Multi-Scenario Simulation of Land Use/Land Cover Change in a Mountainous and Eco-Fragile Urban Agglomeration: Patterns and Implications
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets
2.3. Methods
2.3.1. LULC Change Detection
2.3.2. Driving Variables Selection and Logistic Regression Specification
Categories | Driving Factors | Units | References |
---|---|---|---|
Natural factors | Elevation | m | [14,21,51,54,59] |
Slope | ° | ||
Aspect | ° | ||
Annual precipitation | mm | [49] | |
Mean annual wind speed | m/s | [51] | |
Mean annual temperature | °C | [25,49] | |
Locational factors | Distance from the central city | km | [21,54] |
Distance from railroad | km | [14,21,54,59] | |
Distance from river | km | [10,20,51,54] | |
Distance from highway | km | [14,21,51,59] | |
Socioeconomic factors | Population density | ppl/km2 | [19,20,25,49] |
GDP | 104 CNY/km2 | [19,20,49] | |
Ecological factors | NDVI | – | [14] |
ESV | 104 CNY/km2 | [49] |
2.3.3. LULC Multi-Scenario Projection Using the FLUS–Markov Model
3. Results
3.1. Spatiotemporal Changes in LULC
LULC | 1985 | 1995 | 2005 | 2015 | 2019 | 1985–2005 | 2005–2019 | 1985–2019 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Area (km2) | Proportion (%) | Area (km2) | Proportion (%) | Area (km2) | Proportion (%) | Area (km2) | Proportion (%) | Area (km2) | Proportion (%) | Change (km2/%) | Change (km2/%) | Change (km2/%) | |
Cultivated land | 125,166.81 | 67.81 | 122,424.60 | 66.32 | 122,476.47 | 66.35 | 118,960.44 | 64.45 | 116,586.48 | 63.16 | −2690.34/−2.15 | −5889.99/−4.81 | −8580.33/−6.86 |
Forest land | 54,078.07 | 29.30 | 57,431.31 | 31.11 | 56,131.56 | 30.41 | 57,379.10 | 31.09 | 59,231.50 | 32.09 | 2053.49/3.80 | 3099.93/5.52 | 5153.43/9.53 |
Grassland | 1868.82 | 1.01 | 1139.92 | 0.62 | 1050.95 | 0.57 | 1040.79 | 0.56 | 938.01 | 0.51 | −817.86/−43.76 | −112.94/−10.75 | −930.81/−49.81 |
Water area | 2178.84 | 1.18 | 2027.45 | 1.10 | 2320.45 | 1.26 | 2647.31 | 1.43 | 2558.56 | 1.39 | 141.62/6.50 | 238.11/10.26 | 379.72/17.43 |
Construction land | 1251.03 | 0.68 | 1541.90 | 0.84 | 2581.35 | 1.40 | 4521.49 | 2.45 | 5231.91 | 2.83 | 1330.32/106.34 | 2650.56/102.68 | 3980.88/318.21 |
Unused land | 42.74 | 0.02 | 21.08 | 0.01 | 25.51 | 0.01 | 37.18 | 0.02 | 39.85 | 0.02 | −17.23/−40.31 | 14.34/56.19 | −2.89/−6.77 |
Total area | 184,586.31 | 100.00 | 184,586.31 | 100.00 | 184,586.31 | 100.00 | 184,586.31 | 100.00 | 184,586.31 | 100.00 | - | - | - |
3.2. Spatiotemporal Transition in LULC
3.3. Driving Factors of LULC Occurrence
3.4. The Multi-Scenario Prediction of LULC
4. Discussion
4.1. Rapid Change of LULC and Its Impact
4.2. Driving Factors of LULC Change
4.3. Prediction of LULC
4.4. Recommendations and Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ANN | Artificial Neural Network |
AUC | Area Under the Curve |
BTHUA | Beijing–Tianjin–Hebei Urban Agglomeration |
CA | Cellular Automata |
CCUA | Chengdu–Chongqing Urban Agglomeration |
CLCD | China Land Cover Dataset |
DEM | Digital Elevation Model |
ECPS | Ecology and Cultivated Protection Scenarios |
EDS | Economic Development Scenario |
ESV | Ecosystem Service Value |
FLUS | Future Land Use Simulation |
FOM | Figure of Merit |
GDP | Gross Domestic Product |
Kappa | Kappa Coefficient |
LULC | Land Use/Land Cover |
Markov | Markov Chain Model |
NDVI | Normalized Difference Vegetation Index |
NDS | Natural Development Scenario |
OA | Overall Accuracy |
PLES | Production–Living–Ecological Space |
PRDUA | Pearl River Delta Urban Agglomeration |
ROC | Receiver Operating Characteristic curve |
RFFP | Returning Farmland to Forest Program |
VIF | Variance Inflation Factor |
YRDUA | Yangtze River Delta Urban Agglomeration |
Appendix A
Scenarios | Cultivated Land | Forest Land | Grassland | Water Area | Construction Land | Unused Land |
---|---|---|---|---|---|---|
NDS | 0.3 | 0.2 | 0.4 | 0.2 | 1.0 | 0.2 |
EDS | 0.3 | 0.2 | 0.4 | 0.2 | 1.0 | 0.2 |
ECPS | 0.2 | 0.3 | 0.5 | 0.2 | 1.0 | 0.2 |
Scenario | NDS | EDS | ECPS | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
i | ii | iii | iv | v | vi | i | ii | iii | iv | v | vi | i | ii | iii | iv | v | vi | |
i | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 |
ii | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 |
iii | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
iv | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
v | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
vi | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
References
- Chen, C.; LeGates, R.; Zhao, M.; Fang, C. The Changing Rural-Urban Divide in China’s Megacities. Cities 2018, 81, 81–90. [Google Scholar] [CrossRef]
- Kuang, W.; Chi, W.; Lu, D.; Dou, Y. A Comparative Analysis of Megacity Expansions in China and the U.S.: Patterns, Rates and Driving Forces. Landsc. Urban Plan. 2014, 132, 121–135. [Google Scholar] [CrossRef]
- You, H. Quantifying Megacity Growth in Response to Economic Transition: A Case of Shanghai, China. Habitat Int. 2016, 53, 115–122. [Google Scholar] [CrossRef]
- Zeng, C.; Deng, X.; Xu, S.; Wang, Y.; Cui, J. An Integrated Approach for Assessing the Urban Ecosystem Health of Megacities in China. Cities 2016, 53, 110–119. [Google Scholar] [CrossRef]
- Yang, L.; Chau, K.W.; Szeto, W.Y.; Cui, X.; Wang, X. Accessibility to Transit, by Transit, and Property Prices: Spatially Varying Relationships. Transport. Res. Part D-Transport. Environ. 2020, 85, 102387. [Google Scholar] [CrossRef]
- Yu, J.; Ye, C. A New Conceptual Framework and Case Analysis of Rural Environmental Cross-Boundary Governance in Megacities of China. Habitat Int. 2025, 156, 103258. [Google Scholar] [CrossRef]
- Lu, H.; Zhang, C.; Jiao, L.; Wei, Y.; Zhang, Y. Analysis on the Spatial-Temporal Evolution of Urban Agglomeration Resilience: A Case Study in Chengdu-Chongqing Urban Agglomeration, China. Int. J. Disaster Risk Reduct. 2022, 79, 103167. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, M.; Zhao, B.; Lu, Z.; Sun, X.; Zhang, Z. Spatially Explicit Carbon Emissions from Land Use Change: Dynamics and Scenario Simulation in the Beijing-Tianjin-Hebei Urban Agglomeration. Land Use Policy 2025, 150, 107473. [Google Scholar] [CrossRef]
- Yu, J.; Zhou, K.; Yang, S. Land Use Efficiency and Influencing Factors of Urban Agglomerations in China. Land Use Policy 2019, 88, 104143. [Google Scholar] [CrossRef]
- Zhang, H.; Deng, W.; Zhang, S.; Peng, L.; Liu, Y. Impacts of Urbanization on Ecosystem Services in the Chengdu-Chongqing Urban Agglomeration: Changes and Trade-Offs. Ecol. Indic. 2022, 139, 108920. [Google Scholar] [CrossRef]
- Chen, Y.; Lu, H.; Yan, P.; Qiao, Y.; Xia, J. Spatial-Temporal Collaborative Relation among Ecological Footprint Depth/Size and Economic Development in Chengyu Urban Agglomeration. Sci. Total Environ. 2022, 812, 151510. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Zhou, T.; Wang, D. Relationships between Urban Form and Air Quality: A Reconsideration Based on Evidence from China’s Five Urban Agglomerations during the COVID-19 Pandemic. Land Use Policy 2022, 118, 106155. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Chen, H.; Chen, S.; Ye, Y. Spatiotemporal Evolution and Prediction of Land Use/Land Cover Changes and Ecosystem Service Variation in the Yellow River Basin, China. Ecol. Indic. 2022, 145, 109579. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, P.; Xia, J.; Wang, W.; Cai, W.; Chen, N.; Hu, S.; Luo, X.; Li, J.; Zhan, C. Land Use/Land Cover Prediction and Analysis of the Middle Reaches of the Yangtze River under Different Scenarios. Sci. Total Environ. 2022, 833, 155238. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, G.; Fan, X.; Gan, G.; Wang, W.; Liu, Y. Hydrological Impacts of Land Use/Cover Changes in the Lake Victoria Basin. Ecol. Indic. 2022, 145, 109580. [Google Scholar] [CrossRef]
- Rahnama, M.R. Forecasting Land-Use Changes in Mashhad Metropolitan Area Using Cellular Automata and Markov Chain Model for 2016–2030. Sustain. Cities Soc. 2021, 64, 102548. [Google Scholar] [CrossRef]
- Fondevilla, C.; Àngels Colomer, M.; Fillat, F.; Tappeiner, U. Using a New PDP Modelling Approach for Land-Use and Land-Cover Change Predictions: A Case Study in the Stubai Valley (Central Alps). Ecol. Modell. 2016, 322, 101–114. [Google Scholar] [CrossRef]
- Bhat, P.A.; ul Shafiq, M.; Mir, A.A.; Ahmed, P. Urban Sprawl and Its Impact on Landuse/Land Cover Dynamics of Dehradun City, India. Int. J. Sustain. Built Environ. 2017, 6, 513–521. [Google Scholar] [CrossRef]
- Guan, D.; Li, H.; Inohae, T.; Su, W.; Nagaie, T.; Hokao, K. Modeling Urban Land Use Change by the Integration of Cellular Automaton and Markov Model. Ecol. Modell. 2011, 222, 3761–3772. [Google Scholar] [CrossRef]
- Kavhu, B.; Eric Mashimbye, Z.; Luvuno, L. Characterising Social-Ecological Drivers of Landuse/Cover Change in a Complex Transboundary Basin Using Singular or Ensemble Machine Learning. Remote Sens. Appl. Soc. Environ. 2022, 27, 100773. [Google Scholar] [CrossRef]
- Li, B.; Yang, Z.; Cai, Y.; Xie, Y.; Guo, H.; Wang, Y.; Zhang, P.; Li, B.; Jia, Q.; Huang, Y.; et al. Prediction and Valuation of Ecosystem Service Based on Land Use/Land Cover Change: A Case Study of the Pearl River Delta. Ecol. Eng. 2022, 179, 106612. [Google Scholar] [CrossRef]
- Qiu, J.; Huang, T.; Yu, D. Evaluation and Optimization of Ecosystem Services under Different Land Use Scenarios in a Semiarid Landscape Mosaic. Ecol. Indic. 2022, 135, 108516. [Google Scholar] [CrossRef]
- Xiang, S.; Wang, Y.; Deng, H.; Yang, C.; Wang, Z.; Gao, M. Response and Multi-Scenario Prediction of Carbon Storage to Land Use/Cover Change in the Main Urban Area of Chongqing, China. Ecol. Indic. 2022, 142, 109205. [Google Scholar] [CrossRef]
- Yang, T.; Zhou, K.; Zhang, C. Spatiotemporal Patterns and Influencing Factors of Green Development Efficiency in China’s Urban Agglomerations. Sustain. Cities Soc. 2022, 85, 104069. [Google Scholar] [CrossRef]
- Zhang, X.; Ren, W.; Peng, H. Urban Land Use Change Simulation and Spatial Responses of Ecosystem Service Value under Multiple Scenarios: A Case Study of Wuhan, China. Ecol. Indic. 2022, 144, 109526. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, Z.; Xu, G.; Tian, Z. Built-up Land Efficiency in Urban China: Insights from the General Land Use Plan (2006–2020). Habitat Int. 2016, 51, 31–38. [Google Scholar] [CrossRef]
- Zhou, X.; Wu, D.; Li, J.; Liang, J.; Zhang, D.; Chen, W. Cultivated Land Use Efficiency and Its Driving Factors in the Yellow River Basin, China. Ecol. Indic. 2022, 144, 109411. [Google Scholar] [CrossRef]
- Chu, M.; Lu, J.; Sun, D. Influence of Urban Agglomeration Expansion on Fragmentation of Green Space: A Case Study of Beijing-Tianjin-Hebei Urban Agglomeration. Land 2022, 11, 275. [Google Scholar] [CrossRef]
- Chen, Y.; Shu, B.; Zhang, R.; Amani-Beni, M. LST Determination of Different Urban Growth Patterns: A Modeling Procedure to Identify the Dominant Spatial Metrics. Sustain. Cities Soc. 2023, 92, 104459. [Google Scholar] [CrossRef]
- Booker, K.; White, I.; Fu, X.; Wilson, M. Modelling Urban Growth for Long-Term Planning under Future Climate Uncertainty: A Systematic Review and Decision Pathway. Cities 2025, 167, 106310. [Google Scholar] [CrossRef]
- Verstegen, J.A.; van der Laan, C.; Dekker, S.C.; Faaij, A.P.C.; Santos, M.J. Recent and Projected Impacts of Land Use and Land Cover Changes on Carbon Stocks and Biodiversity in East Kalimantan, Indonesia. Ecol. Indic. 2019, 103, 563–575. [Google Scholar] [CrossRef]
- Magesh, N.S.; Chandrasekar, N. Driving Forces behind Land Transformations in the Tamiraparani Sub-Basin, South India. Remote Sens. Appl. Soc. Environ. 2017, 8, 12–19. [Google Scholar] [CrossRef]
- Puertas, O.L.; Henríquez, C.; Meza, F.J. Assessing Spatial Dynamics of Urban Growth Using an Integrated Land Use Model. Application in Santiago Metropolitan Area, 2010–2045. Land Use Policy 2014, 38, 415–425. [Google Scholar] [CrossRef]
- Wang, J.; Chen, J.; Wen, Y.; Fan, W.; Liu, Q.; Tarolli, P. Monitoring the Coastal Wetlands Dynamics in Northeast Italy from 1984 to 2016. Ecol. Indic. 2021, 129, 107906. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, R.; Guo, D.; Han, Y.; Song, G.; Yang, F.; Chen, Y. Molecular Mechanism of Pulmonary Diseases Caused by Exposure to Urban PM2.5 in Chengdu-Chongqing Economic Circle, China. Environ. Int. 2022, 165, 107292. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Chen, X.; Qiao, F.; Che, L.; Pu, L. Layout Optimization and Multi-Scenarios for Land Use: An Empirical Study of Production-Living-Ecological Space in the Lanzhou-Xining City Cluster, China. Ecol. Indic. 2022, 145, 109577. [Google Scholar] [CrossRef]
- Wang, D.; Fu, J.; Jiang, D. Optimization of Production–Living–Ecological Space in National Key Poverty-Stricken City of Southwest China. Land 2022, 11, 411. [Google Scholar] [CrossRef]
- Tan, S.; Xie, D.; Ni, C.; Zhao, G.; Shao, J.; Chen, F.; Ni, J. Spatiotemporal Characteristics of Air Pollution in Chengdu-Chongqing Urban Agglomeration (CCUA) in Southwest, China: 2015–2021. J. Environ. Manag. 2023, 325, 116503. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Lu, Y.; Cao, M.; Wang, R.; Chen, J. Assessing Accessibility to Peri-urban Parks Considering Supply, Demand, and Traffic Conditions. Landsc. Urban Plan. 2025, 257, 105313. [Google Scholar] [CrossRef]
- He, J.; Hu, S. Ecological Efficiency and Its Determining Factors in an Urban Agglomeration in China: The Chengdu-Chongqing Urban Agglomeration. Urban Clim. 2022, 41, 101071. [Google Scholar] [CrossRef]
- Liu, X.; Tian, G.; Feng, J.; Wang, J.; Kong, L. Assessing Summertime Urban Warming and the Cooling Efficacy of Adaptation Strategy in the Chengdu-Chongqing Metropolitan Region of China. Sci. Total Environ. 2018, 610–611, 1092–1102. [Google Scholar] [CrossRef]
- Luo, T.; Zeng, J.; Chen, W.; Wang, Y.; Gu, T.; Huang, C. Ecosystem Services Balance and Its Influencing Factors Detection in China: A Case Study in Chengdu-Chongqing Urban Agglomerations. Ecol. Indic. 2023, 151, 110330. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X. 30 m Annual Land Cover and Its Dynamics in China from 1990 to 2019. Earth Syst. Sci. Data Discuss. 2021, 2021, 1–29. [Google Scholar] [CrossRef]
- Wang, M.; Jiang, Z.; Li, T.; Yang, Y.; Jia, Z. Analysis on Absolute Conflict and Relative Conflict of Land Use in Xining Metropolitan Area under Different Scenarios in 2030 by PLUS and PFCI. Cities 2023, 137, 104314. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, P.; Tian, Y.; Chen, H.; Chen, Y. Exploring the Impact of Integrated Spatial Function Zones on Land Use Dynamics and Ecosystem Services Tradeoffs Based on a Future Land Use Simulation (FLUS) Model. Ecol. Indic. 2023, 150, 110246. [Google Scholar] [CrossRef]
- Zhu, K.; Cheng, Y.; Zang, W.; Zhou, Q.; El Archi, Y.; Mousazadeh, H.; Kabil, M.; Csobán, K.; Dávid, L.D. Multiscenario Simulation of Land-Use Change in Hubei Province, China Based on the Markov-FLUS Model. Land 2023, 12, 744. [Google Scholar] [CrossRef]
- Domingo, D.; Palka, G.; Hersperger, A.M. Effect of Zoning Plans on Urban Land-Use Change: A Multi-Scenario Simulation for Supporting Sustainable Urban Growth. Sustain. Cities Soc. 2021, 69, 102833. [Google Scholar] [CrossRef]
- Liu, X.; Liang, X.; Li, X.; Xu, X.; Ou, J.; Chen, Y.; Li, S.; Wang, S.; Pei, F. A Future Land Use Simulation Model (FLUS) for Simulating Multiple Land Use Scenarios by Coupling Human and Natural Effects. Landsc. Urban Plan. 2017, 168, 94–116. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, D.; Wang, H.; Li, X. What Is the Future for Production-Living-Ecological Spaces in the Greater Bay Area? A Multi-Scenario Perspective Based on DEE. Ecol. Indic. 2021, 131, 108171. [Google Scholar] [CrossRef]
- Wang, Q.; Ren, Q.; Liu, J. Identification and Apportionment of the Drivers of Land Use Change on a Regional Scale: Unbiased Recursive Partitioning-Based Stochastic Model Application. Agric. Ecosyst. Environ. 2016, 217, 99–110. [Google Scholar] [CrossRef]
- Mohammad, P.; Goswami, A.; Chauhan, S.; Nayak, S. Machine Learning Algorithm Based Prediction of Land Use Land Cover and Land Surface Temperature Changes to Characterize the Surface Urban Heat Island Phenomena over Ahmedabad City, India. Urban Clim. 2022, 42, 101116. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, X.; Qu, L.; Li, S.; Lin, Y.; Yao, R.; Zhou, X.; Li, J. Land Use/Cover Predictions Incorporating Ecological Security for the Yangtze River Delta Region, China. Ecol. Indic. 2020, 119, 106841. [Google Scholar] [CrossRef]
- Park, S.; Jeon, S.; Kim, S.; Choi, C. Prediction and Comparison of Urban Growth by Land Suitability Index Mapping Using GIS and RS in South Korea. Landsc. Urban Plan. 2011, 99, 104–114. [Google Scholar] [CrossRef]
- Tian, G.; Ma, B.; Xu, X.; Liu, X.; Xu, L.; Liu, X.; Xiao, L.; Kong, L. Simulation of Urban Expansion and Encroachment Using Cellular Automata and Multi-Agent System Model—A Case Study of Tianjin Metropolitan Region, China. Ecol. Indic. 2016, 70, 439–450. [Google Scholar] [CrossRef]
- Tian, G.; Ouyang, Y.; Quan, Q.; Wu, J. Simulating Spatiotemporal Dynamics of Urbanization with Multi-Agent Systems—A Case Study of the Phoenix Metropolitan Region, USA. Ecol. Modell. 2011, 222, 1129–1138. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, B.; Su, B.; Yang, L.; Wang, R. Exploring the Spatiotemporal Patterns and Correlates of Urban Vitality: Temporal and Spatial Heterogeneity. Sust. Cities Soc. 2023, 91, 104440. [Google Scholar] [CrossRef]
- Cemiloglu, A.; Zhu, L.; Mohammednour, A.B.; Azarafza, M.; Nanehkaran, Y.A. Landslide Susceptibility Assessment for Maragheh County, Iran, Using the Logistic Regression Algorithm. Land 2023, 12, 1397. [Google Scholar] [CrossRef]
- Yang, L.; Ao, Y.; Ke, J.; Lu, Y.; Liang, Y. To Walk or not to Walk? Examining Non-linear Effects of Streetscape Greenery on Walking Propensity of Older Adults. J. Transp. Geogr. 2021, 94, 103099. [Google Scholar] [CrossRef]
- Yang, L.; Liu, J.; Lu, Y.; Ao, Y.; Guo, Y.; Huang, W.; Zhao, R.; Wang, R. Global and Local Associations Between Urban Greenery and Travel Propensity of Older Adults in Hong Kong. Sust. Cities Soc. 2020, 63, 102442. [Google Scholar] [CrossRef]
- Feng, D.; Bao, W.; Fu, M.; Zhang, M.; Sun, Y. Current and Future Land Use Characters of a National Central City in Eco-Fragile Region—A Case Study in Xi’an City Based on FLUS Model. Land 2021, 10, 286. [Google Scholar] [CrossRef]
- Zhao, L.; Liu, X.; Xu, X.; Liu, C.; Chen, K. Three-Dimensional Simulation Model for Synergistically Simulating Urban Horizontal Expansion and Vertical Growth. Remote Sens. 2022, 14, 1503. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, X.; Lin, Z.; Zhang, X.; Zhang, H. The Delineation of Urban Growth Boundaries in Complex Ecological Environment Areas by Using Cellular Automata and a Dual-Environmental Evaluation. J. Clean. Prod. 2020, 256, 120361. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, X.; Wu, X.; Yao, Y.; Wu, X.; Chen, Y. Multiple Intra-Urban Land Use Simulations and Driving Factors Analysis: A Case Study in Huicheng, China. GISci. Remote Sens. 2019, 56, 282–308. [Google Scholar] [CrossRef]
- Zhao, Y.; Gao, Y. Spatial Patterns and Trends of Inter-City Population Mobility in China—Based on Baidu Migration Big Data. Cities 2024, 151, 105124. [Google Scholar] [CrossRef]
- Gu, X.; Tang, X.; Chen, T.; Liu, X. Predicting the Network Shift of Large Urban Agglomerations in China Using the Deep-Learning Gravity Model: A Perspective of Population Migration. Cities 2024, 145, 104680. [Google Scholar] [CrossRef]
- Gong, Q.; Guo, G.; Li, S.; Liang, X. Decoupling of Urban Economic Growth and Water Consumption in Chongqing and Chengdu from the “Production-Living-Ecological” Perspective. Sustain. Cities Soc. 2021, 75, 103395. [Google Scholar] [CrossRef]
- He, C.; Okada, N.; Zhang, Q.; Shi, P.; Li, J. Modelling Dynamic Urban Expansion Processes Incorporating a Potential Model with Cellular Automata. Landsc. Urban Plan. 2008, 86, 79–91. [Google Scholar] [CrossRef]
- Li, W.; Wang, Y.; Xie, S.; Cheng, X. Coupling Coordination Analysis and Spatiotemporal Heterogeneity between Urbanization and Ecosystem Health in Chongqing Municipality, China. Sci. Total Environ. 2021, 791, 148311. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Zhao, H.; Li, J.; Zhu, L.; Wang, Z.; Zeng, J. Land Use Transitions and the Associated Impacts on Ecosystem Services in the Middle Reaches of the Yangtze River Economic Belt in China Based on the Geo-Informatic Tupu Method. Sci. Total Environ. 2020, 701, 134690. [Google Scholar] [CrossRef]
- Wen, X.; Wang, J.; Han, X. Impact of Land Use Evolution on the Value of Ecosystem Services in the Returned Farmland Area of the Loess Plateau in Northern Shaanxi. Ecol. Indic. 2024, 163, 112119. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, Z.; Liu, F.; Xu, M.; Zhang, J. Impact of the Project of Returning Farmland to Forest on Promoting Forest Coverage Rates in Mountainous Areas: An Empirical Analysis Based on Remote Sensing in Yunnan. Forests 2024, 15, 1956. [Google Scholar] [CrossRef]
- Le, Q.; Park, S.J.; Vlek, P.L.G.; Cremers, A.B. Land-Use Dynamic Simulator (LUDAS): A Multi-Agent System Model for Simulating Spatio-Temporal Dynamics of Coupled Human–Landscape System. I. Structure and Theoretical Specification. Ecol. Inform. 2008, 3, 135–153. [Google Scholar] [CrossRef]
- Jokar Arsanjani, J.; Helbich, M.; Kainz, W.; Darvishi Boloorani, A. Integration of Logistic Regression, Markov Chain and Cellular Automata Models to Simulate Urban Expansion. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 265–275. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.; Zhang, Q.; Li, J.; Zhou, X. Projections of Future Land Use Changes: Multiple Scenarios-Based Impacts Analysis on Ecosystem Services for Wuhan City, China. Ecol. Indic. 2018, 94, 430–445. [Google Scholar] [CrossRef]
- Sheng, S.; Huang, J. Spatiotemporal Dynamics and Driving Mechanisms of Ecosystem Services in the Beijing–Tianjin–Hebei Urban Agglomeration: Implications for Sustainable Land Use Planning. Land 2025, 14, 969. [Google Scholar] [CrossRef]
- Anand, J.; Gosain, A.K.; Khosa, R. Prediction of Land Use Changes Based on Land Change Modeler and Attribution of Changes in the Water Balance of Ganga Basin to Land Use Change Using the SWAT Model. Sci. Total Environ. 2018, 644, 503–519. [Google Scholar] [CrossRef] [PubMed]
- Halmy, M.W.A.; Gessler, P.E.; Hicke, J.A.; Salem, B.B. Land Use/Land Cover Change Detection and Prediction in the North-Western Coastal Desert of Egypt Using Markov-CA. Appl. Geogr. 2015, 63, 101–112. [Google Scholar] [CrossRef]
- Mas, J.; Kolb, M.; Paegelow, M.; Camacho Olmedo, M.T.; Houet, T. Inductive Pattern-Based Land Use/Cover Change Models: A Comparison of Four Software Packages. Environ. Model. Softw. 2014, 51, 94–111. [Google Scholar] [CrossRef]
- Liu, X.; Wei, M.; Li, Z.; Zeng, J. Multi-Scenario Simulation of Urban Growth Boundaries with an ESP-FLUS Model: A Case Study of the Min Delta Region, China. Ecol. Indic. 2022, 135, 108538. [Google Scholar] [CrossRef]
- Yang, X.; Bai, Y.; Che, L.; Qiao, F.; Xie, L. Incorporating Ecological Constraints into Urban Growth Boundaries: A Case Study of Ecologically Fragile Areas in the Upper Yellow River. Ecol. Indic. 2021, 124, 107436. [Google Scholar] [CrossRef]
- Wang, P.; Li, R.; Liu, D.; Wu, Y. Dynamic Characteristics and Responses of Ecosystem Services under Land Use/Land Cover Change Scenarios in the Huangshui River Basin, China. Ecol. Indic. 2022, 144, 109539. [Google Scholar] [CrossRef]
- Liang, X.; Guan, Q.; Clarke, K.C.; Liu, S.; Wang, B.; Yao, Y. Understanding the Drivers of Sustainable Land Expansion Using a Patch-Generating Land Use Simulation (PLUS) Model: A Case Study in Wuhan, China. Comput. Environ. Urban Syst. 2021, 85, 101569. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, S.; Li, J.; Pan, C.; Wu, J.; Ran, J.; Su, Y. Remarkable Improvement of Ecosystem Service Values Promoted by Land Use/Land Cover Changes on the Yungui Plateau of China during 2001–2020. Ecol. Indic. 2022, 142, 109303. [Google Scholar] [CrossRef]
Data Type | Source | Years | Resolution | Usage |
---|---|---|---|---|
LULC | China Land Cover Dataset [43] | 1985, 1995, 2005, 2015, 2019 | 30 m (resampled to 1 km) | LULC evolution; scenario inputs |
Digital Elevation Model (DEM) | Geospatial Data Cloud (http://www.gscloud.cn/) | Product V3 | 30 m | Elevation, slope, and aspect derivation |
Climate data (temperature, precipitation) | Resources and Environmental Sciences Data platform (RESDC) (doi: 10.12078/2017121301) | 2005, 2015, 2019 | 1 km | Environmental drivers |
Socioeconomic data (GDP, population) | RESDC (doi: 10.12078/201712110; doi: 10.12078/2017121102) | 2005, 2015, 2019 | 1 km | Socioeconomic drivers |
Locational factors (distance from central city/rail/highway/river) | Derived in ArcMap (Version 10.5) | Matching above | 1 km | Accessibility/location drivers |
LULC Types | 2019 | |||||||
---|---|---|---|---|---|---|---|---|
Cultivated Land | Forest Land | Grassland | Water Area | Construction Land | Unused Land | Total | ||
1985 | Cultivated land | 107,538.19 | 12,893.59 | 111.51 | 532.92 | 4085.60 | 5.00 | 125,166.81 |
Forest land | 8533.24 | 45,331.30 | 164.37 | 12.16 | 37.00 | – | 54,078.07 | |
Grassland | 232.37 | 940.35 | 648.75 | 20.07 | 15.00 | 12.27 | 1868.82 | |
Water area | 253.68 | 66.26 | 4.61 | 1765.51 | 85.78 | 3.00 | 2178.84 | |
Construction land | 28.00 | – | – | 216.47 | 1006.56 | – | 1251.03 | |
Unused land | 1.00 | – | 8.76 | 11.44 | 1.97 | 19.58 | 42.74 | |
Total | 116,586.48 | 59,231.50 | 938.01 | 2558.56 | 5231.91 | 39.85 | 184,586.31 |
Driving Factors | Cultivated Land | Forest Land | Grassland | Water Area | Construction Land | Unused Land | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
β 1 | Exp (β) | Std. Error | β 1 | Exp (β) | Std. Error | β 1 | Exp (β) | Std. Error | β 1 | Exp (β) | Std. Error | β 1 | Exp (β) | Std. Error | β 1 | Exp (β) | Std. Error | |
Elevation | −0.318 | 0.728 | 0.020 | −0.301 | 0.740 | 0.019 | 0.183 | 1.200 | 0.034 | −1.114 | 0.328 | 0.089 | 0.872 | 2.391 | 0.069 | − | − | − |
Slope | −0.649 | 0.523 | 0.010 | 0.607 | 1.835 | 0.010 | 0.139 | 1.149 | 0.029 | 0.416 | 1.516 | 0.037 | −0.326 | 0.722 | 0.041 | − | − | − |
Aspect | −0.086 | 0.918 | 0.006 | 0.110 | 1.116 | 0.007 | −0.105 | 0.900 | 0.035 | −0.214 | 0.807 | 0.022 | −0.068 | 0.934 | 0.018 | − | − | − |
Annual precipitation | −0.336 | 0.715 | 0.007 | 0.237 | 1.267 | 0.008 | −0.311 | 0.733 | 0.044 | −0.191 | 0.826 | 0.028 | 0.158 | 1.172 | 0.021 | − | − | − |
Mean annual wind speed | −0.184 | 0.832 | 0.014 | −0.258 | 0.772 | 0.014 | 0.477 | 1.612 | 0.038 | −0.256 | 0.774 | 0.052 | −0.414 | 0.661 | 0.045 | − | − | − |
Mean annual temperature | 1.020 | 2.774 | 0.014 | −1.545 | 0.213 | 0.015 | −0.396 | 0.673 | 0.037 | 0.850 | 2.340 | 0.044 | 1.438 | 4.212 | 0.062 | −1.551 | 0.212 | 0.140 |
Distance from the central city | −0.076 | 0.926 | 0.007 | 0.113 | 1.119 | 0.007 | − | − | − | − | − | − | −0.753 | 0.471 | 0.027 | − | − | − |
Distance from highway | −0.096 | 0.909 | 0.006 | 0.101 | 1.106 | 0.007 | −0.271 | 0.763 | 0.038 | − | − | − | −0.240 | 0.787 | 0.021 | − | − | − |
Distance from railroad | −0.087 | 0.916 | 0.006 | 0.038 | 1.038 | 0.007 | − | − | − | 0.108 | 1.114 | 0.022 | −0.142 | 0.868 | 0.022 | − | − | − |
Distance from river | 0.040 | 1.041 | 0.007 | −0.036 | 0.964 | 0.007 | 0.259 | 1.296 | 0.048 | −0.617 | 0.540 | 0.037 | −0.133 | 0.876 | 0.025 | − | − | − |
GDP | −0.316 | 0.729 | 0.011 | −0.462 | 0.630 | 0.037 | − | − | − | −0.352 | 0.703 | 0.047 | 0.248 | 1.282 | 0.013 | 0.137 | 1.147 | 0.074 |
NDVI | 0.089 | 1.092 | 0.008 | 0.904 | 2.469 | 0.013 | −0.258 | 0.773 | 0.029 | −0.423 | 0.655 | 0.017 | −0.787 | 0.455 | 0.013 | − | − | − |
Ecosystem services | −0.156 | 0.855 | 0.005 | 0.161 | 1.174 | 0.007 | 0.167 | 1.182 | 0.037 | 0.162 | 1.176 | 0.010 | −0.064 | 0.938 | 0.011 | − | − | − |
Constant | 0.421 | 1.523 | 0.007 | −1.044 | 0.352 | 0.008 | −6.590 | 0.001 | 0.065 | −5.421 | 0.004 | 0.048 | −5.084 | 0.006 | 0.039 | −12.582 | 0.000 | 0.775 |
ROC | 0.843 | 0.888 | 0.933 | 0.818 | 0.901 | 0.923 |
LULC | 2025 | 2035 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
NDS | EDS | ECPS | NDS | EDS | ECPS | |||||||
Area (km2) | Proportion (%) | Area (km2) | Proportion (%) | Area (km2) | Proportion (%) | Area (km2) | Proportion (%) | Area (km2) | Proportion (%) | Area (km2) | Proportion (%) | |
Cultivated land | 117,494.46 | 63.65 | 116,901.34 | 63.33 | 117,520.12 | 63.67 | 116,740.99 | 63.24 | 115,786.02 | 62.73 | 116,687.53 | 63.22 |
Forest land | 58,259.03 | 31.56 | 58,257.57 | 31.56 | 58,258.78 | 31.56 | 58,855.92 | 31.89 | 58,859.12 | 31.89 | 58,856.34 | 31.89 |
Grassland | 1031.95 | 0.56 | 1031.95 | 0.56 | 1031.95 | 0.56 | 1028.95 | 0.56 | 1028.95 | 0.56 | 1028.95 | 0.56 |
Water area | 3076.74 | 1.67 | 3076.44 | 1.67 | 3076.38 | 1.67 | 3573.37 | 1.94 | 3573.14 | 1.94 | 3573.37 | 1.94 |
Construction land | 4699.54 | 2.55 | 5293.49 | 2.87 | 4674.49 | 2.53 | 4362.49 | 2.36 | 5314.49 | 2.88 | 4415.54 | 2.39 |
Unused land | 24.58 | 0.01 | 25.51 | 0.01 | 24.58 | 0.01 | 24.58 | 0.01 | 24.58 | 0.01 | 24.58 | 0.01 |
Total area | 184,586.31 | 100.00 | 184,586.31 | 100.00 | 184,586.31 | 100.00 | 184,586.31 | 100.00 | 184,586.31 | 100.00 | 184,586.31 | 100.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Amani-Beni, M.; Dehghanifarsani, L. Multi-Scenario Simulation of Land Use/Land Cover Change in a Mountainous and Eco-Fragile Urban Agglomeration: Patterns and Implications. Land 2025, 14, 1787. https://doi.org/10.3390/land14091787
Chen Y, Amani-Beni M, Dehghanifarsani L. Multi-Scenario Simulation of Land Use/Land Cover Change in a Mountainous and Eco-Fragile Urban Agglomeration: Patterns and Implications. Land. 2025; 14(9):1787. https://doi.org/10.3390/land14091787
Chicago/Turabian StyleChen, Yang, Majid Amani-Beni, and Laleh Dehghanifarsani. 2025. "Multi-Scenario Simulation of Land Use/Land Cover Change in a Mountainous and Eco-Fragile Urban Agglomeration: Patterns and Implications" Land 14, no. 9: 1787. https://doi.org/10.3390/land14091787
APA StyleChen, Y., Amani-Beni, M., & Dehghanifarsani, L. (2025). Multi-Scenario Simulation of Land Use/Land Cover Change in a Mountainous and Eco-Fragile Urban Agglomeration: Patterns and Implications. Land, 14(9), 1787. https://doi.org/10.3390/land14091787