Equity Evaluation of Street-Level Greenery Based on Green View Index from Street View Images: A Case Study of Hangzhou, China
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methods
2.3.1. GVI Calculation
- (1)
- Selecting sample points
- (2)
- Panoramic street view image acquisition and semantic segmentation
- (3)
- Calculation of GVI
2.3.2. Spatial Distribution and Agglomeration Characteristics
2.3.3. Equity Assessment of Street Greenery
- (1)
- Lorenz curve and Gini coefficient
- (2)
- Location entropy
3. Results
3.1. Spatial Clustering and Distribution Patterns of GVI
3.2. Equity Evaluation of Street-Level Greenery
4. Discussion
4.1. Equity in the Distribution of Urban Street Greenery
4.2. The Difference in Vertical and Horizontal Green Attributes
4.3. Optimization Strategies for Street Greenery Planning
4.4. Study Limitations and Future Works
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, X.; Zhang, C.; Li, W.; Kuzovkina, Y.A. Environmental Inequities in Terms of Different Types of Urban Greenery in Hartford, Connecticut. Urban For. Urban Green. 2016, 18, 163–172. [Google Scholar] [CrossRef]
- Liu, Y.; Gu, X.; Wang, Z.; Anderson, A. Urban Greenery Distribution and Its Link to Social Vulnerability. Urban For. Urban Green. 2024, 101, 128542. [Google Scholar] [CrossRef]
- Quaranta, E.; Dorati, C.; Pistocchi, A. Water, Energy and Climate Benefits of Urban Greening throughout Europe under Different Climatic Scenarios. Sci. Rep. 2021, 11, 12163. [Google Scholar] [CrossRef]
- Oquendo-Di Cosola, V.; Olivieri, F.; Ruiz-García, L. A Systematic Review of the Impact of Green Walls on Urban Comfort: Temperature Reduction and Noise Attenuation. Renew. Sustain. Energ. Rev. 2022, 162, 112463. [Google Scholar] [CrossRef]
- Venter, Z.S.; Hassani, A.; Stange, E.; Schneider, P.; Castell, N. Reassessing the Role of Urban Green Space in Air Pollution Control. Proc. Natl. Acad. Sci. USA 2024, 121, e2306200121. [Google Scholar] [CrossRef]
- Wang, R.; Zhao, J.; Meitner, M.J.; Hu, Y.; Xu, X. Characteristics of Urban Green Spaces in Relation to Aesthetic Preference and Stress Recovery. Urban For. Urban Green. 2019, 41, 6–13. [Google Scholar] [CrossRef]
- Lu, Y.; Chen, L.; Liu, X.; Yang, Y.; Sullivan, W.C.; Xu, W.; Webster, C.; Jiang, B. Green Spaces Mitigate Racial Disparity of Health: A Higher Ratio of Green Spaces Indicates a Lower Racial Disparity in SARS-CoV-2 Infection Rates in the USA. Environ. Int. 2021, 152, 106465. [Google Scholar] [CrossRef]
- Phillips, A.; Canters, F.; Khan, A.Z. Analyzing Spatial Inequalities in Use and Experience of Urban Green Spaces. Urban For. Urban Green. 2022, 74, 127674. [Google Scholar] [CrossRef]
- Sun, Y.; Saha, S.; Tost, H.; Kong, X.; Xu, C. Literature Review Reveals a Global Access Inequity to Urban Green Spaces. Sustainability 2022, 14, 1062. [Google Scholar] [CrossRef]
- Luo, J.; Zhai, S.; Song, G.; He, X.; Song, H.; Chen, J.; Liu, H.; Feng, Y. Assessing Inequity in Green Space Exposure toward a “15-Minute City” in Zhengzhou, China: Using Deep Learning and Urban Big Data. Int. J. Environ. Res. Public Health 2022, 19, 5798. [Google Scholar] [CrossRef]
- Du, S.; Sun, Y.; Yang, H.; Liu, M.; Tang, J.; Hu, G.; Tian, Y. Is Green Space More Equitable in High-Income Areas? A Case Study of Hangzhou, China. Land 2025, 14, 1183. [Google Scholar] [CrossRef]
- Wu, J.; Feng, Z.; Peng, Y.; Liu, Q.; He, Q. Neglected Green Street Landscapes: A Re-Evaluation Method of Green Justice. Urban For. Urban Green. 2019, 41, 344–353. [Google Scholar] [CrossRef]
- Lu, Y.; Sarkar, C.; Xiao, Y. The Effect of Street-Level Greenery on Walking Behavior: Evidence from Hong Kong. Soc. Sci. Med. 2018, 208, 41–49. [Google Scholar] [CrossRef]
- Lu, Y. Using Google Street View to Investigate the Association between Street Greenery and Physical Activity. Landsc. Urban Plan. 2019, 191, 103435. [Google Scholar] [CrossRef]
- Jeon, Y.; Jung, S. Spatial Equity of Urban Park Distribution: Examining the Floating Population within Urban Park Catchment Areas in the Context of the 15-Minute City. Land 2024, 13, 24. [Google Scholar] [CrossRef]
- Heynen, N.; Perkins, H.A.; Roy, P. The Political Ecology of Uneven Urban Green Space: The Impact of Political Economy on Race and Ethnicity in Producing Environmental Inequality in Milwaukee. Urban Aff. Rev. 2006, 42, 3–25. [Google Scholar] [CrossRef]
- Zhou, X.; Kim, J. Social Disparities in Tree Canopy and Park Accessibility: A Case Study of Six Cities in Illinois Using GIS and Remote Sensing. Urban For. Urban Green. 2013, 12, 88–97. [Google Scholar] [CrossRef]
- Liu, D.; Lu, Y.; Wei, D.; Hu, Y. Contrasting Inequalities in Collective Residence-Based and Pedestrian-Based Urban Greenery Exposure with Multi-Sourced Urban Big Data and Deep Learning. Appl. Geogr. 2025, 183, 103743. [Google Scholar] [CrossRef]
- Yang, W.; Yang, R.; Zhou, S. The Spatial Heterogeneity of Urban Green Space Inequity from a Perspective of the Vulnerable: A Case Study of Guangzhou, China. Cities 2022, 130, 103855. [Google Scholar] [CrossRef]
- Riondato, E.; Pilla, F.; Sarkar Basu, A.; Basu, B. Investigating the Effect of Trees on Urban Quality in Dublin by Combining Air Monitoring with I-Tree Eco Model. Sust. Cities Soc. 2020, 61, 102356. [Google Scholar] [CrossRef]
- Chen, Y.; Ge, Y.; Yang, G.; Wu, Z.; Du, Y.; Mao, F.; Liu, S.; Xu, R.; Qu, Z.; Xu, B.; et al. Inequalities of Urban Green Space Area and Ecosystem Services along Urban Center-Edge Gradients. Landsc. Urban Plan. 2022, 217, 104266. [Google Scholar] [CrossRef]
- García-Pardo, K.A.; Moreno-Rangel, D.; Domínguez-Amarillo, S.; García-Chávez, J.R. Remote Sensing for the Assessment of Ecosystem Services Provided by Urban Vegetation: A Review of the Methods Applied. Urban For. Urban Green. 2022, 74, 127636. [Google Scholar] [CrossRef]
- Ye, Y.; Richards, D.; Lu, Y.; Song, X.; Zhuang, Y.; Zeng, W.; Zhong, T. Measuring Daily Accessed Street Greenery: A Human-Scale Approach for Informing Better Urban Planning Practices. Landsc. Urban Plan. 2019, 191, 103434. [Google Scholar] [CrossRef]
- Chen, J.; Zhou, C.; Li, F. Quantifying the Green View Indicator for Assessing Urban Greening Quality: An Analysis Based on Internet-Crawling Street View Data. Ecol. Indic. 2020, 113, 106192. [Google Scholar] [CrossRef]
- Wei, J.; Yue, W.; Li, M.; Gao, J. Mapping Human Perception of Urban Landscape from Street-View Images: A Deep-Learning Approach. Int. J. Appl. Earth Obs. Geoinf. 2022, 112, 102886. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, L.; Wu, J.; Li, P.; Dong, J.; Wang, T. Decoding Urban Green Spaces: Deep Learning and Google Street View Measure Greening Structures. Urban For. Urban Green. 2023, 87, 128028. [Google Scholar] [CrossRef]
- Zhu, H.; Nan, X.; Yang, F.; Bao, Z. Utilizing the Green View Index to Improve the Urban Street Greenery Index System: A Statistical Study Using Road Patterns and Vegetation Structures as Entry Points. Landsc. Urban Plan. 2023, 237, 104780. [Google Scholar] [CrossRef]
- Li, X.; Zhang, C.; Li, W.; Ricard, R.; Meng, Q.; Zhang, W. Assessing Street-Level Urban Greenery Using Google Street View and a Modified Green View Index. Urban For. Urban Green. 2015, 14, 675–685. [Google Scholar] [CrossRef]
- Li, X.; Zhang, C.; Li, W.; Kuzovkina, Y.A.; Weiner, D. Who Lives in Greener Neighborhoods? The Distribution of Street Greenery and Its Association with Residents’ Socioeconomic Conditions in Hartford, Connecticut, USA. Urban For. Urban Green. 2015, 14, 751–759. [Google Scholar] [CrossRef]
- Long, J.; Shelhamer, E.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 3431–3440. [Google Scholar] [CrossRef]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef]
- Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid Scene Parsing Network. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 2881–2890. [Google Scholar] [CrossRef]
- Hao, S.; Zhou, Y.; Guo, Y. A Brief Survey on Semantic Segmentation with Deep Learning. Neurocomputing 2020, 406, 302–321. [Google Scholar] [CrossRef]
- Lu, Y.; Ferranti, E.J.S.; Chapman, L.; Pfrang, C. Assessing Urban Greenery by Harvesting Street View Data: A Review. Urban For. Urban Green. 2023, 83, 127917. [Google Scholar] [CrossRef]
- Nghiem, L.T.P.; Zhang, Y.; Oh, R.R.Y.; Chang, C.; Tan, C.L.Y.; Shannahan, D.F.; Lin, B.B.; Gaston, K.J.; Fuller, R.A.; Carrasco, L.R. Equity in Green and Blue Spaces Availability in Singapore. Landsc. Urban Plan. 2021, 210, 104083. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, Y.; Zhou, S.; Cheng, Y.; Zhao, B. Do Various Dimensions of Exposure Metrics Affect Biopsychosocial Pathways Linking Green Spaces to Mental Health? A Cross-Sectional Study in Nanjing, China. Landsc. Urban Plan. 2022, 226, 104494. [Google Scholar] [CrossRef]
- Wüstemann, H.; Kalisch, D.; Kolbe, J. Access to Urban Green Space and Environmental Inequalities in Germany. Landsc. Urban Plan. 2017, 164, 124–131. [Google Scholar] [CrossRef]
- Sharifi, F.; Nygaard, A.; Stone, W.M.; Levin, I. Accessing Green Space in Melbourne: Measuring Inequity and Household Mobility. Landsc. Urban Plan. 2021, 207, 104004. [Google Scholar] [CrossRef]
- Kimpton, A. A Spatial Analytic Approach for Classifying Greenspace and Comparing Greenspace Social Equity. Appl. Geogr. 2017, 82, 129–142. [Google Scholar] [CrossRef]
- Hamim, O.F.; Ukkusuri, S.V. Towards Safer Streets: A Framework for Unveiling Pedestrians’ Perceived Road Safety Using Street View Imagery. Accid. Anal. Prev. 2024, 195, 107400. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, Q.; Deng, Z.; Fan, X.; Xu, Z.; Kang, X.; Pan, K.; Guo, Z. Research on Green View Index of Urban Roads Based on Street View Image Recognition: A Case Study of Changsha Downtown Areas. Sustainability 2022, 14, 16063. [Google Scholar] [CrossRef]
- Peng, L.; Zhang, L.; Li, X.; Wang, P.; Zhao, W.; Wang, Z.; Jiao, L.; Wang, H. Spatio-Temporal Patterns of Ecosystem Services Provided by Urban Green Spaces and Their Equity along Urban–Rural Gradients in the Xi’an Metropolitan Area, China. Remote Sens. 2022, 14, 4299. [Google Scholar] [CrossRef]
- Huang, Z.; Tang, L.; Qiao, P.; He, J.; Su, H. Socioecological Justice in Urban Street Greenery Based on Green View Index-a Case Study within the Fuzhou Third Ring Road. Urban For. Urban Green. 2024, 95, 128313. [Google Scholar] [CrossRef]
- Zhang, W.; Zeng, H. Spatial Differentiation Characteristics and Influencing Factors of the Green View Index in Urban Areas Based on Street View Images: A Case Study of Futian District, Shenzhen, China. Urban For. Urban Green. 2024, 93, 128219. [Google Scholar] [CrossRef]
- Cui, L.; Yang, H.; Heng, X.; Song, R.; Wu, L.; Hu, Y. Urban Street Greening in a Developed City: The Influence of COVID-19 and Socio-Economic Dynamics in Beijing. Land 2025, 14, 238. [Google Scholar] [CrossRef]
- Li, X. Examining the Spatial Distribution and Temporal Change of the Green View Index in New York City Using Google Street View Images and Deep Learning. Environ. Plan. B-Urban Anal. City Sci. 2021, 48, 2039–2054. [Google Scholar] [CrossRef]
- Xia, Y.; Yabuki, N.; Fukuda, T. Development of a System for Assessing the Quality of Urban Street-Level Greenery Using Street View Images and Deep Learning. Urban For. Urban Green. 2021, 59, 126995. [Google Scholar] [CrossRef]
- Orihara, N. Study on the Evaluation of Green Landscapes: Consideration of Green Evaluation Methods for Good Landscape Formation. Build. Environ. Energy Conserv. Inf 2006, 27, 32–35. Available online: http://id.ndl.go.jp/bib/8530981 (accessed on 12 April 2025).
- Tang, L.; He, J.; Peng, W.; Huang, H.; Chen, C.; Yu, C. Assessing the Visibility of Urban Greenery Using MLS LiDAR Data. Landsc. Urban Plan. 2023, 232, 104662. [Google Scholar] [CrossRef]
- Getis, A.; Ord, J.K. The Analysis of Spatial Association by Use of Distance Statistics. Geogr. Anal. 1992, 24, 189–206. [Google Scholar] [CrossRef]
- Shackleton, S.; Chinyimba, A.; Hebinck, P.; Shackleton, C.; Kaoma, H. Multiple Benefits and Values of Trees in Urban Landscapes in Two Towns in Northern South Africa. Landsc. Urban Plan. 2015, 136, 76–86. [Google Scholar] [CrossRef]
- Kotzen, B. Chapter 4.6—Economic Benefits and Costs of Green Streets. In Nature Based Strategies for Urban and Building Sustainability; Pérez, G., Perini, K., Eds.; Butterworth-Heinemann: Oxford, UK, 2018; pp. 319–331. [Google Scholar] [CrossRef]
- Lorenz, M.O. Methods of Measuring the Concentration of Wealth. Publ. Am. Stat. Assoc. 1905, 9, 209–219. [Google Scholar] [CrossRef]
- Martin, A.J.F.; Conway, T.M. Using the Gini Index to Quantify Urban Green Inequality: A Systematic Review and Recommended Reporting Standards. Landsc. Urban Plan. 2025, 254, 105231. [Google Scholar] [CrossRef]
- Qin, Y.; Rao, J.N.K.; Wu, C. Empirical Likelihood Confidence Intervals for the Gini Measure of Income Inequality. Econ. Model. 2010, 27, 1429–1435. [Google Scholar] [CrossRef]
- Zhou, H.; Tao, G.; Yan, X.; Sun, J. Influences of Greening and Structures on Urban Thermal Environments: A Case Study in Xuzhou City, China. Urban For. Urban Green. 2021, 66, 127386. [Google Scholar] [CrossRef]
- Li, T.; Zheng, X.; Wu, J.; Zhang, Y.; Fu, X.; Deng, H. Spatial Relationship between Green View Index and Normalized Differential Vegetation Index within the Sixth Ring Road of Beijing. Urban For. Urban Green. 2021, 62, 127153. [Google Scholar] [CrossRef]
- Xue, C.; Jin, C.; Xu, J. Inequality in Urban Green Space Benefits: Combining Street Greenery and Park Greenery. PLoS ONE 2022, 17, e0273191. [Google Scholar] [CrossRef] [PubMed]
- Hwang, B.; Ko, C.; Im, D.; Kang, W. Network-Based Assessment of Urban Forest and Green Space Accessibility in Six Major Cities: London, New York, Paris, Tokyo, Seoul, and Beijing. Urban For. Urban Green. 2025, 107, 128781. [Google Scholar] [CrossRef]
- Reyes-Riveros, R.; Altamirano, A.; De La Barrera, F.; Rozas-Vásquez, D.; Vieli, L.; Meli, P. Linking Public Urban Green Spaces and Human Well-Being: A Systematic Review. Urban For. Urban Green. 2021, 61, 127105. [Google Scholar] [CrossRef]
- Hansen, R.; Olafsson, A.S.; van der Jagt, A.P.N.; Rall, E.; Pauleit, S. Planning Multifunctional Green Infrastructure for Compact Cities: What Is the State of Practice? Ecol. Indic. 2019, 96, 99–110. [Google Scholar] [CrossRef]
- Chapman, C.; Hall, J.W. Designing Green Infrastructure and Sustainable Drainage Systems in Urban Development to Achieve Multiple Ecosystem Benefits. Sust. Cities Soc. 2022, 85, 104078. [Google Scholar] [CrossRef]
- Zhu, J.; Qiu, L.; Su, Y.; Guo, Q.; Hu, T.; Bao, H.; Luo, J.; Wu, S.; Xu, Q.; Wang, Z.; et al. Disentangling the Effects of the Surrounding Environment on Street-Side Greenery: Evidence from Hangzhou. Ecol. Indic. 2022, 143, 109153. [Google Scholar] [CrossRef]
- Lu, Y.; Yang, Y.; Sun, G.; Gou, Z. Associations between Overhead-View and Eye-Level Urban Greenness and Cycling Behaviors. Cities 2019, 88, 10–18. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, Y.; Tu, W.; Zeng, X. Is Eye-Level Greening Associated with the Use of Dockless Shared Bicycles? Urban For. Urban Green. 2020, 51, 126690. [Google Scholar] [CrossRef]
- Li, X.; Ma, X.; Hu, Z.; Li, S. Investigation of Urban Green Space Equity at the City Level and Relevant Strategies for Improving the Provisioning in China. Land Use Policy 2021, 101, 105144. [Google Scholar] [CrossRef]
- Lin, J.; Wang, Q. Are Street Tree Inequalities Growing or Diminishing over Time? The Inequity Remediation Potential of the MillionTreesNYC Initiative. J. Environ. Manag. 2021, 285, 112207. [Google Scholar] [CrossRef]
- Moraci, F.; Errigo, M.F.; Fazia, C.; Burgio, G.; Foresta, S. Making Less Vulnerable Cities: Resilience as a New Paradigm of Smart Planning. Sustainability 2018, 10, 755. [Google Scholar] [CrossRef]
- Jiang, B.; Deal, B.; Pan, H.; Larsen, L.; Hsieh, C.-H.; Chang, C.-Y.; Sullivan, W.C. Remotely-Sensed Imagery vs. Eye-Level Photography: Evaluating Associations among Measurements of Tree Cover Density. Landsc. Urban Plan. 2017, 157, 270–281. [Google Scholar] [CrossRef]
- Nordh, H.; Østby, K. Pocket Parks for People—A Study of Park Design and Use. Urban For. Urban Green. 2013, 12, 12–17. [Google Scholar] [CrossRef]
- Jim, C.Y.; Shan, X. Socioeconomic Effect on Perception of Urban Green Spaces in Guangzhou, China. Cities 2013, 31, 123–131. [Google Scholar] [CrossRef]
- Collins, R.; Schaafsma, M.; Hudson, M.D. The Value of Green Walls to Urban Biodiversity. Land Use Policy 2017, 64, 114–123. [Google Scholar] [CrossRef]
- Wang, R.; Lu, Y.; Wu, X.; Liu, Y.; Yao, Y. Relationship between Eye-Level Greenness and Cycling Frequency around Metro Stations in Shenzhen, China: A Big Data Approach. Sustain. Cities Soc. 2020, 59, 102201. [Google Scholar] [CrossRef]
- Li, Y.; Du, H.; Sezer, C. Sky Gardens, Public Spaces and Urban Sustainability in Dense Cities: Shenzhen, Hong Kong and Singapore. Sustainability 2022, 14, 9824. [Google Scholar] [CrossRef]
Area | Min | Max | Mean | Std |
---|---|---|---|---|
Points | 0 | 0.910 | 0.167 | 0.141 |
Roads | 0 | 0.901 | 0.142 | 0.144 |
Districts | 0.152 | 0.203 | 0.177 | 0.018 |
Area | Gini Coefficient | 95% CI |
---|---|---|
Hangzhou (Overall) | 0.384 | 0.352–0.415 |
Xihu District | 0.467 | 0.409–0.518 |
Shangcheng District | 0.317 | 0.247–0.386 |
Gongshu District | 0.373 | 0.331–0.418 |
Binjiang District | 0.268 | 0.218–0.313 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Liu, C.; Xu, M.; Zheng, S. Equity Evaluation of Street-Level Greenery Based on Green View Index from Street View Images: A Case Study of Hangzhou, China. Land 2025, 14, 1653. https://doi.org/10.3390/land14081653
Zhang J, Liu C, Xu M, Zheng S. Equity Evaluation of Street-Level Greenery Based on Green View Index from Street View Images: A Case Study of Hangzhou, China. Land. 2025; 14(8):1653. https://doi.org/10.3390/land14081653
Chicago/Turabian StyleZhang, Jinting, Cheng Liu, Min Xu, and Sheng Zheng. 2025. "Equity Evaluation of Street-Level Greenery Based on Green View Index from Street View Images: A Case Study of Hangzhou, China" Land 14, no. 8: 1653. https://doi.org/10.3390/land14081653
APA StyleZhang, J., Liu, C., Xu, M., & Zheng, S. (2025). Equity Evaluation of Street-Level Greenery Based on Green View Index from Street View Images: A Case Study of Hangzhou, China. Land, 14(8), 1653. https://doi.org/10.3390/land14081653