Impact of Farmland Use Transition on Grain Carbon Sink Transfer in Karst Mountainous Areas
Abstract
1. Introduction
2. Mechanistic Analysis
2.1. Conceptual Definitions
2.2. Mechanism Analysis of GCST
2.2.1. Direct Effects
- (1)
- FUT
2.2.2. Threshold Effect
3. Materials and Methods
3.1. Study Area
3.2. Data Description
3.3. Methodology
- (1)
- Entropy evaluation method
- (2)
- Indicator calculation method
- (3)
- Fixed effects model
- (4)
- Threshold effect model
4. Results
4.1. Spatiotemporal Evolution Characteristics of FUT and GCST
4.2. Benchmark Test Analysis
4.3. The Threshold Effect of FUT on GCST
4.4. Robustness Test
4.4.1. Excluding Special Years Test
4.4.2. Endogeneity Test
4.4.3. Replace the Tobit Model
5. Discussion
5.1. Comparison with Existing Studies
5.2. Limitations and Future Directions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Constant | Tolerances | VIF |
---|---|---|
CLR | 0.185 | 5.403 |
GPAP | 0.548 | 1.825 |
GYield | 0.269 | 3.722 |
RPCDI | 0.247 | 4.053 |
PFI | 0.322 | 3.101 |
Threshold Variables | Threshold | Sum of Squares of the Residuals | Mean Square Error | F-Value | p-Value |
---|---|---|---|---|---|
GYield | single threshold | 3.8464 | 0.0385 | 20.64 | 0.0033 |
Variable | Excluding Special Years Test | Endogeneity Test | Tobit Model |
---|---|---|---|
CLR | 4.039 *** | 5.751 *** | 5.041 *** |
GPAP | 0.784 ** | 0.757 ** | 0.752 * |
GYield | 0.351 *** | 0.556 *** | 0.476 *** |
RPCDI | −0.063 *** | −0.054 *** | −0.0530 *** |
PFI | 1.725 *** | 1.746 *** | 1.676 *** |
cons | −2.986 *** | −4.201 *** | −3.657 *** |
obs | 114 | 108 | 120 |
Prob > F | 0.000 | 0.000 | 0.000 |
References
- Biswas, R.; Rahman, A.; Cao, Y. Adaptation to climate change: A study on regional climate change adaptation policy and practice framework. J. Environ. Manag. 2023, 336, 117666. [Google Scholar] [CrossRef] [PubMed]
- Nsabiyeze, A.; Ma, R.; Li, J.; Luo, H.; Zhao, Q.; Tomka, J. Tackling climate change in agriculture: A global evaluation of the effectiveness of carbon emission reduction policies. J. Clean. Prod. 2024, 468, 142973. [Google Scholar] [CrossRef]
- Frank, S.; Lessa Derci Augustynczik, A.; Havlík, P. Enhanced agricultural carbon sinks provide benefits for farmers and the climate. Nat. Food 2024, 5, 742–753. [Google Scholar] [CrossRef] [PubMed]
- Grainger, A. National Land Use Morphology: Patterns and Possibilities. Geography 1995, 80, 235–246. [Google Scholar] [CrossRef]
- Singh, M.; Bhojvaid, P.; Jong, W. Forest transition and socio-economic development in India and their implications for forest transition theory. For. Policy Econ. 2017, 76, 65–71. [Google Scholar] [CrossRef]
- Wolfersberger, J.; Delacote, P.; Garcia, S. An empirical analysis of forest transition and land-use change in developing countries. Ecol. Econ. 2015, 119, 241–251. [Google Scholar] [CrossRef]
- Nitsch, H.; Osterburg, B.; Roggendorf, W. Cross compliance and the protection of grassland—Illustrative analyses of land use transitions between permanent grassland and arable land in German regions. Land Use Policy 2012, 29, 440–448. [Google Scholar] [CrossRef]
- Ojoyi, M.; Mutanga, O.; Odindi, J. Implications of land use transitions on soil nitrogen in dynamic landscapes in Tanzania. Land Use Policy 2017, 64, 95–100. [Google Scholar] [CrossRef]
- Lambin, E.; Meyfroidt, P. Land use transitions: Socio-ecological feedback versus socio-economic change. Land Use Policy 2010, 27, 108–118. [Google Scholar] [CrossRef]
- Long, H.; LI, X. Analysis on regional land use transition: A case study in Transect of the Yangtze River. J. Nat. Resour. 2002, 17, 144–149. [Google Scholar]
- Long, H.; Qu, Y. Land use transitions and land management: A mutual feedback perspective. Land Use Policy 2018, 74, 111–120. [Google Scholar] [CrossRef]
- Song, X. Discussion on land use transition research framework. Acta Geogr. Sin. 2017, 72, 471–487. Available online: https://www.geog.com.cn/EN/10.11821/dlxb201703009 (accessed on 25 May 2025).
- Niu, S.; Fang, B.; Cui, C. The spatial-temporal pattern and path of cultivated land use transition from the perspective of rural revitalization: Taking Huaihai Economic Zone as an example. J. Nat. Resour. 2020, 35, 1908–1925. [Google Scholar] [CrossRef]
- Feng, D.; Long, H. Transition of farmland use system towards urban-rural integration: From localization to de-localization. Resour. Sci. 2025, 47, 42–53. [Google Scholar] [CrossRef]
- Jiang, F.; Chen, F.; Sun, Y.; Hua, Z.; Zhu, X. Spatiotemporal Pattern and Driving Mechanism of Cultivated Land Use Transition in China. Land 2023, 12, 1839. [Google Scholar] [CrossRef]
- Chen, Z.; Li, X.; Xia, X. Temporal-spatial pattern and driving factors of cultivated land use transition at country level in Shaanxi province, China. Environ. Monit. Assess. 2022, 194, 365. [Google Scholar] [CrossRef]
- Liu, Y.; Long, H.; Li, T. Land use transitions and their effects on water environment in Huang-Huai-Hai Plain, China. Land Use Policy 2015, 47, 293–301. [Google Scholar] [CrossRef]
- Qin, W.; Zhang, Y.; Li, G. Driving mechanism of cultivated land transition in Yantai Proper, Shandong Province, China. Chin. Geogr. Sci. 2015, 25, 337–349. [Google Scholar] [CrossRef]
- Xiang, J.; Li, F.; Zeng, J. Spatial difference and its influence factors of cultivated land transition of poverty counties in west of Hubei. Trans. Chin. Soc. Agric. Eng. 2016, 32, 272–279. [Google Scholar]
- Long, H.; Li, T. The coupling characteristics and mechanism of farmland and rural housing land transition in China. J. Geogr. Sci. 2012, 22, 548–562. [Google Scholar] [CrossRef]
- Song, X.; Huang, Y.; Wu, Z. Does cultivated land function transition occur in China? J. Geogr. Sci. 2015, 25, 817–835. [Google Scholar] [CrossRef]
- Wang, M.; Dong, Y.; Lin, N. Impact of farmland use transition on farmland use carbon emissions and its spatial spillover effects under the double carbon background: A case study of Huang-Huai-Hai Plain. J. Nat. Resour. 2024, 39, 352–371. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, N.; Liu, X. Global virtual-land flow and saving through international cereal trade. J. Geogr. Sci. 2016, 26, 619–639. [Google Scholar] [CrossRef]
- Wu, S.; Ben, P.; Chen, D. Virtual land, water, and carbon flow in the inter-province trade of staple crops in China. Resour. Conserv. Recycl. 2018, 136, 179–186. [Google Scholar] [CrossRef]
- Wu, C.; Lu, R.; Zhang, P.; Dai, E. Multilevel ecological compensation policy design based on ecosystem service flow: A case study of carbon sequestration services in the Qinghai-Tibet Plateau. Sci. Total Environ. 2024, 921, 171093. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; He, C.; Huang, Q.; Li, L. Understanding ecosystem service flows through the metacoupling framework. Ecol. Indic. 2023, 151, 110303. [Google Scholar] [CrossRef]
- Zhou, Y.; He, L.; Zhang, E.; Lu, D.; Lin, A. Impact of cropland use transformation on ecosystem carbon sinks in a typical agroforestry mixed region: An analysis from explicit and implicit perspectives. Environ. Impact Assess. Rev. 2025, 115, 107979. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, X.; Tan, M.; Zhang, F.; Li, X. Impact of spatial transfer of farmland on the food-water-GHG nexus in China during 2000–2020. Resour. Conserv. Recycl. 2025, 221, 108390. [Google Scholar] [CrossRef]
- Schröter, M.; Koellner, T.; Alkemade, R.; Arnhold, S. Interregional flows of ecosystem services: Concepts, typology and four cases. Ecosyst. Serv. 2018, 31, 231–241. [Google Scholar] [CrossRef]
- Wu, S.; Liu, K.; Zhang, W.; Dou, Y.; Chen, Y. An integrated analysis framework of supply, demand, flow, and use to better understand realized ecosystem services. Ecosyst. Serv. 2024, 69, 101649. [Google Scholar] [CrossRef]
- Long, H. Land use transition and land management. Geogr. Res. 2015, 34, 1607–1618. [Google Scholar]
- Ge, D.; Long, H.; Yang, R. The pattern and mechanism of farmland transition in China from the perspective of per capita farmland area. Resour. Sci. 2018, 40, 273–283. [Google Scholar] [CrossRef]
- Zhang, L.; Huang, Q.; Qiu, J.; Liao, C. Measuring virtual flows of ecosystem services embedded in traded goods across an urban agglomeration in China. Ecosyst. Serv. 2024, 69, 101651. [Google Scholar] [CrossRef]
- Ji, W.; Liu, S.; Yang, Y.; Liu, M. Revealing Ecosystem Carbon Sequestration Service Flows Through the Meta-Coupling Framework: Evidence from Henan Province and the Surrounding Regions in China. Land 2025, 14, 1522. [Google Scholar] [CrossRef]
- Qiu, B.; Li, H.; Tang, Z. How cropland losses shaped by unbalanced urbanization process? Land Use Policy 2020, 96, 104715. [Google Scholar] [CrossRef]
- Zhang, W.; Ma, L.; Wang, X.; Chang, X. The impact of non-grain conversion of cultivated land on the relationship between agricultural carbon supply and demand. Appl. Geogr. 2024, 162, 103166. [Google Scholar] [CrossRef]
- Yu, K.; Xiao, S.; Shen, Y.; Liu, S. Enhanced carbon sinks following double-rice conversion to green manure-rice cropping rotation systems under optimized nitrogen fertilization in southeast China. Agric. Ecosyst. Environ. 2024, 362, 108845. [Google Scholar] [CrossRef]
- Lu, D.; Wang, Z.; Su, K.; Zhou, Y. Understanding the impact of cultivated land-use changes on China’s grain production potential and policy implications: A perspective of non-agriculturalization, non-grainization, and marginalization. J. Clean. Prod. 2024, 436, 140647. [Google Scholar] [CrossRef]
- Robertson, A.; Zhang, Y.; Sherrod, L. Climate change impacts on yields and soil carbon in row crop dryland agriculture. J. Environ. Qual. 2018, 47, 684–694. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, S.; Xia, F. A comprehensive perspective for exploring the trade-offs and synergies between carbon sequestration and grain supply in China based on the production possibility frontier. J. Clean. Prod. 2022, 354, 131725. [Google Scholar] [CrossRef]
- Li, G.; Zhao, X.; Jiang, Y.; Zou, Y.; Liu, S.; Li, X.; Zeng, L. How Can Digital Economy Accessibility Accelerate Urban Land Green Transformation in China? Evidence from Threshold and Intermediary Effects. Land 2025, 14, 322. [Google Scholar] [CrossRef]
- Cao, Z.; Liu, Y.; Li, Y. Rural transition in the loess hilly and gully region: From the perspective of “flowing” cropland. J. Rural. Stud. 2022, 93, 326–335. [Google Scholar] [CrossRef]
- Chen, J.; Ju, W.; Ciais, P. Vegetation structural change since 1981 significantly enhanced the terrestrial carbon sink. Nat. Commun. 2019, 10, 4259. [Google Scholar] [CrossRef]
- Wang, M.; Lin, N.; Dong, Y. The impact of farmland use transition on CO2 emissions and its spatial spillover effects from the perspective of major function-oriented zoning: The case of Huang-Huai-Hai plain. Environ. Impact Assess. Rev. 2023, 103, 107254. [Google Scholar] [CrossRef]
- Xu, Y.; Liang, Y.; Chen, K. Recessive transition of farmland use and food security: Evidence from China. J. Rural. Stud. 2025, 113, 103484. [Google Scholar] [CrossRef]
- Ben, P.; Wu, S.; Li, X. China’s inter-provincial grain trade and its virtual cultivated land flow simulation. Geogr. Res. 2016, 35, 1447–1456. [Google Scholar]
- He, H. Research on the compensation of the rights and interests of ecological capital in the flow of agricultural potential resources—Data analysis based on the pattern of “North Grain South transportation”. Price Theory Pract. 2017, 8, 28–31. [Google Scholar]
- Deng, X.; Liu, Y.; Li, J. Comparative study on regional carbon footprint of energy consumption calculation models: A case study of Hubei province. Ecol. Environ. Sci. 2012, 21, 1533–1538. [Google Scholar]
- Hansen, B. Threshold effects in non-dynamic panels: Estimation, testing, and inference. J. Econom. 1999, 93, 345–368. [Google Scholar] [CrossRef]
- Wang, M.; Lin, N.; Huang, X. Mitigating farmland use carbon emissions: The dynamic role of farmland use transition. J. Clean. Prod. 2024, 450, 141866. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, W.; Wang, Y. Human interventions have enhanced the net ecosystem productivity of farmland in China. Nat. Commun. 2024, 15, 10523. [Google Scholar] [CrossRef]
- Liu, Q.; Sun, X.; Huang, Q. Optimizing the landscape in grain production and identifying trade-offs between ecological benefits based on production possibility frontiers: A case study of Beijing–Tianjin–Hebei region. J. Environ. Manag. 2025, 377, 124583. [Google Scholar] [CrossRef]
- Ling, J.; Dungait, J.; Delgado-Baquerizo, M. Soil organic carbon thresholds control fertilizer effects on carbon accrual in croplands worldwide. Nat. Commun. 2025, 16, 3009. [Google Scholar] [CrossRef] [PubMed]
- Xuan, X.; Zhang, F.; Deng, X. Measurement and spatio-temporal transfer of greenhouse gas emissions from agricultural sources in China: A food trade perspective. Resour. Conserv. Recycl. 2023, 197, 107100. [Google Scholar] [CrossRef]
- Zhao, L.; Lv, Y.; Wang, C. Embodied greenhouse gas emissions in the international agricultural trade. Sustain. Prod. Consum. 2023, 35, 250–259. [Google Scholar] [CrossRef]
- Qin, Z.; Zhu, Y.; Canadell, J. Global spatially explicit carbon emissions from land-use change over the past six decades (1961–2020). One Earth 2024, 7, 835–847. [Google Scholar] [CrossRef]
- Maeda, E.; Abera, T.; Siljander, M.; Aragão, L. Large-scale commodity agriculture exacerbates the climatic impacts of Amazonian deforestation. Proc. Natl. Acad. Sci. USA 2021, 118, e2023787118. [Google Scholar] [CrossRef]
- Grima, N.; Singh, S.; Smetschka, B.; Ringhofer, L. Payment for Ecosystem Services (PES) in Latin America: Analysing the performance of 40 case studies. Ecosyst. Serv. 2016, 17, 24–32. [Google Scholar] [CrossRef]
- Abegunde, V.; Obi, A. The Role and Perspective of Climate Smart Agriculture in Africa: A Scientific Review. Sustainability 2022, 14, 2317. [Google Scholar] [CrossRef]
- Emediegwu, L.; Wossink, A.; Hall, A. The impacts of climate change on agriculture in sub-Saharan Africa: A spatial panel data approach. World Dev. 2022, 158, 105967. [Google Scholar] [CrossRef]
- Oyelami, L.; Edewor, S.; Folorunso, J.; Abasilim, U. Climate change, institutional quality and food security: Sub-Saharan African experiences. Sci. Afr. 2023, 20, e01727. [Google Scholar] [CrossRef]
- Okoronkwo, D.; Ozioko, R.; Ugwoke, R.; Nwagbo, U. Climate smart agriculture? Adaptation strategies of traditional agriculture to climate change in sub-Saharan Africa. Front. Clim. 2024, 6, 1272320. [Google Scholar] [CrossRef]
Year | Anshun | Bijie | Guiyang | Liupanshui | Tongren | Zunyi |
---|---|---|---|---|---|---|
2001 | 0.307 | 0.313 | 0.352 | 0.29 | 0.291 | 0.324 |
2002 | 0.285 | 0.32 | 0.334 | 0.295 | 0.29 | 0.32 |
2003 | 0.307 | 0.317 | 0.343 | 0.302 | 0.295 | 0.332 |
2004 | 0.308 | 0.332 | 0.348 | 0.305 | 0.304 | 0.343 |
2005 | 0.308 | 0.346 | 0.347 | 0.305 | 0.305 | 0.353 |
2006 | 0.311 | 0.342 | 0.349 | 0.307 | 0.316 | 0.343 |
2007 | 0.273 | 0.333 | 0.303 | 0.301 | 0.295 | 0.359 |
2008 | 0.293 | 0.353 | 0.324 | 0.31 | 0.315 | 0.374 |
2009 | 0.29 | 0.311 | 0.328 | 0.31 | 0.3 | 0.381 |
2010 | 0.299 | 0.361 | 0.348 | 0.307 | 0.318 | 0.393 |
2011 | 0.28 | 0.359 | 0.352 | 0.308 | 0.285 | 0.368 |
2012 | 0.313 | 0.393 | 0.376 | 0.347 | 0.326 | 0.417 |
2013 | 0.325 | 0.412 | 0.407 | 0.379 | 0.34 | 0.43 |
2014 | 0.369 | 0.438 | 0.438 | 0.396 | 0.37 | 0.494 |
2015 | 0.377 | 0.464 | 0.461 | 0.413 | 0.393 | 0.522 |
2016 | 0.396 | 0.487 | 0.489 | 0.425 | 0.407 | 0.55 |
2017 | 0.423 | 0.482 | 0.511 | 0.44 | 0.401 | 0.535 |
2018 | 0.447 | 0.517 | 0.52 | 0.435 | 0.409 | 0.553 |
2019 | 0.492 | 0.536 | 0.569 | 0.465 | 0.432 | 0.597 |
2020 | 0.51 | 0.565 | 0.605 | 0.482 | 0.452 | 0.631 |
Year | Anshun | Bijie | Guiyang | Liupanshui | Tongren | Zunyi |
---|---|---|---|---|---|---|
2001 | 0.202 | 1.074 | −0.263 | 0.176 | 0.576 | 0.860 |
2002 | −0.075 | 0.992 | −0.607 | 0.118 | 0.515 | 0.703 |
2003 | 0.110 | 0.754 | −0.373 | 0.114 | 0.511 | 0.774 |
2004 | 0.100 | 0.941 | −0.356 | 0.098 | 0.537 | 0.703 |
2005 | 0.104 | 1.513 | −0.554 | 0.121 | 0.639 | 0.791 |
2006 | 0.031 | 0.885 | −0.453 | 0.054 | 0.409 | −0.154 |
2007 | −0.021 | 0.683 | −0.398 | 0.028 | 0.179 | 1.131 |
2008 | 0.068 | 0.771 | −0.209 | 0.118 | 0.416 | 1.135 |
2009 | 0.048 | 0.271 | −0.230 | 0.107 | 0.330 | 1.058 |
2010 | −0.006 | 0.537 | −0.223 | 0.028 | 0.303 | 0.934 |
2011 | −0.278 | −0.273 | −0.701 | −0.259 | −0.439 | −0.129 |
2012 | −0.139 | 0.157 | −0.574 | −0.014 | −0.092 | 0.389 |
2013 | −0.188 | 0.059 | −0.646 | 0.021 | −0.214 | 0.114 |
2014 | −0.156 | 0.197 | −0.595 | 0.015 | −0.015 | 0.409 |
2015 | −0.179 | 0.241 | −0.610 | 0.010 | −0.015 | 0.458 |
2016 | −0.138 | 0.373 | −0.592 | −0.003 | 0.045 | 0.558 |
2017 | −0.138 | 0.438 | −0.592 | 0.011 | 0.038 | −0.073 |
2018 | −0.015 | 0.346 | −0.572 | −0.091 | −0.162 | −0.157 |
2019 | −0.001 | 0.254 | −0.542 | −0.142 | −0.186 | −0.072 |
2020 | −0.010 | 0.270 | −0.605 | −0.189 | −0.239 | −0.199 |
Variable | Coefficient | Standard Error | t | P | R2 | F |
---|---|---|---|---|---|---|
Const | −3.679 | 0.548 | −6.710 | 0.000 | Within = 0.5628 between = 0.4192 overall = 0.0006 | F = 28.07 p = 0.000 |
CLR | 5.136 | 0.800 | 6.420 | 0.000 | ||
GPAP | 0.730 | 0.383 | 1.910 | 0.059 | ||
GYield | 0.459 | 0.069 | 6.680 | 0.000 | ||
RPCDI | −0.057 | 0.012 | −4.800 | 0.000 | ||
PFI | 1.828 | 0.310 | 5.900 | 0.000 |
Variable | Coefficient | Standard Error | T-Value | p-Value |
---|---|---|---|---|
CLR | −3.681751 | 0.9423495 | −3.91 | 0.000 |
GPAP | −1.323921 | 0.4107055 | −3.22 | 0.002 |
RPCDI | −0.5559079 | 0.0582662 | −9.54 | 0.000 |
PFI | 3.323067 | 0.3624083 | 9.17 | 0.000 |
Categorisation of threshold variables (_catc.FUT) | ||||
Interval 0 (GYield < 2.0922) | 16.71146 | 1.929115 | 8.66 | 0.000 |
Interval 1 (2.0922 ≤ GYield) | 15.89249 | 1.828462 | 8.69 | 0.000 |
constant term (math.) | −2.334795 | 0.4184752 | −5.58 | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, Y.; Li, X.; Zhao, X.; Yu, Z.; Hu, X.; Wang, H.; Luo, Y.; Zheng, Y.; Li, Y.; Zeng, L. Impact of Farmland Use Transition on Grain Carbon Sink Transfer in Karst Mountainous Areas. Land 2025, 14, 1734. https://doi.org/10.3390/land14091734
Zou Y, Li X, Zhao X, Yu Z, Hu X, Wang H, Luo Y, Zheng Y, Li Y, Zeng L. Impact of Farmland Use Transition on Grain Carbon Sink Transfer in Karst Mountainous Areas. Land. 2025; 14(9):1734. https://doi.org/10.3390/land14091734
Chicago/Turabian StyleZou, Yuandong, Xuejing Li, Xuhai Zhao, Zhao Yu, Xiaoyu Hu, Hai Wang, Yanzhi Luo, Yi Zheng, Yingying Li, and Liangen Zeng. 2025. "Impact of Farmland Use Transition on Grain Carbon Sink Transfer in Karst Mountainous Areas" Land 14, no. 9: 1734. https://doi.org/10.3390/land14091734
APA StyleZou, Y., Li, X., Zhao, X., Yu, Z., Hu, X., Wang, H., Luo, Y., Zheng, Y., Li, Y., & Zeng, L. (2025). Impact of Farmland Use Transition on Grain Carbon Sink Transfer in Karst Mountainous Areas. Land, 14(9), 1734. https://doi.org/10.3390/land14091734