A Review of Biomass Estimation Methods for Forest Ecosystems in Kenya: Techniques, Challenges, and Future Perspectives
Abstract
1. Introduction
- Summarize biomass estimation methods applied across Kenya’s diverse forest ecosystems.
- Compare the strengths, limitations, and applicability of field-based, remote sensing, and machine learning approaches.
- Identify methodological challenges and opportunities for advancing biomass estimation in Kenya.
- Highlight implications for sustainable forest management, carbon monitoring, and alignment with global climate goals.
2. Materials and Methods
3. Kenyan Forest Ecosystems
3.1. Forest Structure, Diversity, and Ecological Significance in Kenya
3.2. Types of Forests in Kenya
3.2.1. Afromontane Forests
3.2.2. Mangrove Forests
Forest Type | Location | Main Threats | Spatial Coverage (ha) |
---|---|---|---|
Afromontane Forests (Mixed indigenous forests Bamboo forests) | Mt. Kenya, Aberdares, Mau Complex, Cherangani Hills | Encroachment, logging, climate change | 1,445,553 |
Tropical Rainforests (Mixed indigenous forests) | Kakamega, Shimba Hills, South Nandi | Agricultural expansion, logging, habitat fragmentation | 144,615 |
Coastal Forests and Kaya | Kwale, Mombasa, Tana Delta, Kilifi | Land reclamation, logging, urbanization | 295,871 |
Mangroves | Lamu, Kwale, Mombasa, Tana Delta, Kilifi | Overharvesting, aquaculture, salinity intrusion | 48,522 |
Dryland/Woodlands | Baringo, Turkana, Samburu, Kitui, Taita Taveta | Overgrazing, charcoal production, desertification | 1,875,316 |
Riverine forests | Along Tana, Athi, Ewaso Nyiro | Water abstraction, pollution | 135,231 |
Plantation Forests (Indigenous and exotic trees) | Mau Complex, Kericho, Uasin Gishu, Mt. Kenya | Poor management, illegal logging | 286,716 |
Total Area | 4,231,824 |
3.2.3. Coastal and Kaya Forests
3.2.4. Dryland Forests
3.2.5. Community and Farm Forests
3.2.6. Plantation Forests
3.3. Climate and Its Influence on Forest Types in Kenya
3.4. Actions on Forest Management in Kenya
4. Biomass Estimation Methods in Forests
Study | Methods Used | Key Limitations | Key Results |
---|---|---|---|
Rodríguez-Veiga et al. (2020) [52] | Random Forest; CARDAMOM model-data fusion | Lack of national forest inventory for calibration | EO-derived AGB carbon stocks: 140 Mt C (forests), 199 Mt C (wooded grasslands); total loss 1.89 Mt C |
Olale et al. (2019) [53] | Tree coring; water immersion for wood density | Conventional methods resource-intensive; auger cores underestimate density | Wood densities 0.36–0.67 g/cm3; auger cores yielded lower values |
Mutwiri et al. (2017) [37] | Airborne LiDAR; ground truthing | Inaccurate height estimates in complex crowns | Variable accuracy depending on canopy height and elevation |
Eragae & Gichuhi (2017) [54] | Wildlife Works regression model | Limited coverage of species in drylands | Commiphora highest biomass (241 Mg); Acacia & Vachellia sequester 5.4 kg CO2 yr−1 |
Broas (2015) [55] | Airborne laser scanning + regression | Moderate error rates; some over/under detection | ~50% trees correctly identified; prediction error ≈ 163 kg |
Kinyanjui et al. (2014) [56] | Allometric equations; Bayesian regression | Developing new equations costly; transferability limited | No significant differences across four tested equations |
Cohen (2014) [57] | Mixed-effects allometric models | Extrapolation to high AGB values uncertain | AGB carbon in mangroves 5.4–7.2 Mt C |
Githaiga (2013) [58] | Regeneration sampling; below-ground cores | Weak AGB–BGB correlation; human disturbance effects | Salinity strongly influenced biomass accumulation |
Muturi et al. (2012) [36] | Linear vs. power models | Height unreliable vs. DBH/basal diameter | Power models better; basal diameter strongest predictor |
Kairo et al. (2009) [59] | Allometric equations; biomass partitioning | Asian models unsuitable; site-specific variation | Different species show varied biomass distribution in plantations |
4.1. Field-Based Techniques
4.2. Remote Sensing Techniques
4.3. Model-Based Techniques
4.4. Hybrid Approaches
4.4.1. Field-Based and Remote Sensing Integration
4.4.2. Machine Learning and Data Integration
4.5. Comparative Insights
- Field methods provide baseline accuracy but lack scalability.
- Remote sensing enables broad coverage but depends on calibration and financial investment.
- Models and ML approaches enhance integration and predictive capacity but are data-intensive.
- Hybrid approaches offer the most robust outcomes, aligning with global trends in biomass monitoring.
5. Challenges and Opportunities in Biomass Estimation
Method Category | Strengths/Emerging Opportunities | Limitations/Key Challenges | Applicability |
---|---|---|---|
Field-based (Allometric, Quadrat, Coring) | Accurate; non-destructive; cost-effective for small-scale studies; baseline accuracy essential for calibration; enables sustainable forest management and carbon stock estimation; supports development of region-specific allometric models | Labor-intensive; species-specific; poor scalability; excludes below-ground biomass (BGB) [36] | Local inventories; calibration of Remote Sensing models; baseline studies |
Volume-based methods | Easy to apply; uses standard forestry data | Less precise in heterogeneous forests; conversion factors oversimplify variability | Managed forests; operational forestry |
Remote sensing—Passive (Multispectral/Hyperspectral) | Large-area coverage; enables temporal monitoring; open-access imagery (e.g., Sentinel-2, Landsat) [38]; supports change detection | Indirect estimates; affected by atmosphere and sensor noise; requires calibration | Regional to national monitoring; change detection |
Remote sensing—Active (LiDAR, Radar, UAVs) | Provides 3D canopy detail; high accuracy; Radar works in all weather; combining LiDAR with photogrammetry and multispectral imagery improves resolution [50,54]; low-cost UAVs enhance accessibility | High cost and logistical complexity [79,89]; limited spatial coverage; need for calibration; low-density LiDAR reduces cost but lowers accuracy [41]; requires technical expertise | Detailed mapping in heterogeneous forests; calibration datasets; national coverage |
Model-based (Empirical, Process-based) | Integrates field and RS data; supports scenario analysis and carbon accounting; more accurate when combining DBH, height, crown traits with RS inputs [90]; supports policy and planning | Data-intensive; extrapolation errors [91,92,93]; time-consuming [41,49]; complex to develop and calibrate [56,71,78,94] | Regional assessments; long-term planning; carbon accounting |
Machine Learning (RF, SVM, ANN, LightGBM, XGBoost) | Handles large, complex datasets; high predictive power; scalable; globally successful applications adaptable to Kenya; integration of multi-source data enhances accuracy [61,62,63] | Requires large training datasets; limited Kenyan applications to date; performance depends on high-quality training data | National monitoring; integration with field + RS data; scalable applications |
Hybrid Approaches | Combines strengths of multiple methods; robust accuracy; cross-validation; supports national inventories, policy, and carbon markets; enables harmonization of RS and field data [53,60] | Technically complex; requires harmonization of multi-source data; resource-demanding | Comprehensive assessments; decision support; supports national inventories |
6. Conclusions and Recommendations
7. Key Findings
- Field-based approaches, including allometric equations, quadrat sampling, and coring, provide accurate site-specific estimates but are resource-intensive and difficult to scale.
- Remote sensing techniques such as LiDAR, UAVs, multispectral, and radar imagery enable large-scale assessments but require calibration and technical investment.
- Machine learning and hybrid frameworks enhance predictive accuracy by integrating multi-source data, though their effectiveness depends on high-quality training datasets and standardized protocols.
- 4.
- Biomass monitoring in Kenya remains fragmented due to the absence of a centralized national inventory and limited methodological harmonization.
- 5.
- Despite the Forest Conservation and Management Act (2016) [14], weak enforcement, limited investment in modern technologies, and insufficient institutional collaboration constrain effective biomass monitoring.
- 6.
- Regional harmonization, as demonstrated in neighboring African countries, is needed to improve comparability and support transboundary climate commitments.
- 7.
- Strengthening biomass monitoring is critical for sustainable forest management, national carbon accounting, and Kenya’s participation in global climate mechanisms such as REDD+ and the carbon market.
- 8.
- Species- and region-specific allometric equations, particularly for mangrove and dryland ecosystems, should be prioritized.
- 9.
- Expanding hybrid frameworks that combine field data, remote sensing, and machine learning will improve both accuracy and scalability.
- 10.
- Establishing a centralized national biomass inventory, supported by capacity building and data-sharing platforms, will standardize monitoring and reporting.
- 11.
- Low-cost UAVs, open-access satellite datasets, and advanced machine learning algorithms present promising opportunities for scalable biomass monitoring.
- 12.
- Moving from isolated studies to coordinated monitoring systems will strengthen ecological knowledge and position Kenya to align with global biodiversity conservation and climate change mitigation goals.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AGB | Above-Ground Biomass |
ASALs | Arid and Semi-Arid Lands |
BGB | Below-Ground Biomass |
CARDAMOM | CARbon DAta–MOdel fraMework |
CFAs | Community Forest Associations |
DBH | Diameter at Breast Height |
DSH | Diameter at Stump Height |
EO | Earth Observation |
LiDAR | Light Detection and Ranging |
REDD+ | Reducing Emissions from Deforestation and Forest Degradation |
RF | Random Forest |
RGB | Red, Green, Blue |
SAR | Synthetic Aperture Radar |
SDGs | Sustainable Development Goals |
UAV | Unmanned Aerial Vehicles |
UNESCO | United Nations Educational, Scientific, and Cultural Organization |
UNFCCC | United Nations Framework Convention on Climate Change |
WGLS | Weighted Generalized Least Squares Method |
WSG | Wood-Specific Gravity |
Appendix A
References
- Raj, A.; Jhariya, M.K.; Banerjee, A.; Kittur, B.H.; Bargali, S.S.; Bargali, K.; Nema, S. Forest Biodiversity Conservation and Restoration: Policies, Plan, and Approaches. In Ecorestoration for Sustainability; Banerjee, A., Jhariya, M.K., Bargali, S.S., Palit, D., Eds.; Wiley: Hoboken, NJ, USA, 2023; pp. 317–350. [Google Scholar] [CrossRef]
- Rodríguez-Veiga, P.; Wheeler, J.; Louis, V.; Tansey, K.; Balzter, H. Quantifying Forest Biomass Carbon Stocks from Space. Curr. For. Rep. 2017, 3, 1–18. [Google Scholar] [CrossRef]
- Ali, I.; Greifeneder, F.; Stamenkovic, J.; Neumann, M.; Notarnicola, C. Review of Machine Learning Approaches for Biomass and Soil Moisture Retrievals from Remote Sensing Data. Remote Sens. 2015, 7, 16398–16421. [Google Scholar] [CrossRef]
- Herold, M.; Carter, S.; Avitabile, V.; Espejo, A.B.; Jonckheere, I.; Lucas, R.; McRoberts, R.E.; Næsset, E.; Nightingale, J.; Petersen, R.; et al. The Role and Need for Space-Based Forest Biomass-Related Measurements in Environmental Management and Policy. Surv. Geophys. 2019, 40, 757–778. [Google Scholar] [CrossRef]
- Burgess, N.D.; Bahane, B.; Clairs, T.; Danielsen, F.; Dalsgaard, S.; Funder, M.; Hagelberg, N.; Harrison, P.; Haule, C.; Kabalimu, K.; et al. Getting Ready for REDD+ in Tanzania: A Case Study of Progress and Challenges. Oryx 2010, 44, 339–351. [Google Scholar] [CrossRef]
- Hicks, C.; Woroniecki, S.; Fancourt, M.; Bieri, M.; Garcia Robles, H.; Trumper, K.; Mant, R. The Relationship Between Biodiversity, Carbon Storage and the Provision of Other Ecosystem Services: Critical Review for the Forestry Component of the International Climate Fund; United Nations Environment Programme: Cambridge, UK, 2014. [Google Scholar]
- Jackson, C.M.; Durowoju, O.S.; Adelabu, S.A.; Adeniyi, S.A. An Assessment of Kenya’s Forest Policy and Law on Participatory Forest Management for Sustainable Forest Management: Insights from Mt. Kenya Forest Reserve. Trees For. People 2024, 19, 100770. [Google Scholar] [CrossRef]
- Kiplimo, C.; wa Maina, C.; Okal, B. Low-Cost Non-Contact Forest Inventory: A Case Study of Kieni Forest in Kenya. Challenges 2024, 15, 16. [Google Scholar] [CrossRef]
- Mak, N.P.L.; Siu, T.Y.; Law, Y.K.; Zhang, H.; Sui, S.; Yip, F.T.; Zhang, Y.; Lee, A.C.K.; Wu, J. Mapping Individual Tree- and Plot-Level Biomass Using Handheld Mobile Laser Scanning in Complex Subtropical Secondary and Old-Growth Forests. Remote Sens. 2025, 17, 1354. [Google Scholar] [CrossRef]
- Yang, X.; Chen, J.; Lu, X.; Liu, H.; Liu, Y.; Bai, X.; Wang, L.; Li, M.; Zhao, Y.; Zhou, Q.; et al. Advances in UAV Remote Sensing for Monitoring Crop Water and Nutrient Status: Modeling Methods, Influencing Factors, and Challenges. Plants 2025, 14, 2544. [Google Scholar] [CrossRef]
- Yang, X.; Hua, Z.; Li, L.; Wang, H.; Zhang, Y.; Zhao, J.; Liu, Q.; Chen, Y. Multi-Source Information Fusion-Driven Corn Yield Prediction Using the Random Forest from the Perspective of Agricultural and Forestry Economic Management. Sci. Rep. 2024, 14, 4052. [Google Scholar] [CrossRef]
- Swart, R.R.; Geerts, S.; Geldenhuys, C.J.; Pauw, J.; Coetzee, A. Weak Latitudinal Trends in Reproductive Traits of Afromontane Forest Trees. Ann. Bot. 2024, 133, 711–724. [Google Scholar] [CrossRef]
- Ombogo, O.; Obulinji, H.; Karanja, A. Gridded Datasets for Comparative Analysis of Rainfall Patterns over Eco-Climatic Zones of Narok County, Kenya. Adv. Meteorol. 2025, 2025, 4895679. [Google Scholar] [CrossRef]
- Republic of Kenya. Forest Conservation and Management Act No. 34 of 2016; Kenya Law: Nairobi, Kenya, 2016; Available online: https://new.kenyalaw.org/akn/ke/act/2016/34/eng@2022-12-31 (accessed on 9 September 2025).
- Chisika, S.N.; Yeom, C. The Key Factors Affecting Tree Producer Associations Involved in Private Commercial Forestry in Kenya. Sustainability 2020, 12, 4013. [Google Scholar] [CrossRef]
- Adhikari, H.; Heiskanen, J.; Siljander, M.; Maeda, E.; Heikinheimo, V.; Pellikka, P.K.E. Determinants of Aboveground Biomass across an Afromontane Landscape Mosaic in Kenya. Remote Sens. 2017, 9, 827. [Google Scholar] [CrossRef]
- Muthike, G.; Githiomi, J. Review of the Wood Industry in Kenya; Technology Development, Challenges and Opportunities. Int. J. Res. 2017, 3, 45–52. [Google Scholar] [CrossRef]
- Fujiwara, K.; Furukawa, T.; Kiboi, S.; Mathenge, S.; Mutiso, P.; Hayasi, H.; Meguro, S. Forest Types and Biodiversity around the Great Rift Valley in Kenya. Contrib. Bot. 2014, 49, 143–178. [Google Scholar]
- Gonçalves, B.; Morais, M.C.; Pereira, S.; Mosquera-Losada, M.R.; Santos, M. Tree–Crop Ecological and Physiological Interactions Within Climate Change Contexts: A Mini-Review. Front. Ecol. Evol. 2021, 9, 661978. [Google Scholar] [CrossRef]
- Kimunio, I.; Gitagia, F. A Cost–Benefit Analysis of Green Financing. In Management of Tourism Ecosystem Services in a Post Pandemic Context; Routledge: Oxfordshire, UK, 2022; pp. 252–267. [Google Scholar]
- Rotich, B.; Ojwang, D. Trends and Drivers of Forest Cover Change in the Cherangany Hills Forest Ecosystem, Western Kenya. Glob. Ecol. Conserv. 2021, 30, e01755. [Google Scholar] [CrossRef]
- Pinnschmidt, A.; Yousefpour, R.; Nölte, A.; Hanewinkel, M. Tropical Mixed-Species Plantations Can Outperform Monocultures in Terms of Carbon Sequestration and Economic Return. Ecol. Econ. 2023, 211, 107885. [Google Scholar] [CrossRef]
- Bussmann, R.W.; Paniagua-Zambrana, N.Y.; Njoroge, G.N. Ethnobotany of Mountain Regions: Africa. In Ethnobotany of the Mountain Regions of Africa; Springer: Cham, Switzerland, 2021; pp. 3–42. ISBN 978-3-030-38386-2. [Google Scholar]
- Cui, Y.; Bi, H.; Liu, S.; Hou, G.; Wang, N.; Ma, X.; Zhao, D.; Wang, S.; Yun, H. Developing Additive Systems of Biomass Equations for Robinia pseudoacacia L. in the Region of Loess Plateau of Western Shanxi Province, China. Forests 2020, 11, 1332. [Google Scholar] [CrossRef]
- Rovai, A.S.; Twilley, R.R.; Castañeda-Moya, E.; Riul, P.; Cifuentes-Jara, M.; Manrow-Villalobos, M.; Horta, P.A.; Simonassi, J.C.; Fonseca, A.L.; Pagliosa, P.R. Global Controls on Carbon Storage in Mangrove Soils. Nat. Clim. Change 2018, 8, 534–538. [Google Scholar] [CrossRef]
- Dookie, S.; Jaikishun, S.; Ansari, A.A. Soil and Water Relations in Mangrove Ecosystems in Guyana. Geol. Ecol. Landsc. 2024, 8, 445–469. [Google Scholar] [CrossRef]
- Ototo, G.; Vlosky, R.P. An Overview of the Forest Sector in Kenya. For. Prod. J. 2018, 68, 6–14. [Google Scholar] [CrossRef]
- Keida, K. Still a Sacred Void? Cultural Heritage, Sacred Places, and Living Spaces of the Mijikenda Kaya Forests along the Kenyan Coast in East Africa. Senri Ethnol. Stud. 2022, 109, 55–75. [Google Scholar]
- Kibet, S. Plant Communities, Species Diversity, Richness, and Regeneration of a Traditionally Managed Coastal Forest, Kenya. For. Ecol. Manag. 2011, 261, 949–957. [Google Scholar] [CrossRef]
- Githae, E.W.; Mutiga, I.M. Ecological Restoration of Pastoral Landscapes in the Drylands of East Africa. J. Dryland Agric. 2021, 7, 34–41. [Google Scholar] [CrossRef]
- Uni, D.; Sheffer, E.; Klein, T.; Shem-Tov, R.; Segev, N.; Winters, G. Responses of Two Acacia Species to Drought Suggest Different Water-Use Strategies, Reflecting Their Topographic Distribution. Front. Plant Sci. 2023, 14, 1154223. [Google Scholar] [CrossRef]
- Ndegwa, G.; Sola, P.; Iiyama, M.; Okeyo, I.; Njenga, M.; Siko, I.; Muriuki, J. Charcoal Value Chains in Kenya: A 20-Year Synthesis; World Agroforestry Working Paper No. 307; World Agroforestry: Nairobi, Kenya, 2020. [Google Scholar]
- Dieleman, W.I.J.; Venter, M.; Ramachandra, A.; Krockenberger, A.K.; Bird, M.I. Soil Carbon Stocks Vary Predictably with Altitude in Tropical Forests: Implications for Soil Carbon Storage. Geoderma 2013, 204–205, 59–67. [Google Scholar] [CrossRef]
- Kamwilu, E.; Duguma, L.A.; Orero, L. The Potentials and Challenges of Achieving Sustainability through Charcoal Producer Associations in Kenya: A Missed Opportunity? Sustainability 2021, 13, 2288. [Google Scholar] [CrossRef]
- Asmelash, F.; Rannestad, M.M. Challenges and a Strategy for Successful Restoration of Dry Evergreen Afromontane Forests of Ethiopia. Ecol. Restor. 2024, 42, 220–237. [Google Scholar] [CrossRef]
- Muturi, G.M.; Kariuki, J.G.; Poorter, L.; Mohren, G.M.J. Allometric Equations for Estimating Biomass in Naturally Established Prosopis Stands in Kenya. J. Hortic. For. 2012, 4, 69–77. [Google Scholar] [CrossRef]
- Mutwiri, F.K.; Odera, P.A.; Kinyanjui, M.J. Estimation of Tree Height and Forest Biomass Using Airborne LiDAR Data: A Case Study of Londiani Forest Block in the Mau Complex, Kenya. Open J. For. 2017, 7, 255–269. [Google Scholar] [CrossRef]
- Tetemke, B.A.; Birhane, E.; Rannestad, M.M.; Eid, T. Competition and Slope Effect on Wood Basic Density and Its Variation among Tree Species and within Individual Trees in a Dry Afromontane Forest. For. Sci. Technol. 2024, 20, 349–360. [Google Scholar] [CrossRef]
- Hewitt, A.E.; Balks, M.R.; Lowe, D.J. Pumice Soils. In The Soils of Aotearoa New Zealand; Hewitt, A.E., Balks, M.R., Lowe, D.J., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 179–198. ISBN 978-3-030-64763-6. [Google Scholar]
- Temba, G.P.; Mauya, E.W.; Migunga, G.A. Productivity and Costs of Mechanized Skidding Operations at Sao Hill Forest Plantation, Tanzania. For. Sci. Technol. 2024, 20, 91–103. [Google Scholar] [CrossRef]
- Tennakoon, A.; Tharindi, M.P.; Madhushani, N.; Nayakarathne, H.; Manimekala, D.; Indurugalla, Y.; Perera, N.; Randika, G.; Sandamal, S.; Benllanthudawa, B. Biodiversity Boost: The Ecological Benefits of Agroforestry. In Agroforestry for a Climate-Smart Future; IGI Global Scientific Publishing: Hershey, PA, USA, 2025; pp. 259–298. [Google Scholar]
- Muhati, G.L.; Olago, D.; Olaka, L. Past and Projected Rainfall and Temperature Trends in a Sub-Humid Montane Forest in Northern Kenya Based on the CMIP5 Model Ensemble. Glob. Ecol. Conserv. 2018, 16, e00469. [Google Scholar] [CrossRef]
- Lloret, F.; Batllori, E. Climate-Induced Global Forest Shifts Due to Heatwave-Drought. In Ecosystem Collapse and Climate Change; Canadell, J.G., Jackson, R.B., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 155–186. ISBN 978-3-030-71330-0. [Google Scholar]
- Maina, C. wa Bioacoustic Approaches to Biodiversity Monitoring and Conservation in Kenya. In Proceedings of the 2015 IST-Africa Conference, Lilongwe, Malawi, 6–8 May 2015; pp. 1–8. [Google Scholar]
- Wambui Kariuki, J. The Governance of Biodiversity in Kakamega Forest, Kenya. Ph.D. Thesis, University of Dortmund, Dortmund, Germany, 2012. [Google Scholar]
- Cheboiwo, J.K.; Mutta, D.; Kiprop, J.; Gattama, S. Public-Private Partnerships Opportunities for Forestry Sector Development in Kenya: Synthesis of Primary and Secondary Production Actors, and Trade. J. Environ. Earth Sci. 2018, 8, 47–69. [Google Scholar]
- Mwangi, N.; Waithaka, H.; Mundia, C.; Kinyanjui, M.; Mutua, F. Assessment of Drivers of Forest Changes Using Multi-Temporal Analysis and Boosted Regression Trees Model: A Case Study of Nyeri County, Central Region of Kenya. Model. Earth Syst. Environ. 2020, 6, 1657–1670. [Google Scholar] [CrossRef]
- Oeba, V.; Mahamane, L.; Otor, S.C.; Kung’u, J.B.; Mbae, M.N. Growing Common Plantation Tree Species in Kenya for Sale of Carbon and Wood Supply: What Is the Best Bet? South. For. J. For. Sci. 2017, 79, 117–124. [Google Scholar] [CrossRef]
- Shilenje, Z.W.; Maloba, S.; Ongoma, V. A Review on Household Air Pollution and Biomass Use over Kenya. Front. Environ. Sci. 2022, 10, 996038. [Google Scholar] [CrossRef]
- Tian, L.; Wu, X.; Tao, Y.; Li, M.; Qian, C.; Liao, L.; Fu, W. Review of Remote Sensing-Based Methods for Forest Aboveground Biomass Estimation: Progress, Challenges, and Prospects. Forests 2023, 14, 1086. [Google Scholar] [CrossRef]
- Zheng, H.; Chen, Y.; Liu, Y.; Zhang, J.; Yang, W.; Yang, L.; Li, H.; Wang, L.; Wu, F.; Guo, L. Litter Quality Drives the Differentiation of Microbial Communities in the Litter Horizon across an Alpine Treeline Ecotone in the Eastern Tibetan Plateau. Sci. Rep. 2018, 8, 10029. [Google Scholar] [CrossRef]
- Rodríguez-Veiga, P.; Carreiras, J.; Smallman, T.L.; Exbrayat, J.-F.; Ndambiri, J.; Mutwiri, F.; Nyasaka, D.; Quegan, S.; Williams, M.; Balzter, H. Carbon Stocks and Fluxes in Kenyan Forests and Wooded Grasslands Derived from Earth Observation and Model-Data Fusion. Remote Sens. 2020, 12, 2380. [Google Scholar] [CrossRef]
- Olale, K.; Yenesew, A.; Jamnadass, R.; Sila, A.; Shepherd, K. A Simple Field Based Method for Rapid Wood Density Estimation for Selected Tree Species in Western Kenya. Sci. Afr. 2019, 5, e00149. [Google Scholar] [CrossRef]
- Eragae, J.E.; Gichuhi, M.W. Quantification of Carbon Stocks with the Common Tree Genus in Dryland Forest in Taita Ranch, South Eastern Kenya. J. Agric. Sci. Technol. 2016, 17, 2. [Google Scholar]
- Broas, J. Mapping Aboveground Biomass of Trees Outside Forests in the Taita Hills, Kenya, Using Airborne Laser Scanning and Individual Tree Detection. Master’s Thesis, University of Helsinki, Helsinki, Finland, 2015. Available online: https://hdl.handle.net/10138/230428 (accessed on 3 September 2025).
- Kinyanjui, M.J.; Latva-Käyrä, P.; Bhuwneshwar, P.S.; Kariuki, P.; Gichu, A.; Wamichwe, K. An Inventory of the Above Ground Biomass in the Mau Forest Ecosystem, Kenya. Open J. Ecol. 2014, 4, 619–627. [Google Scholar] [CrossRef]
- Cohen, R. Estimating the Above-Ground Biomass of Mangrove Forests in Kenya. Ph.D. Thesis, The University of Edinburgh, Edinburgh, UK, 2014. Available online: http://hdl.handle.net/1842/9956 (accessed on 3 September 2025).
- Githaiga, M.N. Structure and Biomass Accumulation of Natural Mangrove Forest at Gazi Bay, Kenya. Ph.D. Thesis, Kenyatta University, Nairobi, Kenya, 2013. [Google Scholar]
- Kairo, J.G.; Bosire, J.; Langat, J.; Kirui, B.; Koedam, N. Allometry and Biomass Distribution in Replanted Mangrove Plantations at Gazi Bay, Kenya. Aquat. Conserv. Mar. Freshw. Ecosyst. 2009, 19 (Suppl. 1), S63–S69. [Google Scholar] [CrossRef]
- Lemi, T.; Eshete, A.; Seid, G.; Mulugeta, S.; Egeta, D.; Teshome, M. Aboveground Biomass Models for Indigenous Tree Species in the Dry Afromontane Forest, Central Ethiopia. Int. J. For. Res. 2023, 2023, 4901521. [Google Scholar] [CrossRef]
- Devi, N.; Thakur, A.; Singh, H. Allometric Equations for Evaluating Above-Ground Biomass and Carbon Storage Capability of Indian Bamboos: Review Approach. Ecol. Environ. Conserv. 2023, 29, 921–927. [Google Scholar] [CrossRef]
- Menéndez-Miguélez, M.; Madrigal, G.; Sixto, H.; Oliveira, N.; Calama, R. Terrestrial Laser Scanning for Non-Destructive Estimation of Aboveground Biomass in Short-Rotation Poplar Coppices. Remote Sens. 2023, 15, 1942. [Google Scholar] [CrossRef]
- Salazar Villegas, M.H.; Qasim, M.; Csaplovics, E.; González-Martinez, R.; Rodriguez-Buritica, S.; Ramos Abril, L.N.; Salazar Villegas, B. Examining the Potential of Sentinel Imagery and Ensemble Algorithms for Estimating Aboveground Biomass in a Tropical Dry Forest. Remote Sens. 2023, 15, 5086. [Google Scholar] [CrossRef]
- Mekonen, A.A.; Accardo, D.; Renga, A. Above Ground Biomass Estimation in Agroforestry Environment by UAS and RGB Imagery. In Proceedings of the 2024 11th International Workshop on Metrology for AeroSpace (MetroAeroSpace), Lublin, Poland, 3–5 June 2024; pp. 272–277. [Google Scholar]
- Huang, R.; Yao, W.; Xu, Z.; Cao, L.; Shen, X. Information Fusion Approach for Biomass Estimation in a Plateau Mountainous Forest Using a Synergistic System Comprising UAS-Based Digital Camera and LiDAR. Comput. Electron. Agric. 2022, 202, 107420. [Google Scholar] [CrossRef]
- May, P.B.; Finley, A.O. Calibrating Satellite Maps With Field Data for Improved Predictions of Forest Biomass. Environmetrics 2025, 36, e2892. [Google Scholar] [CrossRef]
- Henn, K.A.; Peduzzi, A. Biomass Estimation of Urban Forests Using LiDAR and High-Resolution Aerial Imagery in Athens–Clarke County, GA. Forests 2023, 14, 1064. [Google Scholar] [CrossRef]
- Song, Q.; Albrecht, C.M.; Xiong, Z.; Zhu, X.X. Biomass Estimation and Uncertainty Quantification From Tree Height. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 4833–4845. [Google Scholar] [CrossRef]
- Alaso, D.C.; Senkbeil, J.C.; Sheridan, S.C. Development of a Spatial Synoptic Classification Scheme for East Africa with a Focus on Kenya. Climate 2024, 12, 133. [Google Scholar] [CrossRef]
- Ruhan, A.; Du, W.; Ying, H.; Wei, B.; Shan, Y.; Dai, H. Estimation of Aboveground Biomass of Individual Trees by Backpack LiDAR Based on Parameter-Optimized Quantitative Structural Models (AdQSM). Forests 2023, 14, 475. [Google Scholar] [CrossRef]
- Salunkhe, O.R.; Valvi, G.R.; Singh, S.; Rane, G.M.; Khan, M.L.; Saxena, V.; Khare, P.K. Forest Carbon Stock and Biomass Estimation in West Central India Using Two Allometric Models. Carbon Res. 2023, 2, 9. [Google Scholar] [CrossRef]
- Venter, Z.S.; Hawkins, H.-J.; Cramer, M.D.; Mills, A.J. Mapping Soil Organic Carbon Stocks and Trends with Satellite-Driven High Resolution Maps over South Africa. Sci. Total Environ. 2021, 771, 145384. [Google Scholar] [CrossRef]
- Ahmad, N.; Ullah, S.; Zhao, N.; Mumtaz, F.; Ali, A.; Ali, A.; Tariq, A.; Kareem, M.; Imran, A.B.; Khan, I.A.; et al. Comparative Analysis of Remote Sensing and Geo-Statistical Techniques to Quantify Forest Biomass. Forests 2023, 14, 379. [Google Scholar] [CrossRef]
- Labrière, N.; Davies, S.J.; Disney, M.I.; Duncanson, L.I.; Herold, M.; Lewis, S.L.; Phillips, O.L.; Quegan, S.; Saatchi, S.S.; Schepaschenko, D.G.; et al. Toward a Forest Biomass Reference Measurement System for Remote Sensing Applications. Glob. Change Biol. 2023, 29, 827–840. [Google Scholar] [CrossRef]
- Chiloane, C.N.; Dube, T.; Sibanda, M.; Dalu, T.; Shoko, C. A Summary of Recent Advances in the Literature on Machine Learning Techniques for Remote Sensing of Groundwater Dependent Ecosystems (GDEs) from Space. Remote Sens. 2025, 17, 1460. [Google Scholar] [CrossRef]
- Sathya Priya, R.; Jagathjothi, N.; Yuvaraj, M.; Suganthi, N.; Sharmila, R.; Saranya, M.; Karthiba, L.; Murali Arthanari, P.; Bharathi, C.; Senthil Kumar, G.; et al. Remote Sensing Application in Plant Protection and Its Usage in Smart Agriculture to Hasten Decision Making of the Farmers. J. Plant Dis. Prot. 2025, 132, 84. [Google Scholar] [CrossRef]
- Behling, A.; Péllico Netto, S.; Sanquetta, C.R.; Corte, A.P.D.; Affleck, D.L.R.; Rodrigues, A.L.; Behling, M. Critical Analyses When Modeling Tree Biomass to Ensure Additivity of Its Components. An. Acad. Bras. Ciênc. 2018, 90, 1759–1774. [Google Scholar] [CrossRef]
- Widagdo, F.R.A.; Li, F.; Zhang, L.; Dong, L. Aggregated Biomass Model Systems and Carbon Concentration Variations for Tree Carbon Quantification of Natural Mongolian Oak in Northeast China. Forests 2020, 11, 397. [Google Scholar] [CrossRef]
- Georgopoulos, N.; Antoniadis, K.; Sismanis, M.; Gitas, I. Above-Ground Forest Biomass Estimation Using Multispectral LiDAR Data in a Multilayered Coniferous Forest. GI_Forum 2023 2023, 11, 22–33. [Google Scholar] [CrossRef]
- Hemati, M.; Mahdianpari, M.; Shiri, H.; Mohammadimanesh, F. Integrating SAR and Optical Data for Aboveground Biomass Estimation of Coastal Wetlands Using Machine Learning: Multi-Scale Approach. Remote Sens. 2024, 16, 831. [Google Scholar] [CrossRef]
- Bui, Q.-T.; Pham, Q.-T.; Pham, V.-M.; Tran, V.-T.; Nguyen, D.-H.; Nguyen, Q.-H.; Nguyen, H.-D.; Do, N.T.; Vu, V.-M. Hybrid Machine Learning Models for Aboveground Biomass Estimations. Ecol. Inform. 2024, 79, 102421. [Google Scholar] [CrossRef]
- Nik Effendi, N.A.F.; Mohd Zaki, N.A.; Abd Latif, Z.; Abdul Khanan, M.F. Combination of Hyperspectral and LiDAR for Aboveground Biomass Estimation Using Machine Learning. Trans. GIS 2024, 28, 1750–1771. [Google Scholar] [CrossRef]
- Sun, B.; Rong, R.; Cui, H.; Guo, Y.; Yue, W.; Yan, Z.; Wang, H.; Gao, Z.; Wu, Z. How Can Integrated Space–Air–Ground Observation Contribute in Aboveground Biomass of Shrub Plants Estimation in Shrub-Encroached Grasslands? Int. J. Appl. Earth Obs. Geoinf. 2024, 130, 103856. [Google Scholar] [CrossRef]
- Sa, R.; Nie, Y.; Chumachenko, S.; Fan, W. Biomass Estimation and Saturation Value Determination Based on Multi-Source Remote Sensing Data. Remote Sens. 2024, 16, 2250. [Google Scholar] [CrossRef]
- Liang, X.; Yu, S.; Meng, B.; Wang, X.; Yang, C.; Shi, C.; Ding, J. Multi-Source Remote Sensing and GIS for Forest Carbon Monitoring toward Carbon Neutrality. Forests 2025, 16, 971. [Google Scholar] [CrossRef]
- Hamedianfar, A.; Mohamedou, C.; Kangas, A.; Vauhkonen, J. Deep Learning for Forest Inventory and Planning: A Critical Review on the Remote Sensing Approaches so far and Prospects for Further Applications. Forestry 2022, 95, 451–465. [Google Scholar] [CrossRef]
- Nahiyoon, S.A.; Ren, Z.; Wei, P.; Li, X.; Li, X.; Xu, J.; Wang, Y.; Chen, L.; Zhang, Q.; Huang, T.; et al. Recent Development Trends in Plant Protection UAVs: A Journey from Conventional Practices to Cutting-Edge Technologies—A Comprehensive Review. Drones 2024, 8, 457. [Google Scholar] [CrossRef]
- Ahmad, A.; Gilani, H.; Ahmad, S.R. Forest Aboveground Biomass Estimation and Mapping through High-Resolution Optical Satellite Imagery—A Literature Review. Forests 2021, 12, 914. [Google Scholar] [CrossRef]
- Maesano, M.; Santopuoli, G.; Moresi, F.V.; Matteucci, G.; Lasserre, B.; Scarascia Mugnozza, G. Above Ground Biomass Estimation from UAV High Resolution RGB Images and LiDAR Data in a Pine Forest in Southern Italy. iforest—Biogeosci. For. 2022, 15, 451. [Google Scholar] [CrossRef]
- Affleck, D.L.R. Additivity and Maximum Likelihood Estimation of Nonlinear Component Biomass Models. In Stanton, Sharon M.; Christensen, Glenn A., Comps. 2015. Pushing Boundaries: New Directions in Inventory Techniques and Applications: Forest Inventory and Analysis (FIA) Symposium 2015. 2015 December 8–10; Portland, Oregon. Gen. Tech. Rep. PNW-GTR-931; U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 2015; pp. 13–17. [Google Scholar]
- Nair, P.K.R. Methodological Challenges in Estimating Carbon Sequestration Potential of Agroforestry Systems. In Carbon Sequestration Potential of Agroforestry Systems: Opportunities and Challenges; Kumar, B.M., Nair, P.K.R., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 3–16. ISBN 978-94-007-1630-8. [Google Scholar]
- Kumar, P.; Sharma, L.K.; Pandey, P.C.; Sinha, S.; Nathawat, M.S. Geospatial Strategy for Tropical Forest-Wildlife Reserve Biomass Estimation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 917–923. [Google Scholar] [CrossRef]
- Vazirabad, Y.F.; Karslioglu, M.O. Lidar for Biomass Estimation. In Biomass: Detection, Production and Usage; BoD—Books on Demand: Rijeka, Croatia, 2011; pp. 3–26. ISBN 978-953-307-492-4. [Google Scholar]
- Dong, L.; Zhang, L.; Li, F. Additive Biomass Equations Based on Different Dendrometric Variables for Two Dominant Species (Larix Gmelini Rupr. and Betula Platyphylla Suk.) in Natural Forests in the Eastern Daxing’an Mountains, Northeast China. Forests 2018, 9, 261. [Google Scholar] [CrossRef]
Theme | Keywords/Terms |
---|---|
Biomass estimation | “biomass estimation”, “above-ground biomass”, “below-ground biomass”, “carbon stock” |
Methods | “allometric models”, “field-based methods”, “remote sensing”, “LiDAR”, “UAV”, “machine learning”, “additive models”, “volume-based models” |
Ecosystem context | “forest ecosystems”, “Afromontane”, “mangroves”, “dryland woodlands”, “plantations”, “community forests”, “agroforestry” |
Relevance | “Kenya”, “East Africa”, “sustainable forest management”, “climate change”, “carbon sequestration”, “future perspectives” |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mkuzi, H.T.; Ocansey, C.M.; Maghanga, J.; Gulyás, M.; Penksza, K.; Szentes, S.; Michéli, E.; Fuchs, M.; Boros, N. A Review of Biomass Estimation Methods for Forest Ecosystems in Kenya: Techniques, Challenges, and Future Perspectives. Land 2025, 14, 1873. https://doi.org/10.3390/land14091873
Mkuzi HT, Ocansey CM, Maghanga J, Gulyás M, Penksza K, Szentes S, Michéli E, Fuchs M, Boros N. A Review of Biomass Estimation Methods for Forest Ecosystems in Kenya: Techniques, Challenges, and Future Perspectives. Land. 2025; 14(9):1873. https://doi.org/10.3390/land14091873
Chicago/Turabian StyleMkuzi, Hamisi Tsama, Caleb Melenya Ocansey, Justin Maghanga, Miklós Gulyás, Károly Penksza, Szilárd Szentes, Erika Michéli, Márta Fuchs, and Norbert Boros. 2025. "A Review of Biomass Estimation Methods for Forest Ecosystems in Kenya: Techniques, Challenges, and Future Perspectives" Land 14, no. 9: 1873. https://doi.org/10.3390/land14091873
APA StyleMkuzi, H. T., Ocansey, C. M., Maghanga, J., Gulyás, M., Penksza, K., Szentes, S., Michéli, E., Fuchs, M., & Boros, N. (2025). A Review of Biomass Estimation Methods for Forest Ecosystems in Kenya: Techniques, Challenges, and Future Perspectives. Land, 14(9), 1873. https://doi.org/10.3390/land14091873