Assessment of the Food–Energy–Water Nexus Considering the Carbon Footprint and Trade-Offs in Crop Production Systems in China
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Selection, Processing, and Merging of the Database
2.3. Carbon Footprint
2.3.1. Carbon Emissions
2.3.2. Carbon Sequestration
2.4. Blue Water Footprint
2.5. Trade-Off and Synergy Relationships
2.6. LMDI
3. Results
3.1. GHG Emissions from China’s CPSs
3.2. FEW Nexuses from the Carbon Footprint Perspective
3.3. Trade-Off and Synergy of the FEW Nexus
3.3.1. Trade-Offs and Synergies in the Different CPSs
3.3.2. Evolution of Synergies and Trade-Offs
3.3.3. Evolution of Spatial Synergies and Trade-Offs
3.4. Analysis of the Contribution of Influencing Factors
4. Discussion
4.1. Optimization and Management of CPSs Under Different GHG Emissions Reduction Scenarios
4.2. A FEW Nexus Perspective on the Effective Resource Utilization
4.3. Policy Implications for Carbon Reduction in CPS Systems
4.4. Limitations and Perspectives
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Herrera-Franco, G.; Bollmann, H.A.; Lofhagen, J.C.P.; Bravo-Montero, L.; Carrion-Mero, P. Approach on water-energy-food (WEF) nexus and climate change: A tool in decision-making processes. Environ. Dev. 2023, 46, 10858. [Google Scholar] [CrossRef]
- Bhaduri, A.; Ringler, C.; Dombrowski, I.; Mohtar, R.; Scheumann, W. Sustainability in the water-energy-food nexus. Water Int. 2015, 40, 723–732. [Google Scholar] [CrossRef]
- Pandey, V.P.; Shrestha, S. Evolution of the Nexus as a Policy and Development Discourse. In Water-Energy-Food Nexus: Principles and Practices; AGU: Washington, DC, USA, 2017; pp. 11–20. [Google Scholar]
- Scanlon, B.R.; Ruddell, B.L.; Reed, P.M.; Hook, R.I.; Zheng, C.; Tidwell, V.C.; Siebert, S. The food-energy-water nexus: Transforming science for society. Water Resour. Res. 2017, 53, 3550–3556. [Google Scholar] [CrossRef]
- Liang, S.; Qu, S.; Zhao, Q.; Zhang, X.; Daigger, G.T.; Newell, J.P.; Miller, S.A.; Johnson, J.X.; Love, N.G.; Zhang, L. Quantifying the Urban Food-Energy-Water Nexus: The Case of the Detroit Metropolitan Area. Environ. Sci. Technol. 2019, 53, 779–788. [Google Scholar] [CrossRef]
- Zambrano-Prado, P.; Munoz-Liesa, J.; Josa, A.; Rieradevall, J.; Alamus, R.; Gasso-Domingo, S.; Gabarrell, X. Assessment of the food-water -energy nexus suitability of rooftops. A methodological remote sensing approach in an urban Mediterranean area. Sustain. Cities Soc. 2021, 75, 103287. [Google Scholar] [CrossRef]
- Fry, J.P.; Scroggins, R.E.; Garlock, T.M.; Love, D.C.; Asche, F.; Brown, M.T.; Nussbaumer, E.M.; Nguyen, L.; Jenkins, L.D.; Anderson, J.; et al. Application of the food-energy-water nexus to six seafood supply chains: Hearing from wild and farmed seafood supply chain actors in the United States, Norway, and Vietnam. Front. Sustain. Food S 2024, 7, 1269026. [Google Scholar] [CrossRef]
- Yuan, M.H.; Lo, S.L. Principles of food-energy-water nexus governance. Renew. Sustain. Energy Rev. 2022, 155, 111937. [Google Scholar] [CrossRef]
- Cairns, R.; Krzywoszynska, A. Anatomy of a buzzword: The emergence of the water-energy-food nexus’ in UK natural resource debates. Environ. Sci. Policy 2016, 64, 164–170. [Google Scholar] [CrossRef]
- Whitney, E.; Schnabel, W.E.; Aggarwal, S.; Huang, D.; Dotson, A.D. MicroFEWs: A Food-Energy-Water Systems Approach to Renewable Energy Decisions in Islanded Microgrid Communities in Rural Alaska. Environ. Eng. Sci. 2019, 36, 843–849. [Google Scholar] [CrossRef]
- Ogbolumani, O.A.; Nwulu, N. Environmental impact assessment for a meta-model-based food-energy-water-nexus system. Energy Rep. 2024, 11, 218–232. [Google Scholar] [CrossRef]
- Ioannou, A.E.E.; Laspidou, C.S.S. Cross-Mapping Important Interactions between Water-Energy-Food Nexus Indices and the SDGs. Sustainability 2023, 15, 8045. [Google Scholar] [CrossRef]
- Niet, T.; Arianpoo, N.; Kuling, K.; Wright, A.S. Embedding the United Nations sustainable development goals into energy systems analysis: Expanding the food-energy-water nexus. Energy Sustain. Soc. 2021, 11, 1. [Google Scholar] [CrossRef]
- Islam, S.M.F.; Karim, Z. World’s Demand for Food and Water: The Consequences of Climate Change. In Desalination—Challenges and Opportunities; Farahani, M.H.D.A., Vatanpour, V., Taheri, A.H., Eds.; IntechOpen: London, UK, 2019. [Google Scholar]
- Xu, S.; Wang, R.; Gasser, T.; Ciais, P.; Penuelas, J.; Balkanski, Y.; Boucher, O.; Janssens, I.A.; Sardans, J.; Clark, J.H.; et al. Delayed use of bioenergy crops might threaten climate and food security. Nature 2022, 609, 299. [Google Scholar] [CrossRef]
- Anser, M.K.; Yousaf, Z.; Usman, B.; Nassani, A.A.; Abro, M.M.Q.; Zaman, K. Management of water, energy, and food resources: Go for green policies. J. Clean. Prod. 2020, 251, 119662. [Google Scholar] [CrossRef]
- Kibler, K.M.; Reinhart, D.; Hawkins, C.; Motlagh, A.M.; Wright, J. Food waste and the food-energy-water nexus: A review of food waste management alternatives. Waste Manag. 2018, 74, 52–62. [Google Scholar] [CrossRef]
- Skawinska, E.; Zalewski, R. Combining the Water-Energy-Food and Food Waste-Food Loss-Food Security Nexuses to Reduce Resource Waste. Energies 2022, 15, 5866. [Google Scholar] [CrossRef]
- Proctor, K.; Tabatabaie, H.; Murthy, G.S. Gateway to the perspectives of the Food-Energy-Water Nexus. Sci. Total Environ. 2021, 764, 142852. [Google Scholar] [CrossRef] [PubMed]
- Ao, Y.Z.; Siddik, M.A.B.; Konar, M.; Marston, L.T. Watersheds and Infrastructure Providing Food, Energy, and Water to US Cities. Earths Future 2024, 12, e2023EF004258. [Google Scholar] [CrossRef]
- Xu, Z.; Chen, X.; Liu, J.; Zhang, Y.; Chau, S.; Bhattarai, N.; Wang, Y.; Li, Y.; Connor, T.; Li, Y. Impacts of irrigated agriculture on food-energy-water-CO 2 nexus across metacoupled systems. Nat. Commun. 2020, 11, 5837. [Google Scholar] [CrossRef]
- Variani, H.A.; Afshar, A.; Vahabzadeh, M.; Molajou, A.; Varyani, M.M.A. Development of a novel framework for agriculture simulation model for food-energy-water nexus analysis in watershed-scale. J. Clean. Prod. 2023, 429, 139492. [Google Scholar] [CrossRef]
- Tilt, J.; Babbar-Sebens, M.; Ramadas, M.; Kolagani, N.; Naren, U.S. Participatory Framing of a Conceptual Decision Model for a Hyperlocalized Food, Energy, and Water Nexus: A Case Study in Adaptive Management of Rural Water Systems in India. J. Water Res. Plan. Man. 2024, 150, 05024001. [Google Scholar] [CrossRef]
- Fridman, D.; Biran, N.; Kissinger, M. Beyond blue: An extended framework of blue water footprint accounting. Sci. Total Environ. 2021, 777, 146010. [Google Scholar] [CrossRef] [PubMed]
- Mekonnen, M.M.; Hoekstra, A.Y. Blue water footprint linked to national consumption and international trade is unsustainable. Nat. Food 2020, 1, 792–800. [Google Scholar] [CrossRef]
- Hanumante, N.; Shastri, Y.; Nisal, A.; Diwekar, U.; Cabezas, H. Water stress-based price for global sustainability: A study using generalized global sustainability model (GGSM). Clean. Technol. Environ. 2024, 27, 1131–1150. [Google Scholar] [CrossRef]
- Gelfand, I.; Sahajpal, R.; Zhang, X.; Izaurralde, R.C.; Gross, K.L.; Robertson, G.P. Sustainable bioenergy production from marginal lands in the US Midwest. Nature 2013, 493, 514. [Google Scholar] [CrossRef]
- Gu, W.; Ma, G.; Wang, R.; Scherer, L.; He, P.; Xia, L.; Zhu, Y.; Bi, J.; Liu, B. Climate adaptation through crop migration requires a nexus perspective for environmental sustainability in the North China Plain. Nat. Food 2024, 5, 569–580. [Google Scholar] [CrossRef]
- Yadav, G.S.; Das, A.; Kandpal, B.K.; Babu, S.; Lal, R.; Datta, M.; Das, B.; Singh, R.; Singh, V.; Mohapatra, K. The food-energy-water-carbon nexus in a maize-maize-mustard cropping sequence of the Indian Himalayas: An impact of tillage-cum-live mulching. Renew. Sustain. Energy Rev. 2021, 151, 111602. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, R.; Tanaka, K.; Ciais, P.; Penuelas, J.; Balkanski, Y.; Sardans, J.; Hauglustaine, D.; Liu, W.; Xing, X.; et al. Accelerating the energy transition towards photovoltaic and wind in China. Nature 2023, 619, 761. [Google Scholar] [CrossRef]
- Kumar, R.; Mishra, J.S.; Mali, S.S.; Mondal, S.; Meena, R.S.; Lal, R.; Jha, B.K.; Naik, S.K.; Biswas, A.K.; Hans, H.; et al. Comprehensive environmental impact assessment for designing carbon-cum-energy efficient, cleaner and eco-friendly production system for rice-fallow agro -ecosystems of South Asia. J. Clean. Prod. 2022, 331, 129973. [Google Scholar] [CrossRef]
- Wada, I.; Faizulayev, A.; Bekun, F.V. Exploring the role of conventional energy consumption on environmental quality in Brazil: Evidence from cointegration and conditional causality. Gondwana Res. 2021, 98, 244–256. [Google Scholar] [CrossRef]
- Bekun, F.V. Race to carbon neutrality in South Africa: What role does environmental technological innovation play ? Appl. Energy 2024, 354, 122212. [Google Scholar] [CrossRef]
- Ukanwa, K.S.; Patchigolla, K.; Sakrabani, R. Energy and economic assessment of mixed palm residue utilisation for production of activated carbon and ash as fertiliser in agriculture. Environ. Technol. 2023, 44, 948–960. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Wang, X.; Bin, P. Agriculture carbon-emission reduction and changing factors behind agricultural eco-efficiency growth in China. J. Clean. Prod. 2022, 334, 130193. [Google Scholar] [CrossRef]
- Fagodiya, R.K.; Singh, A.; Singh, R.; Rani, S.; Kumar, S.; Rai, A.K.; Sheoran, P.; Chandra, P.; Yadav, R.K.; Sharma, P.C.; et al. The food-energy-water -carbon nexus of the rice-wheat production system in the western Indo-Gangetic Plain of India: An impact of irrigation system, conservational tillage and residue management. Sci. Total Environ. 2023, 860, 160428. [Google Scholar] [CrossRef]
- Voeroesmarty, C.J.; Campana, P.E.; Jewitt, G.; Lawford, R.; Wuebbles, D. Editorial: Food-energy-water systems: Achieving climate resilience and sustainable development in the 21st century. Front. Environ. Sci-Switz. 2024, 11, 1334892. [Google Scholar] [CrossRef]
- Newell, J.P.; Goldstein, B.; Foster, A. A 40-year review of food-energy-water nexus literature and its application to the urban scale. Environ. Res. Lett. 2019, 14, 073003. [Google Scholar] [CrossRef]
- Meena, R.S.; Pradhan, G.; Kumar, S.; Lal, R. Using industrial wastes for rice-wheat cropping and food-energy-carbon-water-economic nexus to the sustainable food system. Renew. Sust. Energy Rev. 2023, 187, 113756. [Google Scholar] [CrossRef]
- Yu, L.; Liu, S.; Wang, F.; Liu, Y.; Li, M.; Wang, Q.; Dong, S.; Zhao, W.; Tran, L.P.; Sun, Y.; et al. Effects of agricultural activities on energy-carbon-water nexus of the Qinghai-Tibet Plateau. J. Clean. Prod. 2022, 331, 129995. [Google Scholar] [CrossRef]
- Ozturk, I. The dynamic relationship between agricultural sustainability and food-energy-water poverty in a panel of selected Sub-Saharan African Countries. Energy Policy 2017, 107, 289–299. [Google Scholar] [CrossRef]
- Caputo, S.; Schoen, V.; Specht, K.; Grard, B.; Blythe, C.; Cohen, N.; Fox-Kaemper, R.; Hawes, J.; Newell, J.; Ponizy, L. Applying the food-energy-water nexus approach to urban agriculture: From FEW to FEWP (Food-Energy-Water-People). Urban. Urban. Gree 2021, 58, 126934. [Google Scholar] [CrossRef]
- Uslu, S.; Kaur, D.; Rivera, S.J.; Durresi, A.; Tilt, J.H. A Trustworthy Human-Machine framework for collective decision making in Food-Energy-Water management: The role of trust sensitivity. Knowl-Based Syst. 2020, 213, 106683. [Google Scholar] [CrossRef]
- Huang, J.; Yang, G. Understanding recent challenges and new food policy in China. Glob. Food Secur-Agr. 2017, 12, 119–126. [Google Scholar] [CrossRef]
- China, M.O.A.A. National Plan for Sustainable Agricultural Development (2015–2030). Available online: http://www.moa.gov.cn/ztzl/mywrfz/gzgh/201509/t20150914_4827900.htm (accessed on 16 April 2025).
- Council, O.O.T.L.; Statistics, N.B.O. The Atlas of Regional Distribution of Major Agricultural Products of the Third National Agricultural Census; China Statistics Publishing House: Beijing, China, 2021. (In Chinese) [Google Scholar]
- FAO. CropWat, Model Item, OpenGMS; FAO: Rome, Italy, 2020. [Google Scholar]
- Allen, R.G. Crop Evapotranspiration-Guidelines for computing crop water requirements. Fao Irrig. Drain. Pap. (Fao) 1998, 56, D05109. [Google Scholar]
- Pearson, K. Notes on the history of correlation. Biometrika 1920, 13, 25–45. [Google Scholar] [CrossRef]
- Pradhan, P.; Costa, L.; Rybski, D.; Lucht, W.; Kropp, J.P. A Systematic Study of Sustainable Development Goal (SDG) Interactions. Earths Future 2017, 5, 1169–1179. [Google Scholar] [CrossRef]
- Kaya, Y.; Yokobori, K. Environment, Energy, and Economy: Strategies for Sustainability; United Nations University Press: Tokyo, Japan, 1997; p. 393. [Google Scholar]
- Xu, Y.; Li, J.; Li, H.; Yang, S.; Jiang, Q.; Sui, P.; Gao, W.; Cui, J.; Chen, Y. The water-food-energy nexus evaluation and optimization of cropping system in the North China Plain: A case of county scale. J. Clean. Prod. 2024, 443, 141200. [Google Scholar] [CrossRef]
- Sun, J.; Yang, K. The Wicked Problem of Climate Change: A New Approach Based on Social Mess and Fragmentation. Sustainability 2016, 8, 1312. [Google Scholar] [CrossRef]
- Ang, B.W. The LMDI approach to decomposition analysis: A practical guide. Energy Policy 2005, 33, 867–871. [Google Scholar] [CrossRef]
- Fang, C.L. The Bo-Tai Line: Establishing the concepts of a balanced regional development line and a national development backbone. J. Geogr. Sci. 2021, 31, 839–858. [Google Scholar] [CrossRef]
- Zhang, X.; Pan, H.; Cao, J.; Li, J. Energy consumption of China’s crop production system and the related emissions. Renew. Sust. Energy Rev. 2015, 43, 111–125. [Google Scholar] [CrossRef]
- Al-Ansari, T.; Korre, A.; Nie, Z.; Shah, N. Integration of greenhouse gas control technologies within the energy, water and food nexus to enhance the environmental performance of food production systems. J. Clean. Prod. 2017, 162, 1592–1606. [Google Scholar] [CrossRef]
- Chen, X.; Cui, Z.; Fan, M.; Vitousek, P.; Zhao, M.; Ma, W.; Wang, Z.; Zhang, W.; Yan, X.; Yang, J.; et al. Producing more grain with lower environmental costs. Nature 2014, 514, 486. [Google Scholar] [CrossRef]
- Khan, S.; Hanjra, M.A. Footprints of water and energy inputs in food production—Global perspectives. Food Policy 2009, 34, 130–140. [Google Scholar] [CrossRef]
- Holmatov, B.; Hoekstra, A.Y.; Krol, M.S. Land, water and carbon footprints of circular bioenergy production systems. Renew. Sust. Energy Rev. 2019, 111, 224–235. [Google Scholar] [CrossRef]
- Sharafi, S.; Kazemi, A.; Amiri, Z. Estimating energy consumption and GHG emissions in crop production: A machine learning approach. J. Clean. Prod. 2023, 408, 137242. [Google Scholar] [CrossRef]
- Zhang, F.; Cai, Y.; Tan, Q.; Engel, B.A.; Wang, X. An optimal modeling approach for reducing carbon footprint in agricultural water-energy-food nexus system. J. Clean. Prod. 2021, 316, 128325. [Google Scholar] [CrossRef]
- Li, W.; Liang, Y.; Liu, L.; He, Q.; Huang, J.; Yin, Z. Spatio-temporal impacts of land use change on water-energy-food nexus carbon emissions in China, 2011-2020. Environ. Impact Asses 2024, 105, 3347. [Google Scholar] [CrossRef]
- Musa, S.D.; Tang, Z.H.; Ibrahim, A.O.; Habib, M. China’s energy status: A critical look at fossils and renewable options. Renew. Sust. Energy Rev. 2018, 81, 2281–2290. [Google Scholar] [CrossRef]
- Yang, X.J.; Hu, H.; Tan, T.; Li, J. China’s renewable energy goals by 2050. Environ. Dev. 2016, 20, 83–90. [Google Scholar] [CrossRef]
- Hong, C.; Burney, J.A.; Pongratz, J.; Nabel, J.E.M.S.; Mueller, N.D.; Jackson, R.B.; Davis, S.J. Global and regional drivers of land-use emissions in 1961–2017. Nature 2021, 589, 554. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Gu, W.; Yang, Y.; Lu, B.; Wang, F.; Zhang, B.; Bi, J. Promoting potato as staple food can reduce the carbon-land-water impacts of crops in China. Nat. Food 2021, 2, 570–577. [Google Scholar] [CrossRef]
- Chu, Q.; Shi, X.; Zhao, J.; Jia, H.; Zhao, J.; Lu, J.; Zhao, M. Seeking sustainable pathway of crop production by optimizing planting structures and management practices from the perspective of water footprint. Sci. Total Environ. 2022, 843, 157091. [Google Scholar]
- Lv, Q.; Yang, Z.; Chen, Z.; Li, M.; Gao, B.; Yang, J.; Chen, X.; Xu, B. Crop residue burning in China (2019–2021): Spatiotemporal patterns, environmental impact, and emission dynamics. Environ. Sci. Ecotech 2024, 21, 100394. [Google Scholar] [CrossRef] [PubMed]
- Maksyutov, S.; Eggleston, S.; Woo, J.H.; Fang, S.; Weitz, M.M. Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories; IPCC: Yokohama, Japan, 2006. [Google Scholar]
- Wu, B.; Li, J.; Yao, Z.; Li, X.; Wang, W.; Wu, Z.; Zhou, Q. Characteristics and reduction assessment of GHG emissions from crop residue open burning in China under the targets of carbon peak and carbon neutrality. Sci. Total Environ. 2023, 905, 167235. [Google Scholar] [CrossRef]
- Gu, B.; Zhang, X.; Lam, S.K.; Yu, Y.; van Grinsven, H.J.M.; Zhang, S.; Wang, X.; Bodirsky, B.L.; Wang, S.; Duan, J.; et al. Cost-effective mitigation of nitrogen pollution from global croplands. Nature 2023, 613, 77–84. [Google Scholar] [CrossRef]
- Wu, H.; Huang, H.; Chen, W.; Meng, Y. Estimation and spatiotemporal analysis of the carbon-emission efficiency of crop production in China. J. Clean. Prod. 2022, 371, 133516. [Google Scholar] [CrossRef]
- Davis, K.F.; Gephart, J.A.; Emery, K.A.; Leach, A.M.; Galloway, J.N.; D’Odorico, P. Meeting future food demand with current agricultural resources. Global Environ. Chang. 2016, 39, 125–132. [Google Scholar] [CrossRef]
- Camargo, G.G.T.; Ryan, M.R.; Richard, T.L. Energy Use and Greenhouse Gas Emissions from Crop Production Using the Farm Energy Analysis Tool. Bioscience 2013, 63, 263–273. [Google Scholar] [CrossRef]
- Searchinger, T.D.; Wirsenius, S.; Beringer, T.; Dumas, P. Assessing the efficiency of changes in land use for mitigating climate change. Nature 2018, 564, 249. [Google Scholar] [CrossRef]
- Qi, X.; Huang, X.; Zhong, H.; Thompson, J.R.; Yang, H.; Zhong, T.; Peng, X. Spatiotemporal drivers of food system GHG emissions in China. Resour. Conserv. Recycl. 2024, 205, 107580. [Google Scholar] [CrossRef]
- Ahmad, N.; Virk, A.L.; Nizami, A.; Lal, R.; Chang, S.X.; Hafeez, M.B.; Guo, X.; Wang, R.; Wang, X.; Iqbal, H.M.W.; et al. Carbon trade-off and energy budgeting under conventional and conservation tillage in a rice-wheat double cropping system. J. Environ. Manag. 2024, 351, 119888. [Google Scholar] [CrossRef] [PubMed]
- Manirambona, E.; Talai, S.M.; Kimutai, S.K. Appraising Kenyan energy demand policies for energy efficiency improvement and GHG emissions mitigation. Energy Strateg. Rev. 2024, 51, 101291. [Google Scholar] [CrossRef]
- Liu, J.; Hull, V.; Godfray, H.C.J.; Tilman, D.; Gleick, P.; Hoff, H.; Pahl-Wostl, C.; Xu, Z.; Chung, M.G.; Sun, J.; et al. Nexus approaches to global sustainable development. Nat. Sustain. 2018, 1, 466–476. [Google Scholar] [CrossRef]
- Royse, E.A.; Manzanares, A.D.; Wang, H.; Haudek, K.C.; Azzarello, C.B.; Horne, L.R.; Druckenbrod, D.L.; Shiroda, M.; Adams, S.R.; Fairchild, E.; et al. FEW questions, many answers: Using machine learning to assess how students connect food-energy-water (FEW) concepts. Hum. Soc. Sci. Commun. 2024, 11, 1–18. [Google Scholar] [CrossRef]
- Simonovic, S.P.; Breach, P.A. System Context: Global Change and the Food-Energy-Water Nexus. J. Water Res. Plan. Man. 2023, 149. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, X.; Li, Y.; Ding, W.; Fu, G. Water-energy-food nexus: Concepts, questions and methodologies. J. Clean. Prod. 2018, 195, 625–639. [Google Scholar] [CrossRef]
- Smajgl, A.; Ward, J.; Pluschke, L. The water-food-energy Nexus—Realising a new paradigm. J. Hydrol. 2016, 533, 533–540. [Google Scholar] [CrossRef]
- Rode, A.; Carleton, T.; Delgado, M.; Greenstone, M.; Houser, T.; Hsiang, S.; Hultgren, A.; Jina, A.; Kopp, R.E.; McCusker, K.E.; et al. Estimating a social cost of carbon for global energy consumption. Nature 2021, 598, 308. [Google Scholar] [CrossRef]
- Soni, P.; Taewichit, C.; Salokhe, V.M. Energy consumption and CO2 emissions in rainfed agricultural production systems of Northeast Thailand. Agric. Syst. 2013, 116, 25–36. [Google Scholar] [CrossRef]
- Lin, J.Y.; Hu, Y.C.; Cui, S.H.; Kang, J.F.; Xu, L.L. Carbon footprints of food production in China (1979–2009). J. Clean. Prod. 2015, 90, 97–103. [Google Scholar] [CrossRef]
- Nayak, A.K.; Tripathi, R.; Debnath, M.; Swain, C.K.; Dhal, B.; Vijaykumar, S.; Nayak, A.D.; Mohanty, S.; Shahid, M.; Kumar, A.; et al. Carbon and water footprints of major crop production in India. Pedosphere 2023, 33, 448–462. [Google Scholar] [CrossRef]
- Wang, X.; Tan, W.; Zhou, S.; Xu, Y.; Cui, T.; Gao, H.; Chen, M.; Dong, X.; Sun, H.; Yang, J.; et al. Converting maize production with low emergy cost and high economic return for sustainable development. Renew. Sustain. Energy Rev. 2021, 136, 110443. [Google Scholar] [CrossRef]
- Wei, X.; Zhang, Z.; Wang, P.; Tao, F. Recent patterns of production for the main cereal grains: Implications for food security in China. Reg. Environ. Change 2017, 17, 105–116. [Google Scholar] [CrossRef]
- Balsalobre-Lorente, D.; Shahbaz, M.; Roubaud, D.; Farhani, S. How economic growth, renewable electricity and natural resources contribute to CO2 emissions? Energy Policy 2018, 113, 356–367. [Google Scholar] [CrossRef]
- Lin, B.; Li, Z. Is more use of electricity leading to less carbon emission growth ? An analysis with a panel threshold model. Energy Policy 2020, 137, 11121. [Google Scholar] [CrossRef]
- Li, J. Spatialized carbon-energy-water footprint of emerging coal chemical industry in China. Renew. Sust. Energy Rev. 2024, 189, 113919. [Google Scholar] [CrossRef]
- Han, D.; Yu, D.; Cao, Q. Assessment on the features of coupling interaction of the food-energy-water nexus in China. J. Clean. Prod. 2020, 249, 119379. [Google Scholar] [CrossRef]
- Mao, S.; Lv, J.; Li, M.; Li, L.; Xue, J. Trade-off and driving factors of water-energy-food nexus in Mu Us sandy land, China. J. Clean. Prod. 2024, 434, 139852. [Google Scholar] [CrossRef]
- Fouladi, J.; AlNouss, A.; Bicer, Y.; Al-Ansari, T. Thermodynamic analysis of a renewable energy-water-food nexus: A trade-off analysis of integrated desalination, gasification and food systems. Case Stud. Therm. Eng. 2022, 34, 102024. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, J.; Shu, K. The coupling and coordination assessment of food-water-energy systems in China based on sustainable development goals. Sustain. Prod. Consump 2023, 35, 338–348. [Google Scholar] [CrossRef]
- Hu, Y.; Duan, W.; Zou, S.; Chen, Y.; De Maeyer, P.; Van de Voorde, T.; Takara, K.; Kayumba, P.M.; Kurban, A.; Goethals, P.L.M. Coupling coordination analysis of the water-food-energy-carbon nexus for crop production in Central Asia. Appl. Energy 2024, 369, 123584. [Google Scholar] [CrossRef]
- Qian, X.; Liang, Q. Sustainability evaluation of the provincial water-energy-food nexus in China: Evolutions, obstacles, and response strategies. Sustain. Cities Soc. 2021, 75, 103332. [Google Scholar] [CrossRef]
- Qi, Y.; Farnoosh, A.; Lin, L.; Liu, H. Coupling coordination analysis of China’s provincial water-energy-food nexus. Environ. Sci. Pollut. R. 2022, 29, 23303–23313. [Google Scholar] [CrossRef]
- Uen, T.; Chang, F.; Zhou, Y.; Tsai, W. Exploring synergistic benefits of Water-Food-Energy Nexus through multi-objective reservoir optimization schemes. Sci. Total Environ. 2018, 633, 341–351. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Niu, D.; Yu, M.; Li, M.; Yang, X.; Ji, Z. Integrated assessment of the sustainable water-energy-food nexus in China: Case studies on multi-regional sustainability and multi-sectoral synergy. J. Clean. Prod. 2022, 334, 130235. [Google Scholar] [CrossRef]
- Fu, Y.; Ren, Y.; Pei, W. Evaluation of the symbiosis level of the water-energy-food complex system based on the improved cloud model: A case study in Heilongjiang Province. Environ. Sci. Pollut. R. 2023, 30, 22963–22984. [Google Scholar] [CrossRef]
- Chen, Y.; Guo, W.; Ngo, H.H.; Wei, W.; Ding, A.; Ni, B.; Hoang, N.B.; Zhang, H. Ways to mitigate greenhouse gas production from rice cultivation. J. Environ. Manage 2024, 368, 122139. [Google Scholar] [CrossRef]
- Qian, H.; Zhu, X.; Huang, S.; Linquist, B.; Kuzyakov, Y.; Wassmann, R.; Minamikawa, K.; Martinez-Eixarch, M.; Yan, X.; Zhou, F.; et al. Greenhouse gas emissions and mitigation in rice agriculture. Nat. Rev. Earth Environ. 2023, 4, 716–732. [Google Scholar] [CrossRef]
- Gangopadhyay, S.; Banerjee, R.; Batabyal, S.; Das, N.; Mondal, A.; Pal, S.C.; Mandal, S. Carbon sequestration and greenhouse gas emissions for different rice cultivation practices. Sustain. Prod. Consump 2022, 34, 90–104. [Google Scholar] [CrossRef]
- Li, M.; Cao, X.; Liu, D.; Fu, Q.; Li, T.; Shang, R. Sustainable management of agricultural water and land resources under changing climate and socio-economic conditions: A multi-dimensional optimization approach. Agr. Water Manag. 2022, 259, 107235. [Google Scholar] [CrossRef]
- Olesen, J.E.; Trnka, M.; Kersebaum, K.C.; Skjelvag, A.O.; Seguin, B.; Peltonen-Sainio, P.; Rossi, F.; Kozyra, J.; Micale, F. Impacts and adaptation of European crop production systems to climate change. Eur. J. Agron. 2011, 34, 96–112. [Google Scholar] [CrossRef]
- Shakoor, U.; Saboor, A.; Ali, I.; Mohsin, A.Q. Impact of Climate Change On Agriculture: Empirical Evidence from Arid Region. Pak. J. Agr. Sci. 2011, 48, 327–333. [Google Scholar]
- Liao, B.; Cai, T.; Wu, X.; Luo, Y.; Liao, P.; Zhang, B.; Zhang, Y.; Wei, G.; Hu, R.; Luo, Y.; et al. A combination of organic fertilizers partially substitution with alternate wet and dry irrigation could further reduce greenhouse gases emission in rice field. J. Environ. Manage 2023, 344, 118372. [Google Scholar] [CrossRef]
- Li, L.; Li, T. Improvement Measurement to Guarantee the Quantity and Quality of Ecological Cultivated Land. Ekoloji 2019, 28, 1835–1845. [Google Scholar]
- Moretti, M.; De Boni, A.; Roma, R.; Fracchiolla, M.; Van Passel, S. Integrated assessment of agro- ecological systems: The case study of the “Alta Murgia” National park in Italy. Agric. Syst. 2016, 144, 144–155. [Google Scholar] [CrossRef]
- Xu, P.; Li, G.; Zheng, Y.; Fung, J.C.H.; Chen, A.; Zeng, Z.; Shen, H.; Hu, M.; Mao, J.; Zheng, Y.; et al. Fertilizer management for global ammonia emission reduction. Nature 2024, 626, 792–798. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, E.; Cavigelli, M.A.; Camargo, G.; Ryan, M.; Ackroyd, V.J.; Richard, T.L.; Mirsky, S. Energy use and greenhouse gas emissions in organic and conventional grain crop production: Accounting for nutrient inflows. Agric. Syst. 2018, 162, 89–96. [Google Scholar] [CrossRef]
- Luo, T.; Shen, B.; Mei, Z.; Hove, A.; Ju, K. Unlocking the potential of biogas systems for energy production and climate solutions in rural communities. Nat. Commun. 2024, 15, 5900. [Google Scholar] [CrossRef] [PubMed]
- Doelman, J.C.; Beier, F.D.; Stehfest, E.; Bodirsky, B.L.; Beusen, A.H.W.; Humpenoeder, F.; Mishra, A.; Popp, A.; van Vuuren, D.P.; de Vos, L.; et al. Quantifying synergies and trade-offs in the global water-land-food-climate nexus using a multi-model scenario approach. Environ. Res. Lett. 2022, 17, 045004. [Google Scholar] [CrossRef]
- Shang, K.; Zhuo, L.; Yang, X.; Yue, Z.; Zhao, D.; Wu, P. Emergy analysis of the blue and green water resources in crop production systems. J. Clean. Prod. 2021, 319, 128666. [Google Scholar] [CrossRef]
- Zhao, J.; Yang, J.; Xie, H.; Qin, X.; Huang, R. Sustainable management strategies for balancing crop yield, water use efficiency and greenhouse gas emissions. Agric. Syst. 2024, 217, 103944. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, X.; Zhang, L.; Xiong, K.; Zheng, C.; Lu, F.; Zhao, H.; Zheng, H.; Ouyang, Z. Carbon and water footprints of major cereal crops production in China. J. Clean. Prod. 2018, 194, 613–623. [Google Scholar] [CrossRef]
- Yin, W.; Chai, Q.; Guo, Y.; Feng, F.; Zhao, C.; Yu, A.; Liu, C.; Fan, Z.; Hu, F.; Chen, G. Reducing carbon emissions and enhancing crop productivity through strip intercropping with improved agricultural practices in an arid area. J. Clean. Prod. 2017, 166, 197–208. [Google Scholar] [CrossRef]
- Mostashari-Rad, F.; Nabavi-Pelesaraei, A.; Soheilifard, F.; Hosseini-Fashami, F.; Chau, K. Energy optimization and greenhouse gas emissions mitigation for agricultural and horticultural systems in Northern Iran. Energy 2019, 186, 115845. [Google Scholar] [CrossRef]
- Wang, X.Y.; Xue, S.; Xie, G.H. Value-taking for residue factor as a parameter to assess the field residue of field crops. J. China Agric. Univ. 2012, 17, 1–8. (In Chinese) [Google Scholar]
- West, T.O.; Bandaru, V.; Brandt, C.C.; Schuh, A.E.; Ogle, S.M. Regional uptake and release of crop carbon in the United States. Biogeosciences 2011, 8, 2037–2046. [Google Scholar] [CrossRef]
- National Development and Reform Commission (NDRC). The Grass-to-Grain Ratios for Major Crops in Different Agricultural Regions; National Development and Reform Commission: Beijing, China, 2015. [Google Scholar]
- IKE Environmental Technology, Co., Ltd, China. Chinese Life Cycle Database (2009–2011); Chongqing, China. Available online: http://www.itke.com.cn (accessed on 31 March 2025).
- Ecoinvent, CCDB. Available online: https://ecoinvent.org/ (accessed on 31 December 2023).
- Wu, H.; Sipilainen, T.; He, Y.; Huang, H.; Luo, L.; Chen, W.; Meng, Y. Performance of cropland low-carbon use in China: Measurement, spatiotemporal characteristics, and driving factors. Sci. Total Environ. 2021, 800, 149552. [Google Scholar] [CrossRef]
- West, T.O.; Marland, G. A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture comparing tillage practices in the United States. Agric. Ecosyst. Environ. 2002, 91, 217–232. [Google Scholar] [CrossRef]
- Ozilgen, M.; Sorguven, E. Energy and exergy utilization, and carbon dioxide emission in vegetable oil production. Energy 2011, 36, 5954–5967. [Google Scholar] [CrossRef]
- Xue, J.; Liu, S.; Chen, Z.; Chen, F.; Lal, R.; Tang, H.; Zhang, H. Assessment of carbon sustainability under different tillage systems in a double rice cropping system in Southern China. Int. J. Life Cycle Assess. 2014, 19, 1581–1592. [Google Scholar] [CrossRef]
- Wang, S.; Sun, N.; Zhang, X.; Hu, C.; Wang, Y.; Xiong, W.; Zhang, S.; Colinet, G.; Xu, M.; Wu, L. Assessing the impacts of climate change on crop yields, soil organic carbon sequestration and N2O emissions in wheat-maize rotation systems. Soil Tillage Res. 2024, 240, 106088. [Google Scholar] [CrossRef]
- Ministry of Agriculture and Rural Affairs (MARA). Technical Guide for Rice Carbon Footprint Assessment (Draft for Comment). Beijing, China. Available online: http://www.reea.agri.cn/zhbwh/ (accessed on 30 April 2024).
- National Development and Reform Commission (NDRC). Notice on the Implementation of Carbon Emission Trading Pilot Programs. Beijing, China. Available online: https://www.ndrc.gov.cn/xxgk/zcfb/tz/201201/t20120113_964370_ext.html (accessed on 13 January 2012).
- Bernstein, L.; Bosch, P.; Canziani, O.; Chen, Z.; Christ, R.; Davidson, O.; Hare, W.; Huq, S.; Karoly, D.; Kattsov, V. Climate Change 2007: Fourth Assessment Report; IPCC: Cambridge, UK, 2007. [Google Scholar]
- Hong, X.; Zhang, C.; Tian, Y.; Wu, H.; Zhu, Y.; Liu, C. Quantification and evaluation of atmospheric emissions from crop residue burning constrained by satellite observations in China during 2016–2020. Sci. Total Environ. 2023, 865, 161237. [Google Scholar] [CrossRef]
- Pan, H.; Zheng, X.; Tian, X.; Geng, Y.; Zhang, X.; Xiao, S.; Gao, Z.; Yang, Y.; Liu, X.; Li, L.; et al. Toward sustainable crop production in China: A co-benefits evaluation. J. Clean. Prod. 2022, 361, 132285. [Google Scholar] [CrossRef]
- Xing, X.; Zhou, Y.; Lang, J.; Chen, D.; Cheng, S.; Han, L.; Huang, D.; Zhang, Y. Spatiotemporal variation of domestic biomass burning emissions in rural China based on a new estimation of fuel consumption. Sci. Total Environ. 2018, 626, 274–286. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Kong, S.; Wu, F.; Cheng, Y.; Zheng, S.; Qin, S.; Liu, X.; Yan, Q.; Zheng, H.; Zheng, M.; et al. The moving of high emission for biomass burning in China: View from multi-year emission estimation and human-driven forces. Environ. Int. 2020, 142, 105812. [Google Scholar] [CrossRef]
- Zhang, X.; Lu, Y.; Wang, Q.; Qian, X. A high-resolution inventory of air pollutant emissions from crop residue burning in China. Atmos. Environ. 2019, 213, 207–214. [Google Scholar] [CrossRef]
- Jin, Q.; Ma, X.; Wang, G.; Yang, X.; Guo, F. Dynamics of major air pollutants from crop residue burning in mainland China, 2000–2014. J. Environ. Sci. 2018, 70, 190–205. [Google Scholar] [CrossRef]
- Zhou, Y.; Xing, X.; Lang, J.; Chen, D.; Cheng, S.; Wei, L.; Wei, X.; Liu, C. A comprehensive biomass burning emission inventory with high spatial and temporal resolution in China. Atmos. Chem. Phys. 2017, 17, 2839–2864. [Google Scholar] [CrossRef]
Crop | Rice | Wheat | Maize | Soybeans | Potatoes |
---|---|---|---|---|---|
Dry weight ratio (1-w) | 0.855 | 0.870 | 0.860 | 0.860 | 0.450 |
Proportion of nitrogen in seeds | 0.010 | 0.014 | 0.017 | 0.060 | 0.004 |
Proportion of nitrogen in straw | 0.008 | 0.005 | 0.006 | 0.018 | 0.011 |
Economic coefficient (H) | 0.489 | 0.434 | 0.438 | 0.425 | 0.667 |
Root-to-crown ratio (R) | 0.125 | 0.166 | 0.170 | 0.130 | 0.050 |
Carbon sequestration rate (c) | 0.450 | 0.400 | 0.400 | 0.350 | 0.650 |
Intensity of Trade-Off and Synergy Relationships | Level | Basis |
---|---|---|
Strong Synergy | I | r > 0, p < 0.01 |
Medium Synergy | II | r > 0, 0.01 < p < 0.05 |
Weak Synergy | III | r > 0, 0.05 < p < 0.1 |
Independent | IV | p > 0.1 |
Weak Trade-off | V | r < 0, p < 0.01 |
Medium Trade-off | VI | r < 0, 0.01 < p < 0.05 |
Strong Trade-off | VII | r < 0, 0.05 < p < 0.1 |
FE | FW | |||||||
---|---|---|---|---|---|---|---|---|
Crops | r | t | p | Level | r | t | p | Level |
rice | 0.343 | 9.724 | p < 0.01 | I | 0.164 | 4.427 | p < 0.01 | I |
wheat | 0.019 | 0.507 | p > 0.1 | IV | −0.056 | −1.491 | 0.05 < p < 0.1 | VII |
maize | 0.461 | 13.862 | p < 0.01 | I | 0.223 | 6.102 | p < 0.01 | I |
soybean | 0.422 | 12.410 | p < 0.01 | I | 0.166 | 4.479 | p < 0.01 | I |
potato | 0.638 | 22.104 | p < 0.01 | I | 0.220 | 6.007 | p < 0.01 | I |
Total | 0.314 | 8.827 | p < 0.01 | I | 0.064 | 1.706 | 0.01 < p < 0.05 | II |
Year | rFE | Level | rFW | Level | Year | rFE | Level | rFW | Level |
---|---|---|---|---|---|---|---|---|---|
2000 | 0.395 | I | −0.428 | V | 2012 | 0.432 | I | 0.774 | I |
2001 | 0.564 | I | −0.548 | V | 2013 | 0.400 | I | 0.555 | I |
2002 | 0.640 | I | −0.293 | V | 2014 | 0.288 | I | −0.694 | V |
2003 | 0.709 | I | −0.631 | V | 2015 | −0.252 | V | −0.598 | V |
2004 | 0.520 | I | −0.474 | V | 2016 | 0.671 | I | 0.651 | I |
2005 | 0.597 | I | −0.121 | V | 2017 | 0.515 | I | 0.675 | I |
2006 | 0.197 | I | 0.133 | I | 2018 | 0.262 | I | 0.024 | IV |
2007 | 0.138 | I | 0.476 | I | 2019 | 0.050 | IV | −0.064 | VII |
2008 | −0.098 | V | 0.606 | I | 2020 | 0.057 | III | −0.268 | V |
2009 | 0.133 | I | 0.702 | I | 2021 | 0.035 | IV | −0.496 | V |
2010 | 0.089 | II | 0.823 | I | 2022 | 0.120 | I | −0.440 | V |
2011 | 0.357 | I | 0.828 | I |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, B.; Zou, X.; Cheng, T.; Li, Y.; Huang, J.; Sun, T.; Tong, Y. Assessment of the Food–Energy–Water Nexus Considering the Carbon Footprint and Trade-Offs in Crop Production Systems in China. Land 2025, 14, 1674. https://doi.org/10.3390/land14081674
Guo B, Zou X, Cheng T, Li Y, Huang J, Sun T, Tong Y. Assessment of the Food–Energy–Water Nexus Considering the Carbon Footprint and Trade-Offs in Crop Production Systems in China. Land. 2025; 14(8):1674. https://doi.org/10.3390/land14081674
Chicago/Turabian StyleGuo, Beibei, Xian Zou, Tingting Cheng, Yan Li, Jie Huang, Tingting Sun, and Yi Tong. 2025. "Assessment of the Food–Energy–Water Nexus Considering the Carbon Footprint and Trade-Offs in Crop Production Systems in China" Land 14, no. 8: 1674. https://doi.org/10.3390/land14081674
APA StyleGuo, B., Zou, X., Cheng, T., Li, Y., Huang, J., Sun, T., & Tong, Y. (2025). Assessment of the Food–Energy–Water Nexus Considering the Carbon Footprint and Trade-Offs in Crop Production Systems in China. Land, 14(8), 1674. https://doi.org/10.3390/land14081674