Rodríguez, A.; Young, K.R.; Lara De La Cruz, L.I. Sustainability implications of carbon dynamics on the avocado frontier. Agric. Ecosyst. Environ. 2024, 359, 108746. [Google Scholar] [CrossRef]
- Raich, J.W.; Tufekcioglu, A. Vegetation and soil respiration: Correlations and controls. Biogeochemistry 2000, 48, 71–90. [Google Scholar] [CrossRef]
- Kim, J.; Lee, B.; Woo, N.C. Soil CO2 flux in upland and paddy fields under different land uses in Korea. Geosci. J. 2009, 13, 29–36. [Google Scholar]
- Yuan, H.; Matthew, C.; He, X.Z.; Sun, Y.; Liu, Y.; Zhang, T.; Gao, X.; Yan, C.; Chang, S.; Hou, F. Seasonal Variation in Soil and Herbage CO2 Efflux for a Sheep-Grazed Alpine Meadow on the North-East Qinghai-Tibetan Plateau and Estimated Net Annual CO2 Exchange. Front. Plant Sci. 2022, 13, 860739. [Google Scholar] [CrossRef] [PubMed]
- Munjonji, L.; Ntuli Innocentia, H.; Ayisi, K.K.; Dlamini, P.; Mabitsela, K.E.; Lehutjo, C.M.; Magnificent Zwane, P.S. Seasonal dynamics of soil CO2 emissions from different semi-arid land-use systems. Acta Agric. Scand. Sect. B-Soil. Plant Sci. 2024, 74, 2312934. [Google Scholar]
- Teodoro, P.E.; Saragosa Rossi, F.; Pereira Ribeiro Teodoro, L.; Cordeiro Santana, D.; Ratke, R.F.; de Oliveira, I.C.; Della Silva, J.L.; Gouveia de Oliveira, J.L.; Pereira da Silva, N.; Rojo Baio, F.H.; et al. Soil CO2 emissions under different land-use managements in Mato Grosso do Sul, Brazil. J. Clean. Prod. 2024, 434, 139983. [Google Scholar] [CrossRef]
- Croatian Meteorological and Hydrological Service (DHMZ). 2025. Available online: http://meteo.hr/index.php (accessed on 15 June 2025).
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Widen, W.; Lindroth, A. A Calibration System for Soil Carbon Dioxide-efflux Measurement Chambers: Description and Application. Soil Sci. Soc. Am. J. 2001, 67, 327–334. [Google Scholar] [CrossRef]
- Tóth, T.; Fórizs, I.; Kuti, L.; Wardell, J.L. Data on the elements of carbon cycle in a solonetz and solonchak soil. Cereal Res. Commun. 2005, 33, 133–136. [Google Scholar] [CrossRef]
- Sánzhez-Navarro, V.; Peñalver, A.; Zornoza, R.; Fernández-Calviño, D. InBestSoil Handbook for soil sampling procedures and methodologies for the measurment of soil health indicators (1.0). Zenodo 2024. [Google Scholar] [CrossRef]
- Murphy, J.; Riley, J.P. A modified single-solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 1962, 27, 31–36. [Google Scholar] [CrossRef]
- Vasilj, D. Biometrika i Eksperimentiranje u Bilinogojstvu; Croatian Agronomic Society: Zagreb, Croatia, 2000. [Google Scholar]
- Iqbal, J.; Ronggui, H.; Lijun, D.; Lan, L. Differences in soil CO2 flux between different land use types in mid-subtropical China. Soil Biol. Biochem. 2008, 40, 2324–2333. [Google Scholar] [CrossRef]
- Rocha, A.M.d.; Franceschi, M.; Panosso, A.R.; Carvalho, M.A.C.d.; Moitinho, M.R.; Martins Filho, M.V.; Oliveira, D.M.d.S.; Freitas, D.A.F.d.; Yamashita, O.M.; La Scala, N., Jr. Effects of Land Use Changes on CO2 Emission Dynamics in the Amazon. Agronomy 2025, 15, 488. [Google Scholar] [CrossRef]
- Yuste, J.C.; Baldocchi, D.B.; Gershenson, A.; Goldstein, A.; Misson, L.; Wong, S. Microbial soil respiration and its dependency on carbon inputs, soil temperature and moisture. Glob. Change Biol. 2007, 13, 2018–2035. [Google Scholar] [CrossRef]
- Bogunovic, I. Soil physical properties, infiltration and CO2 emissions across different land use in an urban area of Zagreb, Croatia. In Proceedings of the CASEE Conference, Smart Life Sciences and Technology for Sustainable Development, Chișinău, Moldova, 28–30 June 2023; Bostan, V., Ed.; Technical University of Moldova: Chișinău, Moldova, 2023; p. 23. [Google Scholar]
- Abdalla, K.; Mutema, M.; Chivenge, P.; Everson, C.; Chaplot, V. Grassland rehabilitation significantly increases soil carbon stocks by reducing net soil CO2 emissions. Soil Use Manag. 2022, 38, 1250–1265. [Google Scholar] [CrossRef]
- Varga, K.; Halász, A.; Kovács, G.P.; Csízi, I. Investigation of carbon-dioxide emissions from underutilized grassland between 2019 and 2020. Agronomy 2022, 12, 931. [Google Scholar] [CrossRef]
- Zsembeli, J.; Szűcs, L.; Tuba, G.; Czimbalmos, R. Nedvességtakarékos talajművelési rendszer fejlesztése Karcagon. In Környezetkímélő Talajművelési Rendszerek Magyarországon; Madarász, B., Ed.; MTA CSFK FTI: Budapest, Hungary, 2015; pp. 122–133. [Google Scholar]
- Birkás, M. Földművelés és Földhasználat; Mezőgazda Lap-és Könyvkiadó: Budapest, Hungary, 2017; pp. 1–482. [Google Scholar]
- Peterson, B.L.; Starks, P.J.; Steiner, J.L. Seasonal greenhouse gases fluxes from monoculture and mixed native grasslands in the Southern Plains, USA. Agrosys. Geosci. Environ. 2021, 4, e20227. [Google Scholar] [CrossRef]
- Wang, W.J.; Dalal, R.C.; Moody, P.W.; Smith, C.J. Relationships of soil respiration to microbial biomass, substrate availability and clay content. Soil Biol. Biochem. 2003, 35, 273–284. [Google Scholar] [CrossRef]
- Hao, Y.; Mao, J.; Bachmann, C.M.; Hoffman, F.M.; Koren, G.; Chen, H.; Tian, H.; Liu, J.; Tao, J.; Tang, J.; et al. Soil moisture controls over carbon sequestration and greenhouse gas emissions: A review. npj Clim. Atmos. Sci. 2025, 8, 16. [Google Scholar] [CrossRef]
- Ebrahimi, A.; Or, D. Hydration and diffusion processes shape microbial community organization and function in model soil aggregates. Water Resour. Res. 2015, 51, 9804–9827. [Google Scholar] [CrossRef]
- Wanzek, T.; Keiluweit, M.; Baham, J.; Dragila, M.I.; Fendorf, S.; Fiedler, S.; Nico, P.S.; Kleber, M. Quantifying biogeochemical heterogeneity in soil systems. Geoderma 2018, 324, 89–97. [Google Scholar] [CrossRef]
- Lacroix, E.M.; Rossi, R.J.; Bossio, D.; Fendorf, S. Effects of moisture and physical disturbance on pore-scale oxygen content and anaerobic metabolisms in upland soils. Sci. Total Environ. 2021, 780, 146572. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zeng, R.; Liao, H. Improving crop nutrient efficiency through root architecture modifications. J. Integr. Plant Biol. 2015, 58, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Bach, L.; Gojon, A. Root system growth and development responses to elevated CO2: Underlying signalling mechanisms and role in improving plant CO2 capture and soil C storage. Biochem. J. 2023, 480, 753–771. [Google Scholar] [CrossRef]
- Lei, X.; Shen, Y.; Zhao, J.; Huang, J.; Wang, H.; Yu, Y.; Xiao, C. Root Exudates Mediate the Processes of Soil Organic Carbon Input and Efflux. Plants 2023, 12, 630. [Google Scholar] [CrossRef]
- Wegner, R.; Plassmann, M.; Sauerland, L.; Carter, A.; Monteux, S.; Oburger, E.; Wild, B. Back to the roots: Characterizing root exudates of dominant tundra plants to improve the understanding of plant–soil interactions in a changing Arctic. Soil Biol. Biochem. 2025, 209, 109897. [Google Scholar] [CrossRef]
- Poeplau, C.; Zopf, D.; Greiner, B.; Flessa, H. Why does mineral fertilization increase soil carbon stocks in temperate grasslands? Agric. Ecosyst. Environ. 2018, 265, 144–155. [Google Scholar] [CrossRef]
- Howe, J.A.; McDonald, M.D.; Burke, J.; Robertson, I.; Coker, H.; Gentry, T.J.; Lewis, K.L. Influence of fertilizer and manure inputs on soil health: A review. Soil Secur. 2024, 16, 100155. [Google Scholar] [CrossRef]
- Iqbal, J.; Hu, R.G.; Lin, S.; Hatano, R.; Feng, M.L. CO2 Emission in a Subtropical Red Paddy Soil (Ultisol) as Affected by Straw and N Fertilizer Applications: A Case Study in Southern China. Agric. Ecosyst. Environ. 2009, 131, 292–302. [Google Scholar] [CrossRef]
- Galic, M.; Bilandzija, D.; Percin, A.; Sestak, I.; Mesic, M.; Blazinkov, M.; Zgorelec, Z. Effects of Agricultural Practices on Carbon Emission and Soil Health. J. Sustain. Dev. Energy Water Environ. Syst. 2019, 7, 539–552. [Google Scholar] [CrossRef]
- Sosulski, T.; Szymańska, M.; Szara, E.; Sulewski, P. Soil Respiration under 90 Year-Old Rye Monoculture and Crop Rotation in the Climate Conditions of Central Poland. Agronomy 2021, 11, 21. [Google Scholar] [CrossRef]
- Yeboah, S.; Zhang, R.; Cai, L.; Li, L.; Xie, J.; Luo, Z.; Liu, J.; Wu, J. Tillage effect on soil organic carbon, microbial biomass carbon and crop yield in spring wheat-field pea rotation. Plant Soil Environ. 2016, 62, 279–285. [Google Scholar] [CrossRef]
- Salinas-Alcántara, A.; Mendoza, R.B.; Rodríguez-Lizana, A.; Ordóñez-Fernández, R.; Almagro, M. Soil CO2 emissions and microbial activity as affected by tillage and nitrogen management under rainfed cereal cropping systems. Agric. Syst. 2022, 195, 103282. [Google Scholar]
- Shishegaran, A.; Shishegaran, A.; Najari, M.; Ghotbi, A.; Nazem Boushehri, A. Effect of plants on an environment with high carbon dioxide concentration. Clean. Eng. Technol. 2020, 1, 100002. [Google Scholar] [CrossRef]
- Volk, G.M.; Byrne, P.F.; Moreau, T.L. Importance of plants for mitigating and adapting to the effects of climate change. In Conserving and Using Climate-Ready Plant Collections; Volk, G.M., Moreau, T.L., Byrne, P.F., Eds.; Colorado State University: Fort Collins, CO, USA, 2023; Available online: https://colostate.pressbooks.pub/climatereadyplantcollections/chapter/importance-of-plants/ (accessed on 5 July 2025).
- Park, J.H.; Matzner, E. Controls on the release of dissolved organic carbon and nitrogen from a deciduous forest floor investigated by manipulations of aboveground litter inputs and water flux. Biogeochemistry 2003, 66, 265–286. [Google Scholar] [CrossRef]
- Zhang, D.; Hui, D.; Luo, Y.; Zhou, G. Rates of litter decomposition in terrestrial ecosystems: Global patterns and controlling factors. J. Plant Ecol. 2008, 1, 85–93. [Google Scholar] [CrossRef]
- Giweta, M. Role of litter production and its decomposition, and factors affecting the processes in a tropical forest ecosystem: A review. J. Ecol. Environ. 2020, 44, 11. [Google Scholar] [CrossRef]
- Zhang, M.; Sayer, E.J.; Zhang, W.; Ye, J.; Yuan, Z.; Lin, F.; Hao, Z.; Fang, S.; Mao, Z.; Ren, J.; et al. Seasonal Influence of Biodiversity on Soil Respiration in a Temperate Forest. Plants 2022, 11, 3391. [Google Scholar] [CrossRef]
- Samariks, V.; Ķēniņa, L.; Īstenais, N.; Ozoliņš, K.; Köster, K.; Jansons, Ā. Organic soil greenhouse gas flux rates in hemiboreal old-growth Scots pine forests at different groundwater levels. Eur. J. Forest Res. 2024, 143, 1237–1248. [Google Scholar] [CrossRef]
- Beckstoffer, C.; Hall, J.S.; Silver, W.L. Rapid recovery of soil respiration during tropical forest secondary succession on former pastures. For. Ecol. Manag. 2024, 572, 122263. [Google Scholar] [CrossRef]
- Lv, W.; Liu, X.; Ding, H. Characteristics, Sources, and Mechanisms of Soil Respiration under Simulated Rainfall in a Native Karst Forest in Southwestern China. Forests 2024, 15, 945. [Google Scholar] [CrossRef]
- Zanotelli, D.; Vendrame, N.; Lopez-Bernal, A.; Caruso, G. Carbon sequestration in orchards and vineyard. Italus Hortus 2018, 25, 3. [Google Scholar] [CrossRef]
- Hou, T.; Wang, Y.; Guo, F.; Jia, Q.; Wu, X.; Wang, E.; Hong, J. Soil Respiration Characteristics and Influencing Factors for Apple Orchards in Different Regions on the Loess Plateau of Shaanxi Province. Sustainability 2021, 13, 4780. [Google Scholar] [CrossRef]
- Janke, R.R.; Menezes-Blackburn, D.; Al Hamdi, A.; Rehman, A. Organic Management and Intercropping of Fruit Perennials Increase Soil Microbial Diversity and Activity in Arid Zone Orchard Cropping Systems. Sustainability 2024, 16, 9391. [Google Scholar] [CrossRef]
- Ito, D.; Ishida, S. Short- and long-term effects of soil moisture on soil respiration in an apple orchard. J. Agric. Meteorol. 2016, 72, 63–71. [Google Scholar] [CrossRef]
- Maljanen, M.; Hytönen, J.; Mäkiranta, P.; Alm, J.; Minkkinen, K.; Laine, J.; Martikainen, P.J. Greenhouse gas emissions from cultivated and abandoned organic croplands in Finland. Boreal Environ. 2007, 12, 133–140. [Google Scholar]
- Oggioni, S.D.; Ochoa-Hueso, R.; Peco, B. Livestock grazing abandonment reduces soil microbial activity and carbon storage in a Mediterranean Dehesa. Appl. Soil Ecol. 2020, 153, 103588. [Google Scholar] [CrossRef]
- Lei, L.; Li, Y.; Zhou, Z.; Li, N.; Zhao, C.; Li, Q. Cropland abandonment alleviates soil carbon emissions in the North China Plain. Environ. Monit. Assess. 2023, 195, 6. [Google Scholar] [CrossRef]
- Jiao, H.; Delgado-Baquerizo, M.; Frew, A.; Li, W.; Zhai, K.; Yu, Q.; Zhou, G. Contrasting effects of above and belowground litter inputs in shaping the soil microbiome worldwide. Plant Soil 2025, 1–13. [Google Scholar] [CrossRef]
- MacCarthy, D.S.; Zougmoré, R.B.; Akponikpè, P.B.I.; Koomson, E.; Savadogo, P.; Adiku, S.G.K. Assessment of Greenhouse Gas Emissions from Different Land-Use Systems: A Case Study of CO2 in the Southern Zone of Ghana. App. Environ. Soil Sci. 2018, 2018, e057242. [Google Scholar] [CrossRef]
- Poeplau, C.; Don, A.; Vesterdal, L.; Leifeld, J.; van Wesemael, B.; Schumacher, J.; Gensior, A. Temporal dynamics of soil organic carbon after land-use change in the temperate zone—Carbon response functions as a model approach. Glob. Change Biolog. 2011, 17, 2415–2427. [Google Scholar] [CrossRef]
- Wang, L. Assessment of land use change and carbon emission: A Log Mean Divisa (LMDI) approach. Heliyon 2024, 10, e25669. [Google Scholar] [CrossRef] [PubMed]
- Bond-Lamberty, B.; Pennington, S.C.; Jian, J.; Megonigal, J.P.; Sengupta, A.; Ward, N. Soil Respiration Variability and Correlation Across a Wide Range of Temporal Scales. J. Geophys. Res. Biogeosci. 2019, 124, 3672–3683. [Google Scholar] [CrossRef]
- Hao, W.; Xia, B.; Li, J.; Xu, M. Deep soil CO2 flux with strong temperature dependence contributes considerably to soil–atmosphere carbon flux. Ecol. Inform. 2023, 74, 101957. [Google Scholar] [CrossRef]
- Inoue, T.; Nagai, S.; Inoue, S.; Ozaki, M.; Sakai, S.; Muraoka, H.; Koizumi, H. Seasonal variability of soil respiration in multiple ecosystems under the same physical–geographical environmental conditions in central Japan. For. Sci. Tech. 2012, 8, 52–60. [Google Scholar] [CrossRef]
- Galic, M.; Bilandcija, D.; Reis, I.; Zgorelec, Z. Soil fluxes of carbon dioxide in winter wheat (Triticum aestivum L.) agroecosystem. In Proceedings of the 57th Croatian & 17th International Symposium on Agriculture, Vodice, Croatia, 19–24 June 2022. [Google Scholar]
- Chiapponi, E.; Silvestri, S.; Zannoni, D.; Antonellini, M.; Giambastiani, B.M.S. Driving and limiting factors of CH4 and CO2 emissions from coastal brackish-water wetlands in temperate regions. Biogeosciences 2024, 21, 73–91. [Google Scholar] [CrossRef]
- Munjonji, L.; Ayisi, K.K.; Mafeo, T.P.; Maphanga, T.; Mabitsela, K.E. Seasonal variation in soil CO2 emission and leaf gas exchange of well-managed commercial Citrus sinensis (L.) orchards. Plant Soil 2021, 465, 65–81. [Google Scholar] [CrossRef]
- Kurganova, I.; Lopes de Gerenyu, V.; Kuzyakov, Y. Carbon dioxide emission from soils under freeze–thaw cycles estimated by laboratory and field experiments. Biol. Fertil. Soils 2007, 43, 532–539. [Google Scholar]
- Sierra, C.A.; Malghani, S.; Loescher, H.W. Interactions among temperature, moisture, and oxygen concentrations in controlling decomposition rates in a boreal forest soil. Biogeosciences 2017, 14, 703–710. [Google Scholar] [CrossRef]
- Azizi-Rad, M.; Guggenberger, G.; Ma, Y.; Carlos, S. Sensitivity of soil respiration rate with respect to temperature, moisture and oxygen under freezing and thawing. Soil Biol. Biochem. 2022, 165, 108488. [Google Scholar] [CrossRef]
- Moyano, F.E.; Manzoni, S.; Chenu, C. Responses of soil heterotrophic respiration to moisture availability: An exploration of processes and models. Soil Biol. Biochem. 2013, 59, 72–85. [Google Scholar] [CrossRef]
- Li, G.; Kim, S.; Han, S.; Chang, H.; Son, Y. Effect of Soil Moisture on the Response of Soil Respiration to Open-Field Experimental Warming and Precipitation Manipulation. Forests 2017, 8, 56. [Google Scholar] [CrossRef]
- Okello, J.; Bauters, M.; Verbeeck, H.; Bodé, S.; Kasenene, J.; Françoys, A.; Engelhardt, T.; Butterbach-Bahl, K.; Kiese, R.; Boeckx, P. Temperature sensitivity of soil organic carbon respiration along a forested elevation gradient in the Rwenzori Mountains, Uganda. Biogeosciences 2023, 20, 719–735. [Google Scholar] [CrossRef]
- Metz, E.-M.; Vardag, S.N.; Feldman, A.F.; Poulter, B.; Butz, A. Sensitivity of terrestrial ecosystem respiration to soil moisture under different aridity conditions in Australia. In Proceedings of the EGU General Assembly 2025, Vienna, Austria, 27 April–2 May 2025. [Google Scholar]
- Cruz-Paredes, C.; Tájmel, D.; Rousk, J. Can moisture affect temperature dependences of microbial growth and respiration? Soil. Biol. Biochem. 2021, 156, 108223. [Google Scholar] [CrossRef]
- Bian, H.; Li, C.; Zhu, J.; Xu, L.; Li, M.; Zheng, S.; He, N. Soil Moisture Affects the Rapid Response of Microbes to Labile Organic C Addition. Front. Ecol. Evol. 2022, 10, 857185. [Google Scholar] [CrossRef]
- Wood, T.E.; Detto, M.; Silver, W.L. Sensitivity of soil respiration to variability in soil moisture and temperature in a humid tropical forest. PLoS ONE 2013, 8, e80965. [Google Scholar] [CrossRef] [PubMed]
- Bilandžija, D.; Zgorelec, Ž.; Kisić, I. The Influence of Agroclimatic Factors on Soil CO2 Emissions. Coll. Antropol. 2014, 38, 77–83. [Google Scholar]
- Veettil, A.V.; Rahman, A.; Awal, R.; Fares, A.; Green, T.R.; Thapa, B.; Elhassan, A. Threshold Soil Moisture Levels Influence Soil CO2 Emissions: A Machine Learning Approach to Predict Short-Term Soil CO2 Emissions from Climate-Smart Fields. Sustainability 2025, 17, 6101. [Google Scholar] [CrossRef]
- Or, D. Physical Processes Affecting Microbial Habitats and Activity in Unsaturated Porous Media. J. Agric. Mar. Sci. 2002, 7, 39–45. [Google Scholar] [CrossRef]
- Steponavičienė, V.; Bogužas, V.; Sinkevičienė, A.; Skinulienė, L.; Vaisvalavičius, R.; Sinkevičius, A. Soil Water Capacity, Pore Size Distribution, and CO2 Emission in Different Soil Tillage Systems and Straw Retention. Plants 2022, 11, 614. [Google Scholar] [CrossRef]
- Mateo-Marín, N.; Bosch-Serra, À.; Molina, M.G.; Poch, R. Impacts of tillage and nutrient management on soil porosity trends in dryland agriculture. Eur. J. Soil Sci. 2021, 73, e13139. [Google Scholar] [CrossRef]
- Wolińska, A.; Stępniewska, Z.; Szymańska, M.; Możdżer, P. Soil pore-water environment and CO2 emission in a Luvisol as influenced by contrasting tillage. Intern. Agrophy. 2014, 28, 121–132. [Google Scholar]
- Bogunovic, I.; Pereira, P.; Galic, M.; Bilandzija, D.; Kisic, I. Tillage system and farmyard manure impact on soil physical properties, CO2 emissions, and crop yield in an organic farm located in a Mediterranean environment (Croatia). Environ. Ear. Sci. 2020, 79, 70. [Google Scholar] [CrossRef]
Soil Properties | Forest | Cropland | Grassland | Orchard | Abandoned |
---|---|---|---|---|---|
TOC [g/kg] | 28.5 | 13.8 | 22.7 | 15.5 | 22.0 |
pH in KCl (w/w 1:5) | 4.43 | 7.35 | 8.30 | 8.50 | 6.34 |
EC [dS/m] | 0.050 | 0.071 | 0.151 | 0.129 | 0.053 |
P2O5 [mg/kg] | 45.2 | 41.8 | 45.4 | 81.5 | 56.2 |
Exch. K [mg/kg] | 43.7 | 88.7 | 118.3 | 159.0 | 75.3 |
Ntotal [g/kg] | 2.25 | 1.55 | 2.79 | 1.98 | 2.31 |
Bulk density [g/cm3] | 0.92 | 1.32 | 1.14 | 1.31 | 1.15 |
Sand [%] | 9.5 | 5.8 | 16.2 | 8.8 | 6.8 |
Silt [%] | 80.0 | 81.5 | 72.8 | 79.3 | 78.2 |
Clay [%] | 10.5 | 12.8 | 11.0 | 11.9 | 15.0 |
Land Use | Year | Crop Type | Fertilization | Plant Protection | Sowing/ Harvest |
---|---|---|---|---|---|
Orchard | - | Apple orc. | 200 kg ha−1 NPK 15-15-15 (fall) | -Fungicide: Copper (I) hydroxide 100 g L−1 + Paraffin oil 550 g L−1: 4 L ha−1 (NOVAG AGROCHEMICALS, Novaki, Croatia) | - |
Cropland | 2021 | Soybean | 300 kg ha−1 NPK 7-20-30 | -Herbicide: Frontier X2 1 L ha−1 (Dimetenamid-p 720 g L−1) (BASF, Ludwigshafen, Germany) + Senat WG 0.5 kg ha−1 (Metribuzin 700 g kg−1) (UPL Europe Ltd., Warrington, UK) + Clematis 0.3 L ha−1 (Klomazon 360 g L−1) (ALBAUGH TKI, Municipality of Rače-Fram, Slovenia) | Cropland |
Cropland | 2023 | Winter wheat | 500 kg ha−1 NPK + 150 kg/ha KAN | -Herbcide: Lancelot 450 WG (Florasulam 150 g kg−1 + Aminopiralid 300 g kg−1) (Corteva Agriscience, Zagreb, Croatia) | Cropland |
2021 | ||||
F Value | Pr > F | R2 | LSD | |
Forest | 37.02 | <0.0001 | 0.798 | 2.82 |
Cropland | 83.59 | <0.0001 | 0.899 | 1.20 |
Grassland | 0.78 | 0.515 | 0.077 | 326.99 |
Abandoned land | 24.59 | <0.0001 | 0.725 | 2.96 |
Orchard | 15.48 | <0.0001 | 0.624 | 69.08 |
2023. | ||||
F value | Pr > F | R2 | LSD | |
Forest | 26.25 | <0.0001 | 0.740 | 6.11 |
Cropland | 25.20 | <0.0001 | 0.730 | 7.41 |
Grassland | 75.72 | <0.0001 | 0.890 | 7.57 |
Abandoned land | 23.78 | <0.0001 | 0.718 | 5.22 |
Orchard | 45.95 | <0.0001 | 0.831 | 5.39 |
2021 | ||||
F value | Pr > F | R2 | LSD | |
Winter | 16.11 | <0.0001 | 0.648 | 117.53 |
Spring | 26.92 | <0.0001 | 0.755 | 142.30 |
Summer | 24.88 | <0.0001 | 0.740 | 128.46 |
Fall | 16.30 | <0.0001 | 0.651 | 192.91 |
2023. | ||||
F value | Pr > F | R2 | LSD | |
Winter | 4.22 | 0.0068 | 0.325 | 3.19 |
Spring | 14.13 | <0.0001 | 0.618 | 9.28 |
Summer | 38.11 | <0.0001 | 0.813 | 6.48 |
Fall | 16.58 | <0.0001 | 0.655 | 4.26 |
Forest | ||
2021 | 2023 | |
Winter | 18.24 ± 2.26 Bc | 9.64 ± 2.72 Ca |
Spring | 25.70 ± 1.72 Ac | 33.30 ± 3.43 Acd |
Summer | 14.22 ± 2.29 Cc | 30.47 ± 6.72 Ab |
Fall | 26.42 ± 3.63 Ac | 19.84 ± 6.18 Ba |
Cropland | ||
2021 | 2023 | |
Winter | 1.52 ± 0.37 Cc | 5.81 ± 2.30 Cb |
Spring | 5.89 ± 1.76 Bc | 33.59 ± 12.22 Abc |
Summer | 1.81 ± 0.53 Cc | 15.59 ± 3.92 Bd |
Fall | 9.48 ± 1.11 Ac | 6.94 ± 3.60 Cc |
Grassland | ||
2021 | 2023 | |
Winter | 383.0 ± 240.1 Aa | 11.62 ± 2.99 Ba |
Spring | 566.6 ± 288.2 Aa | 54.84 ± 9.88 Aa |
Summer | 487.0 ± 252.9 Aa | 52.58 ± 8.17 Aa |
Fall | 610.0 ± 390.0 Aa | 17.52 ± 4.20 Ba |
Abandoned land | ||
2021 | 2023 | |
Winter | 8.47 ± 2.29 Bc | 10.20 ± 3.76 Aa |
Spring | 14.36 ± 1.62 Ac | 24.23 ± 7.26 Ad |
Summer | 6.03 ± 3.08 Bc | 22.39 ± 4.38 Ac |
Fall | 16.94 ± 3.43 Ac | 6.52 ± 2.25 Ac |
Orchard | ||
2021 | 2023 | |
Winter | 165.92 ± 31.76 Bb | 11.05 ± 2.76 Ca |
Spring | 366.65 ± 53.96 Ab | 36.85 ± 7.37 Ab |
Summer | 309.83 ± 78.18 Ab | 29.19 ± 5.63 Bb |
Fall | 362.41 ± 76.73 Ab | 17.54 ± 1.77 Cb |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galic, M.; Percin, A.; Bogunovic, I. Soil C-CO2 Emissions Across Different Land Uses in a Peri-Urban Area of Central Croatia. Land 2025, 14, 1876. https://doi.org/10.3390/land14091876
Galic M, Percin A, Bogunovic I. Soil C-CO2 Emissions Across Different Land Uses in a Peri-Urban Area of Central Croatia. Land. 2025; 14(9):1876. https://doi.org/10.3390/land14091876
Chicago/Turabian StyleGalic, Marija, Aleksandra Percin, and Igor Bogunovic. 2025. "Soil C-CO2 Emissions Across Different Land Uses in a Peri-Urban Area of Central Croatia" Land 14, no. 9: 1876. https://doi.org/10.3390/land14091876
APA StyleGalic, M., Percin, A., & Bogunovic, I. (2025). Soil C-CO2 Emissions Across Different Land Uses in a Peri-Urban Area of Central Croatia. Land, 14(9), 1876. https://doi.org/10.3390/land14091876