Optimizing Spatial Pattern of Water Conservation Services Using Multi-Scenario Land Use/Cover Simulation and Bayesian Network in China’s Saihanba Region
Abstract
1. Introduction
2. Data and Methods
2.1. Study Region
2.2. Data Sources and Preprocessing
2.3. Research Framework
2.4. Multi-Scenario LULC Simulation Based on the CA-Markov Model
- (a)
- The transition areas between each land-use type in 2002, 2012, and 2022 were used as elements in the Markov state transition probability matrix, which illustrates the spatiotemporal dynamics of land use, as expressed by the following formula:
- (b)
- Using 2002 and 2012 as baseline years, land-use patterns in 2022 were predicted and validated against actual data. Constrained by SHB’s planning framework, suitability factors were weighted using the entropy method [25]. Validation yielded an accuracy of 92.41% and a Kappa coefficient of 0.851, indicating an “almost perfect” agreement [30]. These results were consistent with previous studies [5,25], confirming the model’s reliability for future land-use projections.
- (c)
- In the natural development (ND) scenario, future land-use changes were projected based on the region’s natural development trends. The ecological protection (EP) scenario prioritized location-specific ecological improvements and incorporated relevant restrictions, aligning with the “Master Plan for Saihanba Mechanical Forest Farm in Hebei Province (2017–2030)”. The economic development (ED) scenario integrated ecological protection with economic growth by fostering green industries, establishing international research bases, and expanding tourism services, following the “Ecological Protection Plan for Forest and Grassland in Saihanba Mechanical Forest Farm and Surrounding Areas (2020–2035)”.
- (d)
- Based on land-use maps for 2012 and 2022, the spatial allocation of key indicators under the three scenarios was achieved using interpolation methods, generating potential distribution maps for land-use type conversions. IDRISI software (ver. 18.0; Clark Labs, Worcester, MA, USA) was then employed to simulate land-use changes and distribution patterns for 2035. The CA-Markov model was applied to predict both the quantity and spatial distribution of land-use changes based on transition probabilities and spatial rules derived from historical data.
2.5. Quantification and Validation of WCS Capacity
2.6. Spatial Pattern Optimization of WCS Capacity Based on BBN
- (a)
- Sensitivity analysis was used to evaluate how the WCS node responds to changes in other influencing factors. The entropy reduction value quantifies the impact of each input variable on the target variable, with the following formula [39]:
- (b)
- Based on the BBN model, the conditional probabilities of influencing factor pairs were calculated. The states with the highest conditional probabilities, corresponding to different WCS capacity levels, were selected as the critical states of the variables. The WCS capacity was categorized into five levels: highest, high, medium, low, and lowest (designated as Subset I, II, III, IV, and V, respectively).
- (c)
- After identifying key state subsets for WCS under three scenarios, the one with the largest Subset V area was selected as optimal. Within this scenario, Subset I was prioritized for improvement. Optimization zones were then defined based on this subset and the latest land-use policies.
3. Results
3.1. Land Use/Cover Changes from 2002 to 2035
3.2. Spatiotemporal Analysis of WCS Capacity
3.3. WCS Capacity of Different Land-Use Types
3.4. Optimization of Spatial Patterns of WCS Capacity Under Multiple Scenarios
4. Discussion
4.1. The Impact of LULC on WCS Capacity
4.2. Optimization of Spatial Patterns for WCS Capacity
4.3. Limitations and Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, C.; Xu, L.; Li, D.; Huang, Y.; Kang, J.; Peng, B.; Huang, X.; Zhang, Z. Spatiotemporal variations and determinants of supply–demand balance of ecosystem service in Saihanba region, China. Forests 2023, 14, 1100. [Google Scholar] [CrossRef]
- Carpenter, S.R.; Folke, C. Ecology for transformation. Trends Ecol. Evol. 2006, 21, 309–315. [Google Scholar] [CrossRef]
- Adhikari, K.; Hartemink, A.E. Linking soils to ecosystem services—A global review. Geoderma 2016, 262, 101–111. [Google Scholar] [CrossRef]
- Qin, H.; Chen, Y. Spatial non-stationarity of water conservation services and landscape patterns in Erhai Lake Basin, China. Ecol. Indic. 2023, 146, 109894. [Google Scholar] [CrossRef]
- Zhai, J.; Hou, P.; Zhang, W.; Chen, Y.; Jin, D.; Gao, H.; Zhu, H.; Yang, M. Assessment of water conservation services based on the method of integrating hydrological observation data according to different ecosystem types and regions. Water 2023, 15, 1475. [Google Scholar] [CrossRef]
- Guan, X.; Xu, Y.; Meng, Y.; Xu, W.; Yan, D. Quantifying multi-dimensional services of water ecosystems and breakpoint-based spatial radiation of typical regulating services considering the hierarchical clustering-based classification. J. Environ. Manag. 2024, 351, 119852. [Google Scholar] [CrossRef]
- Dietrich, J.P.; Schmitz, C.; Lotze-Campen, H.; Popp, A.; Müller, C. Forecasting technological change in agriculture—An endogenous implementation in a global land use model. Technol. Forecast. Soc. Change 2014, 81, 236–249. [Google Scholar] [CrossRef]
- Huang, X.; Liu, J.; Peng, S.; Huang, B. The impact of multi-scenario land use change on the water conservation in central Yunnan urban agglomeration, China. Ecol. Indic. 2023, 147, 109922. [Google Scholar] [CrossRef]
- Kalfas, D.; Kalogiannidis, S.; Papaevangelou, O.; Chatzitheodoridis, F. Assessing the connection between land use planning, water resources, and global climate change. Water 2024, 16, 333. [Google Scholar] [CrossRef]
- Liu, J.; Wen, C.; Liu, Z.; Yu, Y. From isolation to linkage: Holistic insights into ecological risk induced by land use change. Land Use Policy 2024, 140, 107116. [Google Scholar] [CrossRef]
- Ma, J.; Jin, X.; Zhang, X.; Yin, X.; Jin, A. Spatio-temporal change characteristics of water conservation function in the Zhang-Cheng district based on the InVEST model. Hydrogeol. Eng. Geol. 2023, 50, 54–64. [Google Scholar] [CrossRef]
- Zeng, L.; Li, J. A Bayesian belief network approach for mapping water conservation ecosystem service optimization region. J. Geogr. Sci. 2019, 29, 1021–1038. [Google Scholar] [CrossRef]
- Han, H.; Yang, C.; Song, J. Scenario simulation and the prediction of land use and land cover change in Beijing, China. Sustainability 2015, 7, 4260–4279. [Google Scholar] [CrossRef]
- Hamad, R.; Balzter, H.; Kolo, K. Predicting land use/land cover changes using a CA-Markov model under two different scenarios. Sustainability 2018, 10, 3421. [Google Scholar] [CrossRef]
- Jiang, C.; Chen, H. Multi-scenario simulation of urban–rural land use spatial reconstruction in highly urbanized areas: A case study from the southern Jiangsu region. Land 2024, 13, 2199. [Google Scholar] [CrossRef]
- Phan, T.D.; Smart, J.C.R.; Capon, S.J.; Hadwen, W.L.; Sahin, O. Applications of Bayesian belief networks in water resource management: A systematic review. Environ. Model. Softw. 2016, 85, 98–111. [Google Scholar] [CrossRef]
- Phan, T.D.; Smart, J.C.R.; Stewart-Koster, B.; Sahin, O.; Hadwen, W.L.; Dinh, L.T.; Tahmasbian, I.; Capon, S.J. Applications of Bayesian networks as decision support tools for water resource management under climate change and socio-economic stressors: A critical appraisal. Water 2019, 11, 2642. [Google Scholar] [CrossRef]
- Puga, J.L.; Krzywinski, M.; Altman, N. Bayesian networks. Nat. Methods 2015, 12, 799–800. [Google Scholar] [CrossRef]
- Tang, C.; Li, J.; Zhou, Z.; Zeng, L.; Zhang, C.; Ran, H. How to optimize ecosystem services based on a Bayesian model: A case study of Jinghe River Basin. Sustainability 2019, 11, 4149. [Google Scholar] [CrossRef]
- Rohmer, J. Uncertainties in conditional probability tables of discrete Bayesian Belief Networks: A comprehensive review. Eng. Appl. Artif. Intell. 2020, 88, 103384. [Google Scholar] [CrossRef]
- Zeng, C.; Qi, W.; Mao, Y.; Liu, R.; Yu, B.; Dong, X. Water conservation ecological service function and its value response mechanism in a nested water conservancy project area. Front. Environ. Sci. 2022, 10, 887040. [Google Scholar] [CrossRef]
- Nsiah, J.J.; Awotwi, A.; Gyamfi, C.; Anornu, G.K.; Boakye, E.; Darko, S.; Ackom, E.K. Evaluating water balance components in a tropical ecological zone under land use changes. Ecohydrol. Hydrobiol. 2024; in press. [Google Scholar] [CrossRef]
- Yang, Y.; Roderick, M.L.; Guo, H.; Miralles, D.G.; Zhang, L.; Fatichi, S.; Luo, X.; Zhang, Y.; McVicar, T.R.; Tu, Z.; et al. Evapotranspiration on a greening Earth. Nat. Rev. Earth Environ. 2023, 4, 626–641. [Google Scholar] [CrossRef]
- Yang, Z.; Xing, Z.; Xu, G. A study on the influence of Saihanba on ecological environment. Acad. J. Environ. Earth Sci. 2022, 4, 13–19. [Google Scholar] [CrossRef]
- Kang, J.; Qing, Y.; Lu, W. Construction and optimization of the Saihanba ecological network. Ecol. Indic. 2023, 153, 110401. [Google Scholar] [CrossRef]
- Yin, Z.; Jia, H.; Shao, H.; He, Y.; Qin, X.; Pang, J.; Fu, Y. An adaptive strategy for current afforestation in the forest-steppe ecotone, north China, inferred from the Holocene geo-ecology dynamics. Catena 2024, 247, 108533. [Google Scholar] [CrossRef]
- Xu, K. Research on the ecological environment evaluation of Saihanba based on Entropy Weight method. Acad. J. Environ. Earth Sci. 2022, 4, 42–46. [Google Scholar] [CrossRef]
- Ma, N.; Zhang, Y.; Szilagyi, J. Water-balance-based evapotranspiration for 56 large river basins: A benchmarking dataset for global terrestrial evapotranspiration modeling. J. Hydrol. 2024, 630, 130607. [Google Scholar] [CrossRef]
- Wei, P.; Chen, S.; Wu, M.; Deng, Y.; Xu, H.; Jia, Y.; Liu, F. Using the INVEST model to assess the impacts of climate and land use changes on water yield in the upstream regions of the Shule River Basin. Water 2021, 13, 1250. [Google Scholar] [CrossRef]
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef]
- Foody, G.M. Remote sensing in landscape ecology. Landsc. Ecol. 2023, 38, 2711–2716. [Google Scholar] [CrossRef]
- Tetzlaff, D.; Laudon, H.; Luo, S.; Soulsby, C. Ecohydrological resilience and the landscape water storage continuum in droughts. Nat. Water 2024, 2, 915–918. [Google Scholar] [CrossRef]
- Guo, S.; Wu, C.; Wang, Y.; Qiu, G.; Zhu, D.; Niu, Q.; Qin, L. Threshold effect of ecosystem services in response to climate change, human activity and landscape pattern in the upper and middle Yellow River of China. Ecol. Indic. 2022, 136, 108603. [Google Scholar] [CrossRef]
- Feng, X.; Zhao, L.; Ma, T.; Zhao, Z.; Hu, B. Scale effects on ecosystem service interactions and driving factors in the Three River Source Basin: Insights and management implications. Water 2024, 16, 3425. [Google Scholar] [CrossRef]
- Joshi, R.K.; Garkoti, S.C. Influence of vegetation types on soil physical and chemical properties, microbial biomass and stoichiometry in the central Himalaya. Catena 2023, 222, 106835. [Google Scholar] [CrossRef]
- Huang, Y.; Jin, Y.; Chen, S. The spatiotemporal dynamics of vegetation cover and Its response to the grain for green project in the Loess Plateau of China. Forests 2024, 15, 1949. [Google Scholar] [CrossRef]
- Khodadadi, N.; Towfek, S.K.; Zaki, A.M.; Alharbi, A.H.; Khodadadi, E.; Khafaga, D.S.; Abualigah, L.; Ibrahim, A.; Abdelhamid, A.A.; Eid, M.M. Predicting normalized difference vegetation index using a deep attention network with bidirectional GRU: A hybrid parametric optimization approach. Int. J. Data Sci. Anal. 2024. [Google Scholar] [CrossRef]
- Marcot, B.G. Metrics for evaluating performance and uncertainty of Bayesian network models. Ecol. Model. 2012, 230, 50–62. [Google Scholar] [CrossRef]
- Peng, L.; Chen, T.; Deng, W.; Liu, Y. Exploring ecosystem services trade-offs using the Bayesian belief network model for ecological restoration decision-making: A case study in Guizhou Province, China. Ecol. Indic. 2022, 135, 108569. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, C.; Li, L.; Yun, W.; Ma, J.; Gao, L. Delimitating the Ecological Spaces for Water Conservation Services in Jilin Province of China. Land 2021, 10, 1029. [Google Scholar] [CrossRef]
- Liang, X.; Liu, X.; Li, D.; Zhao, H.; Chen, G. Urban growth simulation by incorporating planning policies into a CA-based future land-use simulation model. Int. J. Geogr. Inf. Sci. 2018, 32, 2294–2316. [Google Scholar] [CrossRef]
- Yao, R.; Wang, L.; Huang, X.; Gong, W.; Xia, X. Greening in Rural Areas Increases the Surface Urban Heat Island Intensity. Geophys. Res. Lett. 2019, 46, 2204–2212. [Google Scholar] [CrossRef]
- Li, C.; Yang, F.; Yan, M.; Qu, Y. An ecological value evaluation method based on ecological restoration: A case study of the Saihanba Mechanized Forest Farm in Chengde City. Chin. J. Popul. Resour. Environ. 2024, 22, 493–500. [Google Scholar] [CrossRef]
- Li, J.; Zhang, B.; Zhang, S. Analysis of spatial and temporal changes in grasslands and their driving factors in western Jilin province, China. J. Nat. Resour. 2005, 20, 830–835. [Google Scholar]
- Yan, Z.; Gao, Z.; Sun, B.; Ding, X.; Gao, T.; Li, Y. Global degradation trends of grassland and their driving factors since 2000. Int. J. Digit. Earth 2023, 16, 1661–1684. [Google Scholar] [CrossRef]
- Dong, Y. Research progress on the impact of climate change on wetland ecosystems. Subtrop. Soil Water Conserv. 2013, 25, 4. [Google Scholar]
- Li, C.; Lv, B. Discussion on the influencing factors and land use patterns of intensive urban land use. Nat. Resour. Econ. China 2007, 20, 7–9. [Google Scholar]
- Wang, J.; Lin, Y.; Glendinning, A.; Xu, Y. Land-use changes and land policies evolution in China’s urbanization processes. Land Use Policy 2018, 75, 375–387. [Google Scholar] [CrossRef]
- Wang, J.; Wu, W.; Yang, M.; Gao, Y.; Shao, J.; Yang, W.; Ma, G.; Yu, F.; Yao, N.; Jiang, H. Exploring the complex trade-offs and synergies of global ecosystem services. Environ. Sci. Ecotechnol. 2024, 21, 100391. [Google Scholar] [CrossRef]
- Dong, L.; Bettinger, P.; Liu, Z. Optimizing neighborhood-based stand spatial structure: Four cases of boreal forests. For. Ecol. Manag. 2022, 506, 119965. [Google Scholar] [CrossRef]
- Gao, T.; Li, Y.; Zhao, C.; Chen, J.; Jin, R.; Zhu, W. Factors driving changes in water conservation function from a geospatial perspective: Case study of Jilin Province. Front. Ecol. Evol. 2023, 11, 1303957. [Google Scholar] [CrossRef]
- Wang, Y.; Li, M.; Jin, G. Exploring the optimization of spatial patterns for carbon sequestration services based on multi-scenario land use/cover changes in the changchun-Jilin-Tumen region, China. J. Clean. Prod. 2024, 438, 140788. [Google Scholar] [CrossRef]
- Letsinger, S.L.; Balberg, A.; Hanna, E.; Hiatt, E.K. Geohydrology: Watershed Hydrology. In Encyclopedia of Geology, 2nd ed.; Alderton, D., Elias, S.A., Eds.; Academic Press: Oxford, UK, 2021; pp. 442–456. [Google Scholar]
- Wang, Y.; Li, M.; Jin, G. Optimizing spatial patterns of ecosystem services in the Chang-Ji-Tu region (China) through Bayesian Belief Network and multi-scenario land use simulation. Sci. Total Environ. 2024, 917, 170424. [Google Scholar] [CrossRef] [PubMed]
- Zuo, L.; Peng, W.; Tao, S.; Zhu, C.; Xu, X. Dynamic changes of land use and ecosystem service value in the upper Minjiang River. Acta Ecol. Sin. 2021, 41, 6384–6397. [Google Scholar] [CrossRef]
- Hasan, S.S.; Zhen, L.; Miah, M.G.; Ahamed, T.; Samie, A. Impact of land use change on ecosystem services: A review. Environ. Dev. 2020, 34, 100527. [Google Scholar] [CrossRef]
- Chen, L.; Sun, Y.; Sajjad, S. Monitoring and predicting land use and land cover changes using remote sensing and GIS techniques-A case study of a hilly area, Jiangle, China. PLoS ONE 2018, 13, e0200493. [Google Scholar] [CrossRef]
- Aasen, H.; Honkavaara, E.; Lucieer, A.; Zarco-Tejada, P.J. Quantitative remote sensing at ultra-high resolution with UAV spectroscopy: A review of sensor technology, measurement procedures, and data correction workflows. Remote Sens. 2018, 10, 1091. [Google Scholar] [CrossRef]
LULC | 2002 | 2012 | 2022 | 2035 Natural Scenario | 2035 Conservation Scenario | 2035 Development Scenario |
---|---|---|---|---|---|---|
Cropland | 1.41 | 1.44 | 0.91 | 1.20 | 0.91 | 1.49 |
Forest | 81.93 | 78.77 | 90.23 | 87.4 | 87.3 | 87.84 |
Grassland | 2.19 | 13.99 | 3.94 | 6.35 | 6.73 | 5.58 |
Wetland | 3.79 | 4.53 | 3.29 | 3.51 | 4.39 | 2.97 |
Urban land | 0.27 | 0.19 | 0.70 | 0.69 | 0.81 | 1.81 |
Unused land | 10.41 | 1.08 | 0.93 | 0.85 | 0.34 | 0.31 |
LULC | 2002 | 2012 | 2022 | 2035-EP | 2035-ND | 2035-ED |
---|---|---|---|---|---|---|
Cropland | 253.60 | 268.37 | 265.77 | 265.56 | 279.61 | 287.36 |
Forest | 213.01 | 294.51 | 302.39 | 309.08 | 303.2 | 301.21 |
Grassland | 331.46 | 298.32 | 310.16 | 313.40 | 306.54 | 279.25 |
Wetland | 434.03 | 308.68 | 404.12 | 485.03 | 417.74 | 344.69 |
Urban land | 0.74 | 0.17 | 0.58 | 3.95 | 0.66 | 0.72 |
Unused land | 8.82 | 4.26 | 2.59 | 6.11 | 1.27 | 2.32 |
Actual Results of Water Conservation | Mutual Information | Percentage/% | Entropy Reduction | Uncertainty Coefficient |
---|---|---|---|---|
Water conservation | 0.89037 | 100 | 0.1857876 | - |
Precipitation | 0.09061 | 10.2 | 0.0074825 | 0.123 |
Land use/cover change | 0.05138 | 5.77 | 0.0025989 | 0.087 |
Surface runoff | 0.03417 | 3.84 | 0.0049141 | 0.065 |
Evapotranspiration | 0.01857 | 2.085 | 0.0025296 | 0.042 |
Water yield | 0.01027 | 1.153 | 0.0021177 | 0.038 |
Slope | 0.00425 | 0.477 | 0.0007488 | 0.015 |
Temperature | 0.00044 | 0.0496 | 0.0000048 | 0.008 |
Soil types | 0.00018 | 0.0206 | 0.0000019 | 0.005 |
Digital elevation model | 0.00011 | 0.01306 | 0.0000017 | 0.003 |
Vegetation cover | 0.00011 | 0.01235 | 0.0000017 | 0.003 |
Vegetation types | 0.00003 | 0.00323 | 0.0000013 | 0.001 |
Normalized difference vegetation index | 0.00001 | 0.00137 | 0.0000008 | 0.001 |
Soil depth | 0.00001 | 0.00124 | 0.0000002 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Xu, L.; Kang, F.; Ge, Z.; Zhang, J.; Liao, J.; Huang, X.; Zhang, Z. Optimizing Spatial Pattern of Water Conservation Services Using Multi-Scenario Land Use/Cover Simulation and Bayesian Network in China’s Saihanba Region. Land 2025, 14, 1679. https://doi.org/10.3390/land14081679
Liu C, Xu L, Kang F, Ge Z, Zhang J, Liao J, Huang X, Zhang Z. Optimizing Spatial Pattern of Water Conservation Services Using Multi-Scenario Land Use/Cover Simulation and Bayesian Network in China’s Saihanba Region. Land. 2025; 14(8):1679. https://doi.org/10.3390/land14081679
Chicago/Turabian StyleLiu, Chong, Liren Xu, Fuqing Kang, Zhaoxuan Ge, Jing Zhang, Jinglei Liao, Xuanrui Huang, and Zhidong Zhang. 2025. "Optimizing Spatial Pattern of Water Conservation Services Using Multi-Scenario Land Use/Cover Simulation and Bayesian Network in China’s Saihanba Region" Land 14, no. 8: 1679. https://doi.org/10.3390/land14081679
APA StyleLiu, C., Xu, L., Kang, F., Ge, Z., Zhang, J., Liao, J., Huang, X., & Zhang, Z. (2025). Optimizing Spatial Pattern of Water Conservation Services Using Multi-Scenario Land Use/Cover Simulation and Bayesian Network in China’s Saihanba Region. Land, 14(8), 1679. https://doi.org/10.3390/land14081679