Identifying Drivers of Wetland Damage and Their Impact on Primary Productivity Dynamics in a Mid-High Latitude Region of China
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Study Area
2.1.2. Data Sources and Processing
2.2. Methods
2.2.1. Constructing the Wetland Damage Index
2.2.2. Spatial Autocorrelation Analysis
2.2.3. Geographic Detector
2.2.4. Coupling Coordination Model
3. Results
3.1. Wetland Changes and Damage Identification
3.1.1. Spatio-Temporal Variation of Wetland
3.1.2. The Factors for Wetland Damage Index Constructing
3.1.3. Wetland Damage Analysis
3.2. Driving Mechanism Analysis of Wetland Damage
3.2.1. Environmental Factors for WDI
3.2.2. Single Factor Detection for WDI
3.2.3. Factors’ Interaction Detection for WDI
3.3. The Response of Primary Productivity to Wetland Damage
3.3.1. Primary Productivity Dynamics
3.3.2. The Coupling Relationship Between Wetland Damage and Primary Productivity
4. Discussion
4.1. Analysis for Wetland Damage
4.2. Analysis of the Driving Mechanism of Wetland Damage
4.3. Primary Productivity Dynamics with Wetland Damage Changes
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Song, Y.Y.; Song, C.C. An Introduction to National Key Research and Development Project: “Research on the Response of Wetland Ecosystems in Mid-high Latitudes to Climate Change”. (No. 2016 YFA 0602300). Wetl. Sci. 2016, 14, 750–754. [Google Scholar] [CrossRef]
- Rouse, W.R. The energy and water balance of high-latitude wetlands: Controls and extrapolation. Glob. Change Biol. 2000, 6, 59–68. [Google Scholar] [CrossRef]
- Li, X.J.; Peng, X.Q.; Sun, H.; Frauenfeld, O.W.; Chen, G.Q.; Huang, Y.; Wei, G.; Du, J. The biogeophysical impacts of land cover changes in Northern Hemisphere permafrost regions. Catena 2024, 243, 108209. [Google Scholar] [CrossRef]
- Murray, N.J. Extent and drivers of global wetland loss. Nature 2023, 614, 234–235. [Google Scholar] [CrossRef]
- Mao, D.H.; Wang, M.; Wang, Y.Q.; Jiang, M.; Yuan, W.P.; Luo, L.; Feng, K.D.; Wang, D.R.; Xiang, H.X.; Ren, Y.X.; et al. The trajectory of wetland change in China between 1980 and 2020: Hidden losses and restoration effects. Sci. Bull. 2024, 70, 587–596. [Google Scholar] [CrossRef]
- Rebelo, L.M.; Finlayson, C.M.; Nagabhatla, N. Remote sensing and GIS for wetland inventory, mapping and change analysis. J. Environ. Manag. 2008, 90, 2144–2153. [Google Scholar] [CrossRef]
- Zheng, Y.M.; Niu, Z.G.; Gong, P.; Wang, J. A database of global wetland validation samples for wetland mapping. Sci. Bull. 2015, 60, 428–434. [Google Scholar] [CrossRef]
- Hu, Y.; Huang, J.L.; Du, Y.; Han, P.P.; Wang, J.L.; Huang, W. Monitoring wetland vegetation pattern response to water-level change resulting from the Three Gorges Project in the two largest freshwater lakes of China. Ecol. Eng. 2015, 74, 274–285. [Google Scholar] [CrossRef]
- Li, S.N.; Wang, G.X.; Deng, W.; Hu, Y.M.; Hu, W.W. Influence of hydrology process on wetland landscape pattern: A case study in the Yellow River Delta. Ecol. Eng. 2009, 35, 1719–1726. [Google Scholar] [CrossRef]
- Xiong, R.W.; Li, Y.; Gao, X.F.; Li, N.; Lou, R.T.; Saeed, L.; Huang, J.Q. Effects of a long-term operation wetland for wastewater treatment on the spatial pattern and function of microbial communities in groundwater. Environ. Res. 2023, 228, 115929. [Google Scholar] [CrossRef] [PubMed]
- Bao, T.; Jia, G.S.; Xu, X.Y. Weakening greenhouse gas sink of pristine wetlands under warming. Nat. Clim. Change 2023, 13, 462–469. [Google Scholar] [CrossRef]
- Hou, X.J.; Xie, D.H.; Feng, L.; Shen, F.; Nienhuis, J.H. Sustained increase in suspended sediments near global river deltas over the past two decades. Nat. Commun. 2024, 15, 3319. [Google Scholar] [CrossRef]
- Li, J.L.; Bu, Z.J.; Huang, X.Y.; Zeng, L.H.; Chen, X. The effects of environmental, climatic and spatial factors on diatom diversity in Sphagnum peatlands in central and northeastern China. Hydrobiologia 2023, 850, 565–575. [Google Scholar] [CrossRef]
- Avis, C.A.; Weaver, A.J.; Meissner, K.J. Reduction in areal extent of high-latitude wetlands in response to permafrost thaw. Nat. Geosci. 2011, 4, 444–448. [Google Scholar] [CrossRef]
- Vanderhoof, M.K.; Christensen, J.; Beal, Y.J.G.; Devries, B.; Lang, M.W.; Hwang, N.; Mazzarella, C.; Jones, J.W. Isolating anthropogenic wetland loss by concurrently tracking inundation and land cover disturbance across the Mid-Atlantic region, U.S. Remote Sens. 2020, 12, 1464. [Google Scholar] [CrossRef]
- Bai, J.H.; Cui, B.S.; Chen, B.; Zhang, K.J.; Deng, W.; Gao, H.F.; Xiao, R. Spatial distribution and ecological risk assessment of heavy metals in surface sediments from a typical plateau lake wetland, China. Ecol. Model. 2011, 222, 301–306. [Google Scholar] [CrossRef]
- Osland, M.J.; Enwright, N.; Day, R.H.; Doyle, T.W. Winter climate change and coastal wetland foundation species: Salt marshes vs. mangrove forests in the southeastern United States. Glob. Change Biol. 2013, 19, 1482–1494. [Google Scholar] [CrossRef]
- Zhang, Z.; Hu, B.Q.; Jiang, W.G.; Qiu, H.H. Identification and scenario prediction of degree of wetland damage in Guangxi based on the CA-Markov model. Ecol. Indic. 2021, 127, 107764. [Google Scholar] [CrossRef]
- Jiang, W.G.; Lv, J.X.; Wang, C.C.; Chen, Z.; Liu, Y.H. Marsh wetland degradation risk assessment and change analysis: A case study in the Zoige Plateau, China. Ecol. Indic. 2017, 82, 316–326. [Google Scholar] [CrossRef]
- Mondal, B.; Dolui, G.; Pramanik, M.; Maity, S.; Biswas, S.S.; Pal, R. Urban expansion and wetland shrinkage estimation using a GIS-based model in the East Kolkata Wetland, India. Ecol. Indic. 2017, 83, 62–73. [Google Scholar] [CrossRef]
- Lv, J.X.; Jiang, W.G.; Wang, W.J.; Wu, Z.F.; Liu, Y.H.; Wang, X.Y.; Li, Z. Wetland loss identification and evaluation based on landscape and remote sensing indices in Xiong’an new area. Remote Sens. 2019, 11, 2834. [Google Scholar] [CrossRef]
- Yu, B.W.; Xie, Y.L.; Ma, X.Y.; Cui, B.S. Wetland landscape pattern change and its damage degree in Guangdong-Hong Kong-Macau Bay Area in recent 40 years. Environ. Ecol. 2022, 4, 59–68. [Google Scholar]
- Lee, S.Y. Mangrove outwelling: A review. Hydrobiologia 1995, 295, 203–212. [Google Scholar] [CrossRef]
- Öövel, M.; Tooming, A.; Mauring, T.; Mander, Ü. Schoolhouse wastewater purification in a LWA-filled hybrid constructed wetland in Estonia. Ecol. Eng. 2007, 29, 17–26. [Google Scholar] [CrossRef]
- Sánchez-Carrillo, S.; Álvarez-Cobelas, M.; Angeler, D.G. Sedimentation in the semi-arid freshwater wetland Las Tablas de Daimiel (Spain). Wetlands 2001, 21, 112–124. [Google Scholar] [CrossRef]
- Brazner, J.C.; Danz, N.P.; Niemi, G.J.; Regal, R.R.; Trebitz, A.S.; Howe, R.W.; Hanowski, J.M.; Johnson, L.B.; Ciborowski, J.J.H.; Johnston, C.A.; et al. Evaluation of geographic, geomorphic and human influences on Great Lakes wetland indicators: A multi-assemblage approach. Ecol. Indic. 2007, 7, 610–635. [Google Scholar] [CrossRef]
- Osland, M.J.; Enwright, N.M.; Day, R.H.; Gabler, C.A.; Stagg, C.L.; Grace, J.B. Beyond just sea-level rise: Considering macroclimatic drivers within coastal wetland vulnerability assessments to climate change. Glob. Change Biol. 2016, 22, 1–11. [Google Scholar] [CrossRef]
- Owen, C.R. Hydrology and history: Land use changes and ecological responses in an urban wetland. Wetl. Ecol. Manag. 1998, 6, 209–219. [Google Scholar] [CrossRef]
- Mao, D.H.; Wang, Z.M.; Luo, L.; Ren, C.Y.; Jia, M.M. Monitoring the evolution of wetland ecosystem pattern in northeast China from 1990 to 2013 based on remote sensing. J. Nat. Resour. 2016, 31, 1253–1263. [Google Scholar] [CrossRef]
- Cui, L.J.; Gao, C.J.; Zhou, D.M.; Mu, L. Quantitative analysis of the driving forces causing declines in marsh wetland landscapes in the Honghe region, northeast China, from 1975 to 2006. Environ. Earth Sci. 2014, 71, 1357–1367. [Google Scholar] [CrossRef]
- Gibbs, J.P. Wetland loss and biodiversity conservation. Conserv. Biol. 2000, 14, 314–317. [Google Scholar] [CrossRef]
- Lv, J.X.; Jiang, W.G.; Wang, W.J.; Chen, K.; Deng, Y.; Chen, Z.; Li, Z. Wetland landscape pattern change and its driving forces in Beijing-Tianjin-Hebei region in recent 30 years. Acta Ecol. Sin. 2018, 38, 4492–4503. [Google Scholar] [CrossRef]
- Dang, A.T.N.; Kumar, L.; Reid, M.; Nguyen, H. Remote sensing approach for monitoring coastal wetland in the Mekong Delta, Vietnam: Change trends and their driving forces. Remote Sens. 2021, 13, 3359. [Google Scholar] [CrossRef]
- Mastepanov, M.; Sigsgaard, C.; Dlugokencky, E.J.; Houweling, S.; Ström, L.; Tamstorf, M.P.; Christensen, T.R. Large tundra methane burst during onset of freezing. Nature 2008, 456, 628–630. [Google Scholar] [CrossRef]
- Mulatu, D.W.; Ahmed, J.; Semereab, E.; Arega, T.; Yohannes, T.; Akwany, L.O. Stakeholders, institutional challenges and the valuation of wetland ecosystem services in south Sudan: The case of Machar Marshesand Sudd Wetlands. Environ. Manag. 2022, 69, 666–683. [Google Scholar] [CrossRef]
- Xue, Z.S.; Jiang, M.; Zhang, Z.S.; Wu, H.T.; Zhang, T.T. Simulating potential impacts of climate changes on distribution pattern and carbon storage function of high-latitude wetland plant communities in the Xing’anling Mountains, China. Land Degrad. Dev. 2021, 32, 2704–2714. [Google Scholar] [CrossRef]
- Hayes, M.A.; Jesse, A.; Hawke, B.; Baldock, J.; Tabet, B.; Lockington, D.; Lovelock, C.E. Dynamics of sediment carbon stocks across intertidal wetland habitats of Moreton Bay, Australia. Glob. Change Biol. 2017, 23, 4222–4234. [Google Scholar] [CrossRef] [PubMed]
- Rogers, K.; Kelleway, J.J.; Saintilan, N.; Megonigal, J.P.; Adams, J.B.; Holmquist, J.R.; Lu, M.; Schile-Beers, L.; Zawadzki, A.; Mazumder, D.; et al. Wetland carbon storage controlled by millennial-scale variation in relative sea-level rise. Nature 2019, 567, 91–95. [Google Scholar] [CrossRef]
- Lewis, D.B.; Feit, S.J. Connecting carbon and nitrogen storage in rural wetland soil to groundwater abstraction for urban water supply. Glob. Change Biol. 2015, 21, 1704–1714. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.J.; Xiao, H.A.; Tong, C.L.; Su, Y.; Xiang, W.S.; Huang, D.Y.; Syers, J.K.; Wu, J.S. Estimating organic carbon storage in temperate wetland profiles in Northeast China. Geoderma 2008, 146, 311–316. [Google Scholar] [CrossRef]
- Coletti, J.Z.; Hinz, C.; Vogwill, R.; Hipsey, M.R. Hydrological controls on carbon metabolism in wetlands. Ecol. Model. 2013, 249, 3–18. [Google Scholar] [CrossRef]
- Kayranli, B.; Scholz, M.; Mustafa, A.; Hedmark, Å. Carbon storage and fluxes within freshwater wetlands: A critical review. Wetlands 2009, 30, 111–124. [Google Scholar] [CrossRef]
- BuserYoung, J.Z.; Peck, E.K.; Chace, P.; Lapham, L.L.; Vizza, C.; Colwell, F.S. Biogeochemical dynamics of a glaciated high-latitude wetland. J. Geophys. Res. Biogeosci. 2022, 127, e2021JG006584. [Google Scholar] [CrossRef]
- Wang, P.T.; Ouyang, W.; Zhu, W.H.; Geng, F.; Tulcan, R.X.S.; Lin, C.Y. Wetland soil carbon dioxide emission dynamics with external dissolved organic matter in mid–high-latitude forested watershed. Agric. For. Meteorol. 2023, 333, 109381. [Google Scholar] [CrossRef]
- Hu, L.; Fan, W.J.; Ren, H.Z.; Liu, S.H.; Cui, Y.K.; Zhao, P. Spatiotemporal dynamics in vegetation GPP over the Great Khingan Mountains using GLASS products from 1982 to 2015. Remote Sens. 2018, 10, 488. [Google Scholar] [CrossRef]
- Zhao, D.D. The Change of Wetland Distribution and the Simulated Response to Climatic Change in the Great Xing’ an Mountains. Ph.D. Thesis, Northeast Normal University, Changchun, China, 2019. [Google Scholar]
- Huang, X.J.; Wu, Z.F.; Zhang, Q.F.; Cao, Z. How to measure wetland destruction and risk: Wetland damage index. Ecol. Indic. 2022, 141, 109126. [Google Scholar] [CrossRef]
- Chen, W.X.; Yang, L.Y.; Wu, J.H.; Wu, J.H.; Wang, G.Z.; Bian, J.J.; Zeng, J.; Liu, Z.L. Spatio-temporal characteristics and influencing factors of traditional villages in the Yangtze River Basin: A Geodetector model. Herit. Sci. 2023, 11, 111. [Google Scholar] [CrossRef]
- Wang, H.Y.; Qin, F.; Xu, C.D.; Li, B.; Guo, L.P.; Wang, Z. Evaluating the suitability of urban development land with a geodetector. Ecol. Indic. 2021, 123, 107339. [Google Scholar] [CrossRef]
- Yu, T.H.; Zhang, Y.; Jia, S.S.; Cui, X.F. Spatio-temporal evolution and drivers of coupling coordination between digital infrastructure and inclusive green growth: Evidence from the Yangtze River economic belt. J. Environ. Manag. 2025, 376, 124416. [Google Scholar] [CrossRef]
- Zhu, E.Y.; Li, W.; Chen, L.S.; Sha, M. Spatiotemporal coupling analysis of land urbanization and carbon emissions: A case study of Zhejiang Province, China. Land Degrad. Dev. 2023, 34, 4594–4606. [Google Scholar] [CrossRef]
- Ding, S.S.; Zou, Y.C.; Yu, X.F. Freeze-thaw cycles alter the growth sprouting strategy of wetland plants by promoting denitrification. Commun. Earth Environ. 2023, 4, 57. [Google Scholar] [CrossRef]
- Nitta, T.; Yoshimura, K.; Abe-Ouchi, A. Impact of arctic wetlands on the climate system: Model sensitivity simulations with the MIROC5 AGCM and a Snow-Fed wetland scheme. J. Hydrometeorol. 2017, 18, 2923–2936. [Google Scholar] [CrossRef]
- Cui, L.L.; Li, G.S.; Liao, H.J.; Ouyang, N.L.; Zhang, Y. Integrated approach based on a regional habitat succession model to assess wetland landscape ecological degradation. Wetlands 2015, 35, 281–289. [Google Scholar] [CrossRef]
- Khaznadar, M.; Vogiatzakis, I.N.; Griffiths, G.H. Land degradation and vegetation distribution in Chott El Beida wetland, Algeria. J. Arid Environ. 2009, 73, 369–377. [Google Scholar] [CrossRef]
- Huang, X.J. Evaluation of wetland damage and simulation of wetland future changes in the Guangdong-HongKong-Macao Greater Bay Area. Master’s Thesis, Guangzhou University, Guangzhou, China, 2023. [Google Scholar]
- Zhou, H.; Bu, R.C.; Hu, Y.M.; Yan, H.W.; Liu, H.J.; Leng, W.F.; Xu, S.L. Correlations between potential distribution of wetlands in Greathing’ an Mountains and environmental variables. Chin. J. Ecol. 2007, 26, 1533–1541. [Google Scholar]
- Hagani, J.S.; Takekawa, J.Y.; Skalos, S.M.; Casazza, M.L.; Riley, M.K.; Estrella, S.A.; Barthman-Thompson, L.M.; Smith, K.R.; Buffington, K.J.; Thorne, K.M. Application of lidar to assess the habitat selection of an endangered small mammal in an estuarine wetland environment. Ecol. Evol. 2024, 14, e10894. [Google Scholar] [CrossRef]
- Turnbull, A.; Soto-Berelov, M.; Coote, M. Delineation and classification of wetlands in the northern Jarrah Forest, western Australia using remote sensing and machine learning. Wetlands 2024, 44, 52. [Google Scholar] [CrossRef]
- Mayora, G.; Sagardoy, M.E.; Repetti, M.R.; Paira, A.; Frau, D.; Gutierrez, M.F. Spatiotemporal patterns of multiple pesticide residues in central Argentina streams. Sci. Total Environ. 2024, 906, 167014. [Google Scholar] [CrossRef]
- Xiang, H.X.; Yu, F.D.; Bai, J.L.; Shi, X.Y.; Wang, M.; Yan, H.Q.; Xi, Y.B.; Wang, Z.M.; Mao, D.H. SHAP-DNN approach advances remote sensing mapping of forested wetlands. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2025, 18, 6859–6869. [Google Scholar] [CrossRef]
- Zhang, S.L.; Aurangzeib, M.; Xiao, Z.L.; Wang, H.; Xu, W.T. Spatiotemporal heterogeneity of soil available nitrogen during freeze-thaw cycles in a watershed: A 3-year investigation. Land Degrad. Dev. 2024, 35, 1381–1396. [Google Scholar] [CrossRef]
- Mgelwa, A.S.; Ngaba, M.J.Y.; Hu, B.; Gurmesa, G.A.; Mwakaje, A.G.; Nyemeck, M.P.B.; Zhu, F.F.; Qiu, Q.Y.; Song, L.L.; Wang, Y.Y.; et al. Meta-analysis of 21st century studies shows that deforestation induces profound changes in soil characteristics, particularly soil organic carbon accumulation. For. Ecosyst. 2025, 12, 46–55. [Google Scholar] [CrossRef]
- Parhizkar, M.; Lucas-Borja, M.E.; Denisi, P.; Tanaka, N.; Zema, D.A. Comparing the effects of hydromulching and application of biodegradable plastics on surface runoff and soil erosion in deforested and burned lands. J. Hydrol. Hydromech. 2024, 72, 422–435. [Google Scholar] [CrossRef]
- Gao, J.Q.; Ouyang, H.; Lei, G.C.; Xu, X.L.; Zhang, M.X. Effects of temperature, soil moisture, soil type and their interactions on soil carbon mineralization in Zoigê Alpine Wetland, Qinghai-Tibet Plateau. Chin. Geogr. Sci. 2011, 21, 27–35. [Google Scholar] [CrossRef]
- Wang, D.; Lv, Y.L.; Xu, L.; Zhang, H.X.; Wang, R.M.; He, N.P. The effect of moisture and temperature on soil C mineralization in wetland and steppe of the Zoige region, China. Acta Ecol. Sin. 2013, 33, 6436–6443. [Google Scholar] [CrossRef]
- Wang, X.W.; Song, C.C.; Sun, X.X.; Wang, J.Y.; Zhang, X.H.; Mao, R. Soil carbon and nitrogen across wetland types in discontinuous permafrost zone of the Xiao Xing’an Mountains, northeastern China. Catena 2013, 101, 31–37. [Google Scholar] [CrossRef]
- Connon, R.F.; Quinton, W.L.; Craig, J.R.; Hayashi, M. Changing hydrologic connectivity due to permafrost thaw in the lower Liard River valley, NWT, Canada. Hydrol. Process. 2014, 28, 4163–4178. [Google Scholar] [CrossRef]
- Ala-Aho, P.; Autio, A.; Bhattacharjee, J.; Isokangas, E.; Kujala, K.; Marttila, H.; Menberu, M.; Meriö, L.-J.; Postila, H.; Rauhala, A.; et al. What conditions favor the influence of seasonally frozen ground on hydrological partitioning? A systematic review. Environ. Res. Lett. 2021, 16, 043008. [Google Scholar] [CrossRef]
- Scherler, M.; Hauck, C.; Hoelzle, M.; Stähli, M.; Völksch, I. Meltwater infiltration into the frozen active layer at an alpine permafrost site. Permafr. Periglac. Process. 2011, 21, 325–334. [Google Scholar] [CrossRef]
- Liu, M.X. Assessing Land Cover and Ecological Quality Changes in the Forest-Grass Ecotone of Greater Khingan Mountains During the Period 1990–2018. Master’s Thesis, Nanjing Forestry University, Nanjing, China, 2021. [Google Scholar]
- Fu, B.J.; Liu, Y.X.; Zhao, W.W.; Wu, J.G. The emerging “pattern-process-service-sustainability” paradigmin landscapeecology. Landscpae Ecol. 2025, 40, 54. [Google Scholar] [CrossRef]
- Han, J.J.; Tan, C.W.; Ru, J.Y.; Song, J.; Hui, D.F.; Wan, S.Q. Coinciding spring and autumn frosts have a limited impact on carbon fluxes in a grassland ecosystem. Nat. Commun. 2025, 16, 4431. [Google Scholar] [CrossRef]
- Meacham-Hensold, K.; Cavanagh, A.P.; Sorensen, P.; South, P.F.; Fowler, J.; Boyd, R.; Jeong, J.; Burgess, S.; Stutz, S.; Dilger, R.N.; et al. Shortcutting photorespiration protects potato photosynthesis and tuber yield against Heatwave Stress. Glob. Change Biol. 2024, 30, e17595. [Google Scholar] [CrossRef] [PubMed]
- Tian, W.; Su, C.F.; Zhang, N.; Zhao, Y.W.; Tang, L. Simulation of the physiological and photosynthetic characteristics of C3 and C4 plants under elevated temperature and CO2 concentration. Ecol. Model. 2024, 495, 110805. [Google Scholar] [CrossRef]
- Zhang, J.; He, J.N.; Ren, S.H.; Zhou, P.; Guo, J.; Song, M.Y. Research on vehicle scheduling for forest fires in the northern Greater Khingan Mountains. Sci. Rep. 2025, 15, 1725. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.M.; Shan, W.; Zhang, C.C. Effects of permafrost stability changes on vegetation dynamics in the middle part of the Greater Khingan Mountains. Environ. Res. Commun. 2025, 7, 015018. [Google Scholar] [CrossRef]
- Sun, B.Y.; Ping, J.Y.; Jiang, M.; Xia, J.Y.; Xia, F.Y.; Han, G.X.; Yan, L.M. Climate warming intensifies plant–soil causal relationships in a coastal wetland. J. Plant Ecol. 2024, 18, rtae107. [Google Scholar] [CrossRef]
- Wu, J.J.; Zhang, H.; Cheng, X.L.; Liu, G.H. Ecosystem-atmosphere exchange of methane in global upland and wetland ecosystems. Agric. For. Meteorol. 2025, 361, 110325. [Google Scholar] [CrossRef]
- Liu, L.; Zhao, G.; Yao, D.J.; Zong, N.; He, Y.L.; Wu, W.C.; Jiang, Q.X.; Zhang, Y.J. Precipitation regulates soil organic carbon affected by shrub encroachment along the altitude gradient. Catena 2025, 249, 108616. [Google Scholar] [CrossRef]
Data Description | Time Frame | Resolution Attribute | Data Source |
---|---|---|---|
LUCC | 2010–2023 | 30 m | 2010, 2020 was obtained National Earth System Science Data Center (http://www.geodata.cn), 2023 interpretation based on Remote sensing images |
Wetland | 2000–2023 | 30 m | National Earth System Science Data Center (http://www.geodata.cn) |
RSEI | 2000–2023 | 30 m | Google Earth Engine (https://developers.google.com) [10] |
Nighttime lights | 2000–2023 | 500 m | National Earth System Science Data Center, National Science & Technology Infrastructure of China (http://www.geodata.cn) |
Population density | 2000–2023 | 100 m | WorldPop (https://hub.worldpop.org) |
Roads and railways | 2023 | Vector data | Public map (OSM) (https://www.openstreetmap.org/) |
DEM | 2020 | 30 m | Geospatial Data Cloud (https://www.gscloud.cn) |
Temperature and precipitation | 2000–2023 | 1 km | Institute of Tibetan Plateau Research Chinese Academy of Sciences (https://data.tpdc.ac.cn/home) |
Surface temperature and humidity | 2000–2023 | About 11.1 km | FLDAS datasets (https://disc.gsfc.nasa.gov/datasets/ (accessed on 23 December 2023)) |
Soil temperature | 2000–2023 | 0.1° | (https://disc.gsfc.nasa.gov/datasets/ (accessed on 23 December 2023)) |
Net Primary Productivity | 2001–2023 | 500 m | NASA-EARTHDATA (https://www.earthdata.nasa.gov/data (accessed on 25 June 2024)) |
Gross Primary Productivity | 2000–2023 | 500 m | Google Earth Engine (https://developers.google.com); NASA-EARTHDATA (https://www.earthdata.nasa.gov/data/ accessed on 15 July 2024) |
Category | Name | Unit | Factors |
---|---|---|---|
Meteorological and soil factors | Mean annual precipitation | mm·a−1 | X1 |
Mean annual temperature | °C·a−1 | X2 | |
Humidity | - | X3 | |
Soil temperature | °C | X4 | |
Surface temperature | K | X5 | |
Geographical factors | Altitude | m | X6 |
Slope | ° | X7 | |
Aspect | ° | X8 | |
Socioeconomic factors | Population density | Ten thousand people/km2 | X9 |
Nighttime lighting | nW/cm2/sr | X10 | |
Distance to the settlement | m | X11 | |
Distance to the road | m | X12 |
Relations of q-Value | Type of Interaction |
---|---|
Non-linear weakening | |
Single-factor non-linear weakened | |
Bivariable enhanced | |
Independent | |
Nonlinear enhanced |
Coupled Coordination Degree | Type |
---|---|
0.8 < D ≤ 1 | High-quality coordination |
0.6 < D ≤ 0.8 | Good coordination |
0.5 < D ≤ 0.6 | Moderate coordination |
0.3 < D ≤ 0.5 | Mild imbalance |
0 < D ≤ 0.3 | Severe imbalance |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, D.; Hu, W.; Wang, J.; Wu, H.; Liu, J. Identifying Drivers of Wetland Damage and Their Impact on Primary Productivity Dynamics in a Mid-High Latitude Region of China. Land 2025, 14, 1770. https://doi.org/10.3390/land14091770
Zhao D, Hu W, Wang J, Wu H, Liu J. Identifying Drivers of Wetland Damage and Their Impact on Primary Productivity Dynamics in a Mid-High Latitude Region of China. Land. 2025; 14(9):1770. https://doi.org/10.3390/land14091770
Chicago/Turabian StyleZhao, Dandan, Weijia Hu, Jianmiao Wang, Haitao Wu, and Jiping Liu. 2025. "Identifying Drivers of Wetland Damage and Their Impact on Primary Productivity Dynamics in a Mid-High Latitude Region of China" Land 14, no. 9: 1770. https://doi.org/10.3390/land14091770
APA StyleZhao, D., Hu, W., Wang, J., Wu, H., & Liu, J. (2025). Identifying Drivers of Wetland Damage and Their Impact on Primary Productivity Dynamics in a Mid-High Latitude Region of China. Land, 14(9), 1770. https://doi.org/10.3390/land14091770