Spatial Equity in Access to Urban Parks via Public Transit: A Centrality-Driven Assessment of Mexico City
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Urban Parks in Mexico City
2.3. The Mexico City Public Transportation System
2.4. Methods
2.4.1. Centrality Measures in Network Analysis
- Reach
- Gravity
- Closeness
2.4.2. Data Collection
3. Results
3.1. Spatial Distribution of Accessibility
- Reach Index
- Gravity Index
- Closeness Index
3.2. Diversity of Transportation Modes
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
GIS | Geographic Information Systems |
BRT | Bus Rapid Transit |
RTP | Red de Transporte de Pasajeros |
STE | Electric Transport System |
SIT | Public Transportation System |
UNA | Urban Network Analysis |
References
- Núñez, J.M.; Santamaría, A.; Avila, L.; Perez-De La Mora, D.A. Using Local Entropy Mapping as an Approach to Quantify Surface Temperature Changes Induced by Urban Parks in Mexico City. Land 2024, 13, 1701. [Google Scholar] [CrossRef]
- Huang, W.; Lin, G. The relationship between urban green space and social health of individuals: A scoping review. Urban For. Urban Green. 2023, 85, 127969. [Google Scholar] [CrossRef]
- Wan, C.; Shen, G.Q.; Choi, S. Underlying relationships between public urban green spaces and social cohesion: A systematic literature review. City Cult. Soc. 2021, 24, 100383. [Google Scholar] [CrossRef]
- Jennings, V.; Bamkole, O. The relationship between social cohesion and urban green space: An avenue for health promotion. Int. J. Environ. Res. Public Health 2019, 16, 452. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Urban Green Spaces and Health: A Review of Evidence; WHO Regional Office for Europe: Copenhagen, Denmark, 2016; Available online: https://www.who.int/europe/publications/i/item/WHO-EURO-2016-3352-43111-60341 (accessed on 24 August 2025).
- Twohig-Bennett, C.; Jones, A. The health benefits of the great outdoors: A systematic review and meta-analysis of greenspace exposure and health outcomes. Environ. Res. 2018, 166, 628–637. [Google Scholar] [CrossRef]
- Chen, Q.; Du, M.; Cheng, Q.; Jing, C. Quantitative evaluation of spatial differentiation for public open spaces in urban built-up areas by assessing SDG 11.7: A case of Deqing County. ISPRS Int. J. Geo-Inf. 2020, 9, 575. [Google Scholar] [CrossRef]
- Stephens, T. The Kunming–Montreal Global Biodiversity Framework. Int. Leg. Mater. 2023, 62, 868–887. [Google Scholar] [CrossRef]
- Sancino, A.; Stafford, M.; Braga, A.; Budd, L. What can city leaders do for climate change? Insights from the C40 Cities Climate Leadership Group network. Reg. Stud. 2022, 56, 1224–1233. [Google Scholar] [CrossRef]
- Leal, J.M.; Paterson, M. Transnational city networks, global political economy, and climate governance: C40 in Mexico and Lima. Rev. Int. Political Econ. 2023, 31, 26–46. [Google Scholar] [CrossRef]
- Martin, G.K.; O’Dell, K.; Kinney, P.L.; Pescador-Jimenez, M.; Rojas-Rueda, D.; Canales, R.; Anenberg, S.C. Tracking progress toward urban nature targets using landcover and vegetation indices: A global study for the 96 C40 Cities. GeoHealth 2024, 8, e2023GH000996. [Google Scholar] [CrossRef]
- Flores-Xolocotzi, R.; González-Guillén, M.D.J. Planificación de sistemas de áreas verdes y parques públicos. Rev. Mex. De Cienc. For. 2010, 1, 17–24. [Google Scholar] [CrossRef]
- Ayala-Azcarraga, C.; Diaz, D.; Fernandez, T.; Cordova-Tapia, F.; Zambrano, L. Uneven distribution of urban green spaces in relation to marginalization in Mexico City. Sustainability 2023, 15, 12652. [Google Scholar] [CrossRef]
- SEDUVI. Lineamientos para el Diseño e Implementación de Parques Públicos de Bolsillo; Gobierno del Distrito Federal: Mexico City, Mexico, 2014. Available online: https://www.seduvi.cdmx.gob.mx/storage/app/uploads/public/5f1/b18/45a/5f1b1845a5dc8144508643.pdf (accessed on 24 August 2025).
- Rigolon, A. A complex landscape of inequity in access to urban parks: A literature review. Landsc. Urban Plan. 2016, 153, 160–169. [Google Scholar] [CrossRef]
- Sikorska, D.; Macegoniuk, S.; Łaszkiewicz, E.; Sikorski, P. Energy crops in urban parks as a promising alternative to traditional lawns–Perceptions and a cost-benefit analysis. Urban For. Urban Green. 2020, 49, 126579. [Google Scholar] [CrossRef]
- De Vries, S. Chapter 10: Nature, health and well-being: Evidence and examples. In The Symbiotic City: Voices of Nature in Urban Transformations; Wageningen Academic Publishers: Wageningen, The Netherlands, 2022; p. 111233. [Google Scholar] [CrossRef]
- Rahman, K.A.; Zhang, D. Analyzing the level of accessibility of public urban green spaces to different socially vulnerable groups of people. Sustainability 2018, 10, 3917. [Google Scholar] [CrossRef]
- Kmail, A.B.; Onyango, V. A GIS-based assessment of green space accessibility: Case study of Dundee. Appl. Geomat. 2020, 12, 491–499. [Google Scholar] [CrossRef]
- Breekveldt, B.E.; Labib, S.M. Modelling Greenspace Accessibility at Multi-Spatial Contexts: A Pilot Study of Comparing the E2SFCA and Gravity Models. 2023. Available online: https://zenodo.org/records/7823447 (accessed on 24 August 2025).
- Liang, H.; Zhang, Q. Assessing the public transportation service to urban parks on the basis of spatial accessibility for citizens in the compact megacity of Shanghai, China. Urban Stud. 2018, 55, 1983–1999. [Google Scholar] [CrossRef]
- Zhang, Z.; Ma, G.; Lin, X.; Dai, H. Accessibility in a multiple transport mode urban park based on the “DD” model: A case study in park city, Chengdu. Cities 2023, 134, 104191. [Google Scholar] [CrossRef]
- Yoo, J.; Cho, Y. Investigating the Factors on Public transportation System for Citizen Relationship and Sustainability. J. Ind. Distrib. Bus. 2022, 13, 13–24. [Google Scholar] [CrossRef]
- Papageorgiou, G.N.; Tsappi, E. Development of an Active Transportation Framework Model for Sustainable Urban Development. Sustainability 2024, 16, 7546. [Google Scholar] [CrossRef]
- Chen, J.; Chang, Z. Rethinking urban green space accessibility: Evaluating and optimizing public transportation system through social network analysis in megacities. Landsc. Urban Plan. 2015, 143, 150–159. [Google Scholar] [CrossRef]
- Mougiakou, E.; Photis, Y.N. Urban green space network evaluation and planning: Optimizing accessibility based on connectivity and raster GIS analysis. Eur. J. Geogr. 2014, 5, 19–46. [Google Scholar]
- Fang, Q.; Inoue, T.; Li, D.; Liu, Q.; Ma, J. Transit-oriented development and sustainable cities: A visual analysis of the literature based on CiteSpace and VOSviewer. Sustainability 2023, 15, 8223. [Google Scholar] [CrossRef]
- Ozuduru, B.H.; Webster, C.J.; Chiaradia, A.J.; Yucesoy, E. Associating street-network centrality with spontaneous and planned subcentres. Urban Stud. 2021, 58, 2059–2078. [Google Scholar] [CrossRef]
- Bavelas, A. A mathematical model for group structures. Hum. Organ. 1948, 7, 16–30. [Google Scholar] [CrossRef]
- Isard, W. Location theory, agglomeration and the pattern of world trade. In The International Allocation of Economic Activity: Proceedings of a Nobel Symposium Held at Stockholm; Palgrave Macmillan: London, UK, 1977; pp. 159–177. [Google Scholar] [CrossRef]
- Crucitti, P.; Latora, V.; Porta, S. Centrality measures in spatial networks of urban streets. Phys. Rev. E—Stat. Nonlinear Soft Matter Phys. 2006, 73, 036125. [Google Scholar] [CrossRef] [PubMed]
- Cutini, V. Spatial analysis of urban squares. TEMA—J. Land Use Mobil. Environ. 2014, 247–258. [Google Scholar] [CrossRef]
- Stamos, I. Transportation networks in the face of climate change adaptation: A review of centrality measures. Future Transp. 2023, 3, 878–900. [Google Scholar] [CrossRef]
- Wang, S.; Wang, M.; Liu, Y. Access to urban parks: Comparing spatial accessibility measures using three GIS-based approaches. Comput. Environ. Urban Syst. 2021, 90, 101713. [Google Scholar] [CrossRef]
- Ayala-Azcárraga, C.; Diaz, D.; Zambrano, L. Characteristics of urban parks and their relation to user well-being. Landsc. Urban Plan. 2019, 189, 27–35. [Google Scholar] [CrossRef]
- Martínez-Trejo, C.C. El transporte público de la Ciudad de México: Un servicio en transición y resistencia al cambio. In Problemas Urbanos y del Territorio; López Álvarez, F.M., Ed.; Las Ciencias Sociales y la Agenda Nacional. Reflexiones y Propuestas Desde las Ciencias Sociales; CentroGeo: Mexico City, Mexico, 2018; pp. 182–203. [Google Scholar]
- Secretaría de Movilidad de la Ciudad de México. Estudio Técnico Sobre la Movilidad y Accesibilidad en el Transporte Público de la Ciudad de México. 2021. Available online: https://semovi.cdmx.gob.mx/storage/app/media/diagnostico-tecnico-de-movilidad-pim.pdf (accessed on 24 August 2025).
- Secretaría de Movilidad de la Ciudad de México. Diagnóstico Técnico de Movilidad: Programa Integral de Movilidad 2021–2025; Gobierno de la Ciudad de México: Mexico City, Mexico, 2020. Available online: https://www.semovi.cdmx.gob.mx/storage/app/media/PIM-2019-2024_.pdf (accessed on 24 August 2025).
- Arriaga, A.M.P.; Palmer, M.C.A.V. Nivel de satisfacción de los usuarios de transporte público colectivo en la Ciudad de México aplicando el enfoque agregado. Adm. Y Organ. 2018, 21, 119–136. Available online: https://rayo.xoc.uam.mx/index.php/Rayo/article/view/21 (accessed on 24 August 2025).
- Cariño Huerta, G.; Fuentes Flores, C.M. Movilidad inteligente en la creación de valor público para usuarios del Metrobús en la Ciudad de México. Rev. De Urban. 2022, 46, 40–56. [Google Scholar] [CrossRef]
- Suárez Lastra, M.; Galindo Pérez, C.; Reyes García, V. Movilidad y transporte: Cómo nos movemos en la Ciudad de México. In Inventario de la Ciudad de México: Presente y Futuro de su Gente: Diez Encuestas Sobre la Ciudad de México, Tomo II; Flores Dávila, J.I., Ed.; Instituto de Investigaciones Jurídicas, UNAM: Mexico City, Mexico; Secretaría de Educación, Ciencia Tecnología e Innovación: Mexico City, Mexico, 2019; pp. 255–293. Available online: https://ru.crim.unam.mx/handle/123456789/284 (accessed on 24 August 2025).
- Instituto Nacional de Estadística y Geografía [Inegi]. Encuesta Origen Destino en Hogares de la Zona Metropolitana del Valle de México. 2017. Available online: https://www.inegi.org.mx/rnm/index.php/catalog/533 (accessed on 24 August 2025).
- Dudzic-Gyurkovich, K. Study of centrality measures in the network of green spaces in the city of Krakow. Sustainability 2023, 15, 13458. [Google Scholar] [CrossRef]
- Agryzkov, T.; Tortosa, L.; Vicent, J. New highlights and a new centrality measure based on the Adapted PageRank Algorithm for urban networks. Appl. Math. Comput. 2016, 291, 14–29. [Google Scholar] [CrossRef]
- Merchan, D.; Winkenbach, M.; Snoeck, A. Quantifying the impact of urban road networks on the efficiency of local trips. Transp. Res. Part A Policy Pract. 2020, 135, 38–62. [Google Scholar] [CrossRef]
- Oldham, S.; Fulcher, B.; Parkes, L.; Arnatkeviciūtė, A.; Suo, C.; Fornito, A. Consistency and differences between centrality measures across distinct classes of networks. PLoS ONE 2019, 14, e0220061. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Liang, X.; Zhao, J.; Zhang, S. Cycle Based Network Centrality. Sci. Rep. 2018, 8, 11749. [Google Scholar] [CrossRef]
- Hellervik, A.; Nilsson, L.; Andersson, C. Preferential centrality–A new measure unifying urban activity, attraction and accessibility. Environ. Plan. B Urban Anal. City Sci. 2019, 46, 1331–1346. [Google Scholar] [CrossRef]
- Sevtsuk, A.; Mekonnen, M. Urban network analysis. Rev. Int. De Géomatique–N 2012, 287, 305. [Google Scholar]
- Jiang, B.; Claramunt, C. Topological analysis of urban street networks. Environ. Plan. B Plan. Des. 2004, 31, 151–162. [Google Scholar] [CrossRef]
- Papa, E.; Coppola, P. Gravity-based accessibility measures for integrated transport-land use planning (GraBAM). Access. Instrum. Plan. Pract. 2012, 117, 124. Available online: http://hdl.handle.net/1854/LU-4414301 (accessed on 24 August 2025).
- Hansen, W. How accessibility shapes land use. J. Am. Inst. Plan. 1959, 25, 73–76. [Google Scholar] [CrossRef]
- Siewwuttanagul, S.; Inohae, T.; Mishima, N. An investigation of urban gravity to develop a better understanding of the urbanization phenomenon using centrality analysis on GIS platform. Procedia Environ. Sci. 2016, 36, 191–198. [Google Scholar] [CrossRef]
- Sevtsuk, A.; Mekonnen, M. Urban Network Analysis: A New Toolbox for Measuring City Form in ArcGIS. In Proceedings of the 2012 Symposium on Simulation for Architecture and Urban Design, Orlando, FL, USA, 26–30 March 2012. [Google Scholar]
- Wu, C.; Smith, D.; Wang, M. Simulating the urban spatial structure with spatial interaction: A case study of urban polycentricity under different scenarios. Comput. Environ. Urban Syst. 2021, 89, 101677. [Google Scholar] [CrossRef]
- Boeing, G. Urban Street Network Analysis in a Computational Notebook. Reg. J. ERSA 2019, 6, 39–51. [Google Scholar] [CrossRef]
- Secretaría de Movilidad de la Ciudad de México (SEMOVI). Ubicación de Rutas del Sistema de Transporte Público de la Ciudad de México [Conjunto de Datos Geográficos:, S.H.P.; KMZ.; XLSX] Datos Abiertos, C.D.M.X. Última actualización 15 de Febrero de 2023. 2023. Available online: https://datos.cdmx.gob.mx/dataset/ubicacion-de-rutas-del-transporte-publico-concesionado-de-ruta (accessed on 24 July 2025).
- Instituto Nacional de Estadística y Geografía (INEGI). SCINCE 2020: Sistema para la Consulta de Información Censal (Censo de Población y Vivienda 2020) [Plataforma en Línea]. Gaia. 2020. Available online: https://gaia.inegi.org.mx/scince2020/ (accessed on 24 July 2025).
- Sevtsuk, A. Analysis and Planning of Urban Networks. In Encyclopedia of Social Network Analysis and Mining, 2nd ed.; Alhajj, E.R., Rokne, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 1–12. [Google Scholar] [CrossRef]
- Sevtsuk, A.; Kalvo, R. Modeling pedestrian activity in cities with urban network analysis. Environ. Plan. B Urban Anal. City Sci. 2024, 51, 3–20. [Google Scholar] [CrossRef]
- Factum Marketing. Infografía: Movilidad en la Ciudad de México 2017. 2017. Available online: https://www.factum-marketing.com (accessed on 24 August 2025).
- Poudyal, C.; Zhao, Q.; Brazauskas, V. Method of winsorized moments for robust fitting of truncated and censored lognormal distributions. North Am. Actuar. J. 2024, 28, 236–260. [Google Scholar] [CrossRef]
- Qin, J.; Liu, Y.; Yi, D.; Sun, S.; Zhang, J. Spatial accessibility analysis of parks with multiple entrances based on real-time travel: The case study in Beijing. Sustainability 2020, 12, 7618. [Google Scholar] [CrossRef]
- Navarrete-Rodríguez, P.E.; Andrade-Vallejo, M.A. La infraestructura del transporte público urbano en la Ciudad de México y su relación con las políticas públicas. Investig. Adm. 2010, 39, 41–67. Available online: https://www.redalyc.org/articulo.oa?id=456045211003 (accessed on 24 August 2025).
- Mulley, C.; Ma, L.; Clifton, G.; Yen, B.; Burke, M. Residential property value impacts of proximity to transport infrastructure: An investigation of bus rapid transit and heavy rail networks in Brisbane, Australia. J. Transp. Geogr. 2016, 54, 41–52. [Google Scholar] [CrossRef]
- Romero, G.A.; Lugo-Morín, D.R. El estado del arte de la movilidad del transporte en la vida urbana en ciudades latinoamericanas. Rev. Transp. Territ. 2018, 19, 133–157. [Google Scholar] [CrossRef]
- Chang, Z.; Chen, J.; Li, W.; Li, X. Public transportation and the spatial inequality of urban park accessibility: New evidence from Hong Kong. Transp. Res. Part D Transp. Environ. 2019, 76, 111–122. [Google Scholar] [CrossRef]
- Martínez Salvador, L.E.; Alvarado Ramírez, D.F. Parques de bolsillo: Un análisis desde la percepción de usuarios en la Ciudad de México. Econ. Soc. Territ. 2020, 20, 489–511. [Google Scholar] [CrossRef]
Type of Park | Area | Description | Number of Green Areas | Total Area (ha) |
---|---|---|---|---|
Small | 0.3 to 1 ha | Local parks serving as recreational spaces for the residents of a neighborhood, district or indigenous town | 1507 | 843.3 |
Medium | 1 to 4.5 ha | Urban parks representing a borough or area of the city | 3314 | 6488.4 |
Large | >4.5 ha | Large metropolitan parks creating city identity | 943 | 14,777.6 |
Public Transportation | Number of Lines or Routes | Length (km) | Number of Stops | Vehicle Fleet (Units) | Average Distance Between Stations (m) | Average Commercial Speed (km/h) |
---|---|---|---|---|---|---|
Metro | 12 | 226.5 | 195 | 390 | 947 | 36 |
Bus Rapid Transit System (Metrobús) | 7 | 239.9 | 237 | 657 | 568 | 16.3 |
Electric Transport System (STE) | 9 | 217.3 | 649 | 377 | 400–737 | 16.1 |
Passenger Transport Network (RTP) | 94 | 3232.6 | 8833 | 1139 | 400 | 20.6 |
Concessioned transport | NA | NA | NA | 29,128 | NA | 12 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Durán-Pérez, A.M.; Núñez, J.M.; Gómez Gámez, C. Spatial Equity in Access to Urban Parks via Public Transit: A Centrality-Driven Assessment of Mexico City. Land 2025, 14, 1773. https://doi.org/10.3390/land14091773
Durán-Pérez AM, Núñez JM, Gómez Gámez C. Spatial Equity in Access to Urban Parks via Public Transit: A Centrality-Driven Assessment of Mexico City. Land. 2025; 14(9):1773. https://doi.org/10.3390/land14091773
Chicago/Turabian StyleDurán-Pérez, Ana María, Juan Manuel Núñez, and Célida Gómez Gámez. 2025. "Spatial Equity in Access to Urban Parks via Public Transit: A Centrality-Driven Assessment of Mexico City" Land 14, no. 9: 1773. https://doi.org/10.3390/land14091773
APA StyleDurán-Pérez, A. M., Núñez, J. M., & Gómez Gámez, C. (2025). Spatial Equity in Access to Urban Parks via Public Transit: A Centrality-Driven Assessment of Mexico City. Land, 14(9), 1773. https://doi.org/10.3390/land14091773