Long-Term Trajectory Analysis of Avocado Orchards in the Avocado Belt, Mexico
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Satellite Image Processing
2.3. Continuous Change Detection and Classification (CCDC)
2.4. Verification Process
2.5. Trajectory Analysis
- Loss without alternation. Pixels that were converted from avocado orchards to another LULC once and remained as such during the rest of the time series.
- Loss with alternation. Pixels that showed an avocado orchard loss at the end of the time series but had at least one intermediate period of loss followed by a gain.
- Gain without alternation. Pixels that were converted to avocado orchards once and remained as such during the rest of the time series.
- Gain with alternation. Pixels that showed an avocado orchard gain at the end of the time series but had at least one intermediate period of gain followed by a loss.
- All alternation, loss first. Pixels that had avocado orchards at the start and end of the time series but showed a loss at least once in the time series.
- All alternation, gain first. Pixels that showed an absence of avocado orchards at the start and end of the time series but showed a gain at least once in the time series.
- Stable presence. Pixels that showed avocado orchards throughout the entire time series.
- Stable absence. Pixels that showed an absence of avocado orchards throughout the complete time series.
3. Results
3.1. Verification
3.2. Trajectories
3.3. Spatial Patterns
4. Discussion
4.1. Temporal Patterns
4.2. Spatial Patterns
4.3. Trajectories
4.4. Limitations
4.5. Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
LULCC | Land use/land cover change |
LULC | Land use/land cover |
CCDC | Continuous Change Detection and Classification |
B | Blue |
G | Green |
R | Red |
NIR | Near infrared |
SWIR1 | Short-wave infrared 1 |
SWIR2 | Short-wave infrared 2 |
SRTM | Shuttle Radar Topography Missions |
ALOS | Advanced Land Observing Satellite |
VIIRS | Infrared Imaging Radiometer Suite |
JRC | Joint Research Centre |
References
- Curtis, P.G.; Slay, C.M.; Harris, N.L.; Tyukavina, A.; Hansen, M.C. Classifying Drivers of Global Forest Loss. Science 2018, 361, 1108–1111. [Google Scholar] [CrossRef] [PubMed]
- Laso Bayas, J.C.; See, L.; Georgieva, I.; Schepaschenko, D.; Danylo, O.; Dürauer, M.; Bartl, H.; Hofhansl, F.; Zadorozhniuk, R.; Burianchuk, M.; et al. Drivers of Tropical Forest Loss between 2008 and 2019. Sci. Data 2022, 9, 146. [Google Scholar] [CrossRef] [PubMed]
- Masolele, R.N.; De Sy, V.; Herold, M.; Marcos Gonzalez, D.; Verbesselt, J.; Gieseke, F.; Mullissa, A.G.; Martius, C. Spatial and Temporal Deep Learning Methods for Deriving Land-Use Following Deforestation: A Pan-Tropical Case Study Using Landsat Time Series. Remote Sens. Environ. 2021, 264, 112600. [Google Scholar] [CrossRef]
- Sims, M.; Stanimirova, R.; Raichuk, A.; Neumann, M.; Richter, J.; Follett, F.; Maccarthy, J.; Lister, K.; Randle, C.; Sloat, L.; et al. Global Drivers of Forest Loss at 1 Km Resolution. Environ. Res. Lett. 2024, 20, 074027. [Google Scholar] [CrossRef]
- Carlson, K.M.; Curran, L.M.; Asner, G.P.; Pittman, A.M.; Trigg, S.N.; Marion Adeney, J. Carbon Emissions from Forest Conversion by Kalimantan Oil Palm Plantations. Nat. Clim. Change 2013, 3, 283–287. [Google Scholar] [CrossRef]
- Fuerte-Velázquez, D.J.; Gómez-Tagle, A. Water Footprint and Water Sustainability of Agroindustrial Avocado Production in a Warm Tropical Climate Municipality: A Case Study in the Michoacan Avocado Belt in Central México. Water 2024, 16, 1719. [Google Scholar] [CrossRef]
- Kehoe, L.; Romero-Muñoz, A.; Polaina, E.; Estes, L.; Kreft, H.; Kuemmerle, T. Biodiversity at Risk under Future Cropland Expansion and Intensification. Nat. Ecol. Evol. 2017, 1, 1129–1135. [Google Scholar] [CrossRef]
- Niyogi, D.; Mahmood, R.; Adegoke, J.O. Land-Use/Land-Cover Change and Its Impacts on Weather and Climate. Bound.-Layer Meteorol. 2009, 133, 297–298. [Google Scholar] [CrossRef]
- Singh, D.; Slik, J.W.F.; Jeon, Y.-S.; Tomlinson, K.W.; Yang, X.; Wang, J.; Kerfahi, D.; Porazinska, D.L.; Adams, J.M. Tropical Forest Conversion to Rubber Plantation Affects Soil Micro- & Mesofaunal Community & Diversity. Sci. Rep. 2019, 9, 5893. [Google Scholar] [CrossRef]
- Wilson, C.O. Land Use/Land Cover Water Quality Nexus: Quantifying Anthropogenic Influences on Surface Water Quality. Environ. Monit. Assess. 2015, 187, 424. [Google Scholar] [CrossRef]
- Denvir, A. Avocado Expansion and the Threat of Forest Loss in Michoacán, Mexico under Climate Change Scenarios. Appl. Geogr. 2023, 151, 102856. [Google Scholar] [CrossRef]
- Kalischek, N.; Lang, N.; Renier, C.; Daudt, R.C.; Addoah, T.; Thompson, W.; Blaser-Hart, W.J.; Garrett, R.; Schindler, K.; Wegner, J.D. Cocoa Plantations Are Associated with Deforestation in Côte d’Ivoire and Ghana. Nat. Food 2023, 4, 384–393. [Google Scholar] [CrossRef]
- Kastens, J.H.; Brown, J.C.; Coutinho, A.C.; Bishop, C.R.; Esquerdo, J.C.D.M. Soy Moratorium Impacts on Soybean and Deforestation Dynamics in Mato Grosso, Brazil. PLoS ONE 2017, 12, e0176168. [Google Scholar] [CrossRef]
- Meyfroidt, P.; Vu, T.P.; Hoang, V.A. Trajectories of Deforestation, Coffee Expansion and Displacement of Shifting Cultivation in the Central Highlands of Vietnam. Glob. Environ. Change 2013, 23, 1187–1198. [Google Scholar] [CrossRef]
- Ordway, E.M.; Naylor, R.L.; Nkongho, R.N.; Lambin, E.F. Oil Palm Expansion and Deforestation in Southwest Cameroon Associated with Proliferation of Informal Mills. Nat. Commun. 2019, 10, 114. [Google Scholar] [CrossRef] [PubMed]
- Ordway, E.M.; Asner, G.P.; Lambin, E.F. Deforestation Risk Due to Commodity Crop Expansion in Sub-Saharan Africa. Environ. Res. Lett. 2017, 12, 044015. [Google Scholar] [CrossRef]
- Wang, Y.; Hollingsworth, P.M.; Zhai, D.; West, C.D.; Green, J.M.H.; Chen, H.; Hurni, K.; Su, Y.; Warren-Thomas, E.; Xu, J.; et al. High-Resolution Maps Show That Rubber Causes Substantial Deforestation. Nature 2023, 623, 340–346. [Google Scholar] [CrossRef] [PubMed]
- EU Regulation (EU) 2023/1115 of the European Parliament and of the Council of 31 May 2023 on the Making Available on the Union Market and the Export from the Union of Certain Commodities and Products Associated with Deforestation and Forest Degradation and Repealing Regulation (EU) No 995/2010 2023. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32023R1115&qid=1687867231461 (accessed on 2 July 2025).
- Heilmayr, R.; Rausch, L.L.; Munger, J.; Gibbs, H.K. Brazil’s Amazon Soy Moratorium Reduced Deforestation. Nat. Food 2020, 1, 801–810. [Google Scholar] [CrossRef]
- Michoacán State Government Pro-Forest Avocado. Available online: https://forestavo.com/ (accessed on 3 July 2025).
- RSPO (Roundtable on Sustainable Palm Oil). RSPO Certification Systems for Principles & Criteria and RSPO Independent Smallholder Standard 2020. Available online: https://rspo.org/wp-content/uploads/RSPO_Certification_Systems_Document_-_November_2020-ENG-1.pdf (accessed on 1 July 2025).
- Bourgoin, C.; Verhegghen, A.; Carboni, S.; Degrève, L.; Ameztoy Aramendi, I.; Ceccherini, G.; Colditz, R.; Achard, F. Global Forest Maps for the Year 2020 to Support the EU Regulation on Deforestation-Free Supply Chains—Improved Map of Global Forest Cover (GFC2020) and Preliminary Map of Global Forest Types (GFT2020); Publications Office of the European Union: Luxembourg, 2025. [Google Scholar]
- Arima, E.Y.; Denvir, A.; Young, K.R.; González-Rodríguez, A.; García-Oliva, F. Modelling Avocado-Driven Deforestation in Michoacán, Mexico. Environ. Res. Lett. 2022, 17, 034015. [Google Scholar] [CrossRef]
- FAO. Major Tropical Fruits Market Review. Preliminary Results 2024; FAO: Rome, Italy, 2024; pp. 1–31. [Google Scholar]
- SIAP; SADER. Escenario Mensual de Productos Agroalimentarios. Aguacate; SIAP; SADER: Mexico City, Mexico, 2024. [Google Scholar]
- FIRA. Panorama Agroalimentario|Aguacate 2024; FIRA: Morelia, Mexico, 2024. [Google Scholar]
- Latorre-Cárdenas, M.C.; González-Rodríguez, A.; Godínez-Gómez, O.; Arima, E.Y.; Young, K.R.; Denvir, A.; García-Oliva, F.; Ghilardi, A. Estimating Fragmentation and Connectivity Patterns of the Temperate Forest in an Avocado-Dominated Landscape to Propose Conservation Strategies. Land 2023, 12, 631. [Google Scholar] [CrossRef]
- Mas, J.F.; Lemoine-Rodríguez, R.; González, R.; López-Sánchez, J.; Piña-Garduño, A.; Herrera-Flores, E. Evaluación de Las Tasas de Deforestación En Michoacán a Escala Detallada Mediante Un Método Híbrido de Clasificación de Imágenes SPOT. Madera Bosques 2017, 23, 119–131. [Google Scholar] [CrossRef]
- Morales, L.M.; Cuevas, G. Inventarios 1974–2007, y Evaluación Del Impacto Ambiental Regional Del Cultivo Del Aguacate En El Estado de Michoacán; Centro de Investigaciones en Geografía Ambiental, UNAM: Morelia, Mexico, 2011; p. 139. [Google Scholar]
- SENASICA Estadística de La Producción de Aguacate. Available online: https://dj.senasica.gob.mx/SIAS/Statistics/Transversal/EstadisticaProduccionAguacate (accessed on 7 May 2025).
- Bravo-Espinosa, M.; Mendoza, M.E.; Carlón Allende, T.; Medina, L.; Sáenz-Reyes, J.T.; Páez, R. Effects of Converting Forest to Avocado Orchards on Topsoil Properties in the Trans-Mexican Volcanic System, Mexico. Land Degrad. Dev. 2014, 25, 452–467. [Google Scholar] [CrossRef]
- Denvir, A.; Arima, E.Y.; González-Rodríguez, A.; Young, K.R. Ecological and Human Dimensions of Avocado Expansion in México: Towards Supply-Chain Sustainability. Ambio 2022, 51, 152–166. [Google Scholar] [CrossRef]
- Figueroa-Figueroa, D.K.; Ramírez-Dávila, J.F.; Antonio-Némiga, X.; Huerta, A.G. Cartografía Del Aguacate En El Sur Del Estado de México Mediante Tratamiento Digital de Imágenes Sentinel-2. Rev. Mex. Cienc. Agríc. 2020, 11, 865–879. [Google Scholar] [CrossRef]
- Pérez-Llorente, I.; Ramírez, M.I.; Paneque-Gálvez, J.; Orozco, C.G.; González-López, R. Unraveling Complex Relations between Forest-Cover Change and Conflicts through Spatial and Relational Analyses. Ecol. Soc. 2019, 24, 3. [Google Scholar] [CrossRef]
- Subercaseaux-Ugarte, D.; Bocco, G.; Cumana, I.; Moreno-Calles, A.I.; Astier, M.; Navarrete, A. Cambio de Uso Del Suelo e Implicaciones de La Expansión Agroindustrial Aguacatera En El Occidente de México. Rev. Geogr. Norte Gd. 2025, 90, 1–27. [Google Scholar] [CrossRef]
- Baca-Patiño, B.; González-Rodríguez, A.; García-Oliva, F.; García, A.; Lara-De La Cruz, I.; Garibay-Orijel, R.; Poret-Peterson, A.; Maldonado-López, Y.; Cuevas-Reyes, P.; Gómez-Tagle, A.; et al. Land-Use Change from Native Forest to Avocado Orchards: Effects on Soil Nutrient Transformation and Microbial Communities. Appl. Soil Ecol. 2025, 205, 105748. [Google Scholar] [CrossRef]
- Pérez-Solache, A.; Vaca-Sánchez, M.S.; Maldonado-López, Y.; De Faria, M.L.; Borges, M.A.Z.; Fagundes, M.; Oyama, K.; Méndez-Solórzano, M.I.; Aguilar-Peralta, J.S.; Hernández-Guzmán, R.; et al. Changes in Land Use of Temperate Forests Associated to Avocado Production in Mexico: Impacts on Soil Properties, Plant Traits and Insect-Plant Interactions. Agric. Syst. 2023, 204, 103556. [Google Scholar] [CrossRef]
- De la Vega-Rivera, A.; Merino-Pérez, L. Socio-Environmental Impacts of the Avocado Boom in the Meseta Purépecha, Michoacán, Mexico. Sustainability 2021, 13, 7247. [Google Scholar] [CrossRef]
- Hansen, M.C.; Loveland, T.R. A Review of Large Area Monitoring of Land Cover Change Using Landsat Data. Remote Sens. Environ. 2012, 122, 66–74. [Google Scholar] [CrossRef]
- Hemati, M.; Hasanlou, M.; Mahdianpari, M.; Mohammadimanesh, F. A Systematic Review of Landsat Data for Change Detection Applications: 50 Years of Monitoring the Earth. Remote Sens. 2021, 13, 2869. [Google Scholar] [CrossRef]
- Wulder, M.A.; White, J.C.; Loveland, T.R.; Woodcock, C.E.; Belward, A.S.; Cohen, W.B.; Fosnight, E.A.; Shaw, J.; Masek, J.G.; Roy, D.P. The Global Landsat Archive: Status, Consolidation, and Direction. Remote Sens. Environ. 2016, 185, 271–283. [Google Scholar] [CrossRef]
- De Souza, A.A.; Galvão, L.S.; Korting, T.S.; Almeida, C.A. On a Data-Driven Approach for Detecting Disturbance in the Brazilian Savannas Using Time Series of Vegetation Indices. Remote Sens. 2021, 13, 4959. [Google Scholar] [CrossRef]
- Fu, Y.; Zhu, Z.; Liu, L.; Zhan, W.; He, T.; Shen, H.; Zhao, J.; Liu, Y.; Zhang, H.; Liu, Z.; et al. Remote Sensing Time Series Analysis: A Review of Data and Applications. J. Remote Sens. 2024, 4, 0285. [Google Scholar] [CrossRef]
- Hamunyela, E.; Rosca, S.; Mirt, A.; Engle, E.; Herold, M.; Gieseke, F.; Verbesselt, J. Implementation of BFASTmonitor Algorithm on Google Earth Engine to Support Large-Area and Sub-Annual Change Monitoring Using Earth Observation Data. Remote Sens. 2020, 12, 2953. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Yang, Z.; Cohen, W.B. Detecting Trends in Forest Disturbance and Recovery Using Yearly Landsat Time Series: 1. LandTrendr—Temporal Segmentation Algorithms. Remote Sens. Environ. 2010, 114, 2897–2910. [Google Scholar] [CrossRef]
- Simoes, R.; Camara, G.; Queiroz, G.; Souza, F.; Andrade, P.R.; Santos, L.; Carvalho, A.; Ferreira, K. Satellite Image Time Series Analysis for Big Earth Observation Data. Remote Sens. 2021, 13, 2428. [Google Scholar] [CrossRef]
- Souza, C.M.; Shimbo, J.Z.; Rosa, M.R.; Parente, L.L.; Alencar, A.A.; Rudorff, B.F.T.; Hasenack, H.; Matsumoto, M.; Ferreira, L.G.; Souza-Filho, P.W.M.; et al. Reconstructing Three Decades of Land Use and Land Cover Changes in Brazilian Biomes with Landsat Archive and Earth Engine. Remote Sens. 2020, 12, 2735. [Google Scholar] [CrossRef]
- Verbesselt, J.; Zeileis, A.; Herold, M. Near Real-Time Disturbance Detection Using Satellite Image Time Series. Remote Sens. Environ. 2012, 123, 98–108. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E. Continuous Change Detection and Classification of Land Cover Using All Available Landsat Data. Remote Sens. Environ. 2014, 144, 152–171. [Google Scholar] [CrossRef]
- Bullock, E.L.; Woodcock, C.E.; Holden, C.E. Improved Change Monitoring Using an Ensemble of Time Series Algorithms. Remote Sens. Environ. 2020, 238, 111165. [Google Scholar] [CrossRef]
- Chen, S.; Woodcock, C.E.; Bullock, E.L.; Arévalo, P.; Torchinava, P.; Peng, S.; Olofsson, P. Monitoring Temperate Forest Degradation on Google Earth Engine Using Landsat Time Series Analysis. Remote Sens. Environ. 2021, 265, 112648. [Google Scholar] [CrossRef]
- Demarquet, Q.; Rapinel, S.; Gore, O.; Dufour, S.; Hubert-Moy, L. Continuous Change Detection Outperforms Traditional Post-Classification Change Detection for Long-Term Monitoring of Wetlands. Int. J. Appl. Earth Obs. Geoinf. 2024, 133, 104142. [Google Scholar] [CrossRef]
- Jiang, N.; Li, P.; Feng, Z. Detecting Tropical Freshly-Opened Swidden Fields Using a Combined Algorithm of Continuous Change Detection and Support Vector Machine. Int. J. Appl. Earth Obs. Geoinf. 2025, 136, 104403. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Jones, S.; Soto-Berelov, M.; Haywood, A.; Hislop, S. Landsat Time-Series for Estimating Forest Aboveground Biomass and Its Dynamics across Space and Time: A Review. Remote Sens. 2020, 12, 98. [Google Scholar] [CrossRef]
- Pasquarella, V.J.; Arévalo, P.; Bratley, K.H.; Bullock, E.L.; Gorelick, N.; Yang, Z.; Kennedy, R.E. Demystifying LandTrendr and CCDC Temporal Segmentation. Int. J. Appl. Earth Obs. Geoinf. 2022, 110, 102806. [Google Scholar] [CrossRef]
- Zhou, M.; Li, G.; Lu, D.; Xu, C.; Li, Z.; Li, D. Spatiotemporal Patterns of Annual Clear-Cutting Distribution in Tropical and Subtropical Regions of China with Time Series Landsat and CCDC. Geo-Spat. Inf. Sci. 2025; 1–18. [Google Scholar] [CrossRef]
- Zhou, Q.; Wang, L.; Tang, F.; Zhao, S.; Huang, N.; Zheng, K. Mapping Spatial and Temporal Distribution Information of Plantations in Guangxi from 2000 to 2020. Front. Ecol. Evol. 2023, 11, 1201161. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhang, J.; Yang, Z.; Aljaddani, A.H.; Cohen, W.B.; Qiu, S.; Zhou, C. Continuous Monitoring of Land Disturbance Based on Landsat Time Series. Remote Sens. Environ. 2020, 238, 111116. [Google Scholar] [CrossRef]
- Aldwaik, S.Z.; Pontius, R.G. Intensity Analysis to Unify Measurements of Size and Stationarity of Land Changes by Interval, Category, and Transition. Landsc. Urban Plan. 2012, 106, 103–114. [Google Scholar] [CrossRef]
- Bilintoh, T.M.; Pontius, R.G.; Zhang, A. Methods to Compare Sites Concerning a Category’s Change during Various Time Intervals. GIScience Remote Sens. 2024, 61, 2409484. [Google Scholar] [CrossRef]
- Mas, J.-F.; Nogueira de Vasconcelos, R.; Franca-Rocha, W. Analysis of High Temporal Resolution Land Use/Land Cover Trajectories. Land 2019, 8, 30. [Google Scholar] [CrossRef]
- Pontius, R.G.; Krithivasan, R.; Sauls, L.; Yan, Y.; Zhang, Y. Methods to Summarize Change among Land Categories across Time Intervals. J. Land Use Sci. 2017, 12, 218–230. [Google Scholar] [CrossRef]
- Pontius, R.G.; Santacruz, A. Quantity, Exchange, and Shift Components of Difference in a Square Contingency Table. Int. J. Remote Sens. 2014, 35, 7543–7554. [Google Scholar] [CrossRef]
- Ramírez-Mejía, D.; Levers, C.; Mas, J.F. Spatial Patterns and Determinants of Avocado Frontier Dynamics in Mexico. Reg. Environ. Change 2022, 22, 28. [Google Scholar] [CrossRef]
- Solórzano, J.V.; Gallardo-Cruz, J.A.; Peralta-Carreta, C. Potencial Del Acervo de Imágenes Landsat Disponible En Google Earth Engine Para El Estudio Del Territorio Mexicano. Investig. Geográficas 2020, 101, e59821. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Arévalo, P.; Bullock, E.L.; Woodcock, C.E.; Olofsson, P. A Suite of Tools for Continuous Land Change Monitoring in Google Earth Engine. Front. Clim. 2020, 2, 576740. [Google Scholar] [CrossRef]
- Bullock, E.L.; Arévalo, P. Google Earth Engine Tools for CCDC. Available online: https://gee-ccdc-tools.readthedocs.io/en/latest/index.html (accessed on 20 May 2025).
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45, RG2004. [Google Scholar] [CrossRef]
- Tadono, T.; Ishida, H.; Oda, F.; Naito, S.; Minakawa, K.; Iwamoto, H. Precise Global Dem Generation By Alos Prism. In Proceedings of the ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Suzhou, China, 14 May 2014; Volume II–4, pp. 71–76. [Google Scholar]
- Worldpop. WorldPop Global Project Population Data: Estimated Residential Population per 100x100m Grid Square. 2020. Available online: https://developers.google.com/earth-engine/datasets/catalog/WorldPop_GP_100m_pop (accessed on 30 August 2025).
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [PubMed]
- Elvidge, C.D.; Zhizhin, M.; Ghosh, T.; Hsu, F.C.; Taneja, J. Annual time series of global VIIRS nighttime lights derived from monthly averages: 2012 to 2019. Remote Sens. 2021, 13, 922. [Google Scholar] [CrossRef]
- Pekel, J.-F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-Resolution Mapping of Global Surface Water and Its Long-Term Changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef]
- Card, D.H. Using Known Map Category Marginal Frequencies to Improve Estimates of Thematic Map Accuracy. Photogramm. Eng. Remote Sens. 1982, 48, 431–439. [Google Scholar]
- Pontius, R.G.; Francis, T.; Millones, M. A Call to Interpret Disagreement Components during Classification Assessment. Int. J. Geogr. Inf. Sci. 2025, 39, 1373–1390. [Google Scholar] [CrossRef]
- Pontius, R.G.; Millones, M. Death to Kappa: Birth of Quantity Disagreement and Allocation Disagreement for Accuracy Assessment. Int. J. Remote Sens. 2011, 32, 4407–4429. [Google Scholar] [CrossRef]
- Yan, J.; Wang, L.; Song, W.; Chen, Y.; Chen, X.; Deng, Z. A Time-Series Classification Approach Based on Change Detection for Rapid Land Cover Mapping. ISPRS J. Photogramm. Remote Sens. 2019, 158, 249–262. [Google Scholar] [CrossRef]
- Liu, J.; Hull, V.; Batistella, M.; DeFries, R.; Dietz, T.; Fu, F.; Hertel, T.W.; Izaurralde, R.C.; Lambin, E.F.; Li, S.; et al. Framing Sustainability in a Telecoupled World. Ecol. Soc. 2013, 18, 26. [Google Scholar] [CrossRef]
- Sun, J.; TONG, Y.; Liu, J. Telecoupled Land-Use Changes in Distant Countries. J. Integr. Agric. 2017, 16, 368–376. [Google Scholar] [CrossRef]
- Orozco-Ramírez, Q.; Astier, M.; Barrasa, S. Agricultural Land Use Change after NAFTA in Central West Mexico. Land 2017, 6, 66. [Google Scholar] [CrossRef]
- USDA Economic Research Service Fruit and Tree Nut U.S. Supply and Availability: Fresh, Canned, Juice, Dried; per Capita Availability, U.S. Population 2025. Available online: https://www.ers.usda.gov/data-products/fruit-and-tree-nuts-data/fruit-and-tree-nuts-yearbook-tables (accessed on 25 August 2025).
- Cho, K.; Goldstein, B.; Gounaridis, D.; Newell, J.P. Where Does Your Guacamole Come from? Detecting Deforestation Associated with the Exports of Avocados from Mexico to the United States. J. Environ. Manag. 2021, 278, 111482. [Google Scholar] [CrossRef] [PubMed]
- Olivares-Martinez, L.D.; Gomez-Tagle, A.; Pérez-Salicrup, D.R. Regional Drivers behind the Burning of Remanent Forests in Michoacán Avocado Belt, Central Mexico. Fire 2023, 6, 81. [Google Scholar] [CrossRef]
- Charre-Medellín, J.F.; Mas, J.-F.; Chang-Martínez, L.A. Potential expansion of Hass avocado cultivation under climate change scenarios threatens Mexican mountain ecosystems. Crop Pasture Sci. 2021, 72, 291–301. [Google Scholar] [CrossRef]
- Meyfroidt, P.; de Bremond, A.; Ryan, C.M.; Archer, E.; Aspinall, R.; Chhabra, A.; Camara, G.; Corbera, E.; DeFries, R.; Díaz, S.; et al. Ten Facts about Land Systems for Sustainability. Proc. Natl. Acad. Sci. USA 2022, 119, e2109217118. [Google Scholar] [CrossRef]
- Izaguirre-Toriz, V.; Aguirre-Liguori, J.A.; Latorre-Cárdenas, M.C.; Arima, E.Y.; González-Rodríguez, A. Local Adaptation of Pinus Leiophylla under Climate and Land Use Change Models in the Avocado Belt of Michoacán. Mol. Ecol. 2024, 33, e17424. [Google Scholar] [CrossRef]
- Xie, H.; Zhang, Y.; Zeng, X.; He, Y. Sustainable Land Use and Management Research: A Scientometric Review. Landsc. Ecol. 2020, 35, 2381–2411. [Google Scholar] [CrossRef]
- Ncube, M.M.; Ngulube, P. Enhancing Environmental Decision-Making: A Systematic Review of Data Analytics Applications in Monitoring and Management. Discov. Sustain. 2024, 5, 290. [Google Scholar] [CrossRef]
- Diniz, C.G.; Souza, A.A.D.A.; Santos, D.C.; Dias, M.C.; Luz, N.C.D.; Moraes, D.R.V.D.; Maia, J.S.A.; Gomes, A.R.; Narvaes, I.D.S.; Valeriano, D.M.; et al. DETER-B: The New Amazon Near Real-Time Deforestation Detection System. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 3619–3628. [Google Scholar] [CrossRef]
Step | Parameter | Value |
---|---|---|
Temporal segmentation | Min observations | 6 |
Chi-square probability | 0.99 | |
Lambda | 0.002 | |
Max iterations | 10,000 | |
Min years for new fitting | 1.33 | |
Classification | Number of harmonics (sin and cos terms) | 3 |
Random forest trees | 150 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Solórzano, J.V.; Mas, J.F.; Ramírez-Mejía, D.; Gallardo-Cruz, J.A. Long-Term Trajectory Analysis of Avocado Orchards in the Avocado Belt, Mexico. Land 2025, 14, 1792. https://doi.org/10.3390/land14091792
Solórzano JV, Mas JF, Ramírez-Mejía D, Gallardo-Cruz JA. Long-Term Trajectory Analysis of Avocado Orchards in the Avocado Belt, Mexico. Land. 2025; 14(9):1792. https://doi.org/10.3390/land14091792
Chicago/Turabian StyleSolórzano, Jonathan V., Jean François Mas, Diana Ramírez-Mejía, and J. Alberto Gallardo-Cruz. 2025. "Long-Term Trajectory Analysis of Avocado Orchards in the Avocado Belt, Mexico" Land 14, no. 9: 1792. https://doi.org/10.3390/land14091792
APA StyleSolórzano, J. V., Mas, J. F., Ramírez-Mejía, D., & Gallardo-Cruz, J. A. (2025). Long-Term Trajectory Analysis of Avocado Orchards in the Avocado Belt, Mexico. Land, 14(9), 1792. https://doi.org/10.3390/land14091792