Supply and Demand Balance of Ecosystem Services in the Ulanbuh Desert
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. ES Supply
2.3.1. Water Yield (Wy) Supply
2.3.2. Soil Conservation (Sc) Supply
2.3.3. Windbreak and Soil Fixation (Ws) Supply
2.3.4. Carbon Sequestration (Cs) Supply
2.4. ES Demand
2.4.1. Wy Demand
2.4.2. Sc Demand
2.4.3. Ws Demand
2.4.4. Cs Demand
2.5. Supply and Demand for ES and Driving Factors
2.5.1. Supply and Demand
2.5.2. Analysis of Driving Factors
2.6. The Univariate Linear Regression Trend Test
3. Results
3.1. Changes in ES Supply
3.2. Changes in ES Demand
3.3. Changes in Supply-Demand Ratio for ES
3.4. Driving Factors
4. Discussion
4.1. Spatio-Temporal Characteristics of Supply–Demand Balance
4.2. Multiple Factors Drive the ESDR
4.3. Ecological Conservation Strategies in Response to Declining ESDR
4.4. Limitation and Prospect
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ES | Ecosystem services |
Wy | Water yield |
Sc | Soil conservation |
Ws | Windbreak and sand fixation |
Cs | Carbon sequestration |
PDA | Panel data analysis |
ESDR | ES supply–demand ratio |
ESDRWy | Wy supply and demand ratio |
ESDRSc | Sc supply and demand ratio |
ESDRWs | Ws supply and demand ratio |
ESDRCs | Cs supply and demand ratio |
NDVI | Normalized difference vegetation index |
GDP | Gross domestic product |
SPEI | Standardized precipitation evapotranspiration index |
Appendix A
References
- Brauman, K.A.; Daily, G.C.; Duarte, T.K.; Mooney, H.A. The Nature and Value of Ecosystem Services: An Overview Highlighting Hydrologic Services. Annu. Rev. Environ. Resour. 2007, 32, 67–98. [Google Scholar] [CrossRef]
- Scholes, R.; Reyers, B.; Biggs, R.; Spierenburg, M.; Duriappah, A. Multi-Scale and Cross-Scale Assessments of Social–Ecological Systems and Their Ecosystem Services. Curr. Opin. Environ. Sustain. 2013, 5, 16–25. [Google Scholar] [CrossRef]
- Castillo-Eguskitza, N.; Martín-López, B.; Onaindia, M. A Comprehensive Assessment of Ecosystem Services: Integrating Supply, Demand and Interest in the Urdaibai Biosphere Reserve. Ecol. Indic. 2018, 93, 1176–1189. [Google Scholar] [CrossRef]
- Xiao, Y.; Xie, G.; Lu, C.; Xu, J. Involvement of ecosystem service flows in human wellbeing based on the relationship between supply and demand. Acta Ecol. Sin. 2016, 36, 3096–3102. [Google Scholar]
- Wolff, S.; Schulp, C.J.E.; Verburg, P.H. Mapping Ecosystem Services Demand: A Review of Current Research and Future Perspectives. Ecol. Indic. 2015, 55, 159–171. [Google Scholar] [CrossRef]
- Wu, J.; Guo, X.; Zhu, Q.; Guo, J.; Han, Y.; Zhong, L.; Liu, S. Threshold Effects and Supply-Demand Ratios Should Be Considered in the Mechanisms Driving Ecosystem Services. Ecol. Indic. 2022, 142, 109281. [Google Scholar] [CrossRef]
- Bai, Y.; Ochuodho, T.O.; Yang, J. Impact of Land Use and Climate Change on Water-Related Ecosystem Services in Kentucky, USA. Ecol. Indic. 2019, 102, 51–64. [Google Scholar] [CrossRef]
- Liu, C.; Yan, X.; Han, Z.; Liu, Y.; Li, X.; Li, X.; Zhong, J. Guiding and Constraining Reclamation for Coastal Zone through Identification of Response Thresholds for Ecosystem Services Supply–Demand Relationships. Land Degrad. Dev. 2024, 35, 1804–1817. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, L.; Li, X.; Li, Y.; Fu, B. Integrating Ecosystem Service Supply and Demand into Ecological Risk Assessment: A Comprehensive Framework and Case Study. Landsc. Ecol. 2021, 36, 2977–2995. [Google Scholar] [CrossRef]
- Pan, Z.; Wang, J. Spatially Heterogeneity Response of Ecosystem Services Supply and Demand to Urbanization in China. Ecol. Eng. 2021, 169, 106303. [Google Scholar] [CrossRef]
- Chen, Y.; Qiao, X.; Yang, Y.; Zheng, J.; Dai, Y.; Zhang, J. Identifying the Spatial Relationships and Drivers of Ecosystem Service Supply–Demand Matching: A Case of Yiluo River Basin. Ecol. Indic. 2024, 163, 112122. [Google Scholar] [CrossRef]
- Ma, L.; Liu, H.; Peng, J.; Wu, J. A review of ecosystem services supply and demand. Acta Geogr. Sin. 2017, 72, 1277–1289. [Google Scholar] [CrossRef]
- Zhai, T.; Ma, Y.; Huang, L.; Lu, Y.; Li, L.; Chen, Y.; Chang, M.; Ma, Z. Research on the Spatiotemporal Evolution Characteristics and Driving Mechanisms of Supply–Demand Risks of Ecosystem Services in the Yellow River Basin Integrating the Hierarchy of Needs Theory. Ecol. Indic. 2025, 171, 113229. [Google Scholar] [CrossRef]
- Zhai, T.; Wang, J.; Jin, Z.; Qi, Y.; Fang, Y.; Liu, J. Did Improvements of Ecosystem Services Supply-Demand Imbalance Change Environmental Spatial Injustices? Ecol. Indic. 2020, 111, 106068. [Google Scholar] [CrossRef]
- He, G.; Zhang, L.; Wei, X.; Jin, G. Scale Effects on the Supply–Demand Mismatches of Ecosystem Services in Hubei Province, China. Ecol. Indic. 2023, 153, 110461. [Google Scholar] [CrossRef]
- Lorilla, R.S.; Kalogirou, S.; Poirazidis, K.; Kefalas, G. Identifying Spatial Mismatches between the Supply and Demand of Ecosystem Services to Achieve a Sustainable Management Regime in the Ionian Islands (Western Greece). Land Use Policy 2019, 88, 104171. [Google Scholar] [CrossRef]
- Yang, M.; Chen, Y.; Yang, Y.; Yan, Y. Nonlinear Relationship and Threshold-Based Zones between Ecosystem Service Supply-Demand Ratio and Land Use Intensity: A Case Study of the Beijing-Tianjin-Hebei Region, China. J. Clean. Prod. 2024, 481, 144148. [Google Scholar] [CrossRef]
- Zhang, X.; Li, X.; Wang, Z.; Liu, Y.; Yao, L. A Study on Matching Supply and Demand of Ecosystem Services in the Hexi Region of China Based on Multi-Source Data. Sci. Rep. 2024, 14, 1332. [Google Scholar] [CrossRef]
- Wu, X.; Liu, S.; Zhao, S.; Hou, X.; Xu, J.; Dong, S.; Liu, G. Quantification and Driving Force Analysis of Ecosystem Services Supply, Demand and Balance in China. Sci. Total Environ. 2019, 652, 1375–1386. [Google Scholar] [CrossRef]
- Shen, J.; Li, S.; Wang, H.; Wu, S.; Liang, Z.; Zhang, Y.; Wei, F.; Li, S.; Ma, L.; Wang, Y.; et al. Understanding the Spatial Relationships and Drivers of Ecosystem Service Supply-Demand Mismatches towards Spatially-Targeted Management of Social-Ecological System. J. Clean. Prod. 2023, 406, 136882. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, X.; Shan, R.; Wang, B. Mapping and Assessing Supply–Demand Matching of Recreational Ecosystem Services in Shandong Province, China. Ecol. Indic. 2024, 160, 111859. [Google Scholar] [CrossRef]
- Xue, C.; Xue, L.; Chen, J.; Tarolli, P.; Chen, X.; Zhang, H.; Qian, J.; Zhou, Y.; Liu, X. Understanding Driving Mechanisms behind the Supply-Demand Pattern of Ecosystem Services for Land-Use Administration: Insights from a Spatially Explicit Analysis. J. Clean. Prod. 2023, 427, 139239. [Google Scholar] [CrossRef]
- Burkhard, B.; Kroll, F.; Müller, F.; Windhorst, W. Landscapes’ Capacities to Provide Ecosystem Services—A Concept for Land-Cover Based Assessments. Landsc. Online 2009, 15, 1–12. [Google Scholar] [CrossRef]
- Lang, Y.; Song, W.; Zhang, Y. Responses of the Water-Yield Ecosystem Service to Climate and Land Use Change in Sancha River Basin, China. Phys. Chem. Earth Parts A/B/C 2017, 101, 102–111. [Google Scholar] [CrossRef]
- Wei, H.; Fan, W.; Wang, X.; Lu, N.; Dong, X.; Zhao, Y.; Ya, X.; Zhao, Y. Integrating Supply and Social Demand in Ecosystem Services Assessment: A Review. Ecosyst. Serv. 2017, 25, 15–27. [Google Scholar] [CrossRef]
- Wei, G.; Zhang, C.; Li, Q.; Wang, H.; Wang, R.; Zhang, Y.; Yuan, Y. An Evaluation of Topsoil Carbon Storage in Chinese Deserts. Sci. Total Environ. 2023, 872, 162284. [Google Scholar] [CrossRef]
- Taylor, N.T.; Davis, K.M.; Abad, H.; McClung, M.R.; Moran, M.D. Ecosystem Services of the Big Bend Region of the Chihuahuan Desert. Ecosyst. Serv. 2017, 27, 48–57. [Google Scholar] [CrossRef]
- Wauer, R.H.; Riskind, D.H. Transactions of the Symposium on the Biological Resources of the Chihuahuan Desert Region, United States and Mexico, Sul Ross State University, Alpine, Texas, 17–18 October 1974; US Department of the Interior, National Park Service: Washington, DC, USA, 1977. [Google Scholar]
- Safriel, U.; Adeel, Z.; Niemeijer, D.; Puigdefabregas, J.; White, R.; Lal, R.; Winslow, M.; Ziedler, J.; Prince, S.; Archer, E.; et al. Dryland systems. In Millennium Ecosystem Assessment: Current State and Trends Assessment; El-Kassas, M., Ezcurra, E., Eds.; Island Press: Washington, DC, USA, 2005; pp. 623–662. [Google Scholar]
- Chen, H.; Costanza, R. Valuation and Management of Desert Ecosystems and Their Services. Ecosyst. Serv. 2024, 66, 101607. [Google Scholar] [CrossRef]
- D’Odorico, P.; Bhattachan, A.; Davis, K.F.; Ravi, S.; Runyan, C.W. Global Desertification: Drivers and Feedbacks. Adv. Water Resour. 2013, 51, 326–344. [Google Scholar] [CrossRef]
- Scheffer, M.; Carpenter, S.; Foley, J.A.; Folke, C.; Walker, B. Catastrophic Shifts in Ecosystems. Nature 2001, 413, 591–596. [Google Scholar] [CrossRef]
- Bengtsson, J.; Bullock, J.M.; Egoh, B.; Everson, C.; Everson, T.; O’Connor, T.; O’Farrell, P.J.; Smith, H.G.; Lindborg, R. Grasslands—More Important for Ecosystem Services than You Might Think. Ecosphere 2019, 10, e02582. [Google Scholar] [CrossRef]
- Ellison, D.; Futter, M.N.; Bishop, K. On the Forest Cover–Water Yield Debate: From Demand- to Supply-Side Thinking. Glob. Change Biol. 2012, 18, 806–820. [Google Scholar] [CrossRef]
- Morri, E.; Pruscini, F.; Scolozzi, R.; Santolini, R. A Forest Ecosystem Services Evaluation at the River Basin Scale: Supply and Demand between Coastal Areas and Upstream Lands (Italy). Ecol. Indic. 2014, 37, 210–219. [Google Scholar] [CrossRef]
- Song, J.; Wen, L.; Wang, F.; Li, K.; Wu, C.; Zhang, H.; Zhang, X. Spatiotemporal dynamics of ecosystem service value in Ulan Buh Desert. Acta Ecol. Sin. 2021, 41, 2201–2211. [Google Scholar] [CrossRef]
- Lu, T.; Wu, J.; Lu, Y.; Zhou, W.; Lu, Y. Effects of Groundwater Depth on Vegetation Coverage in the Ulan Buh Desert in a Recent 20-Year Period. Water 2023, 15, 3000. [Google Scholar] [CrossRef]
- Liu, Y.; Qin, F.; Li, L.; Yang, Z.; Tang, P.; Yang, L.; Tian, T. Interplay of Environmental Shifts and Anthropogenic Factors with Vegetation Dynamics in the Ulan Buh Desert over the Past Three Decades. Forests 2024, 15, 1583. [Google Scholar] [CrossRef]
- Droogers, P.; Allen, R. Estimating reference evapotranspiration under inaccurate data conditions. Irrig. Drain. Syst. 2002, 16, 33–45. [Google Scholar]
- Rao, E.; Ouyang, Z.; Yu, X.; Xiao, Y. Spatial Patterns and Impacts of Soil Conservation Service in China. Geomorphology 2014, 207, 64–70. [Google Scholar] [CrossRef]
- Renard, K.G.; Foster, G.R.; Weesies, G.A.; Porter, J.P. RUSLE: Revised Universal Soil Loss Equation. J. Soil Water Conserv. 1991, 46, 30–33. [Google Scholar] [CrossRef]
- Pan, H.; Wang, J.; Du, Z.; Wu, Z.; Zhang, H.; Ma, K. Spatiotemporal Evolution of Ecosystem Services and Its Potential Drivers in Coalfields of Shanxi Province, China. Ecol. Indic. 2023, 148, 110109. [Google Scholar] [CrossRef]
- Gong, G.; Liu, J.; Shao, Q. Effects of Vegetation Coverage Change on Soil Conservation Service of Typical Steppe in Inner Mongolia. J. Geo-Inf. Sci. 2014, 16, 426–434. [Google Scholar]
- Fryrear, D.W.; Bilbro, J.D.; Saleh, A.; Schomberg, H.; Stout, J.E.; Zobeck, T.M. RWEQ: Improved Wind Erosion Technology. J. Soil Water Conserv. 2000, 55, 183–189. [Google Scholar] [CrossRef]
- Yang, Y.; Zheng, H.; Kong, L.; Huang, B.; Xu, W.; Ouyang, Z. Mapping Ecosystem Services Bundles to Detect High- and Low-Value Ecosystem Services Areas for Land Use Management. J. Clean. Prod. 2019, 225, 11–17. [Google Scholar] [CrossRef]
- Zhang, D.; Jing, P.; Sun, P.; Ren, H.; Ai, Z. The Non-Significant Correlation between Landscape Ecological Risk and Ecosystem Services in Xi’an Metropolitan Area, China. Ecol. Indic. 2022, 141, 109118. [Google Scholar] [CrossRef]
- Zhu, W. Remote Sensing Estimation of Vegetation Net Primary Productivity of Terrestrial Ecosystems in China and Its Relationship with Climate Change. Ph.D. Thesis, Beijing Normal University, Beijing, China, 2005. [Google Scholar]
- Cao, W.; Jia, G.; Yang, Q.; Sun, H.; Wang, L.; Svenning, J.-C.; Wen, L. Construction of Ecological Network and Its Temporal and Spatial Evolution Characteristics: A Case Study of Ulanqab. Ecol. Indic. 2024, 166, 112344. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, Y.; Hou, Z.; Shi, J.; Gong, J. Spatiotemporal Changes in the Watershed Ecosystem Services Supply and Demand Relationships in the Eastern Margin of the Qinghai-Tibetan Plateau. Diversity 2023, 15, 551. [Google Scholar] [CrossRef]
- Yuan, Y.; Bai, Z.; Zhang, J.; Huang, Y. Investigating the Trade-Offs between the Supply and Demand for Ecosystem Services for Regional Spatial Management. J. Environ. Manag. 2023, 325, 116591. [Google Scholar] [CrossRef]
- Wang, X.; Jia, Z.; Feng, X.; Ma, J.; Zhang, X.; Zhou, J.; Fu, X. Analysis on supply and demand balance of soil conservation service and its driving factors on the Loess Plateau. Acta Ecol. Sin. 2023, 43, 2722–2733. Available online: https://link.cnki.net/urlid/11.2031.Q.20220812.1539.002 (accessed on 24 June 2025). (In Chinese).
- Gong, J.; Shi, J.; Zhu, C.; Li, X.; Zhang, Z.; Zhang, W.; Li, Y.; Hu, Y. Accounting for Land Use in an Analysis of the Spatial and Temporal Characteristics of Ecosystem Services Supply and Demand in a Desert Steppe of Inner Mongolia, China. Ecol. Indic. 2022, 144, 109567. [Google Scholar] [CrossRef]
- Xu, M. The Correlation Between Urban Ecosystem Services Supply and Demand and Residents’ Well-Being in the Arid Regions of Northwest China. Master’s Thesis, China University of Geosciences, Wuhan, China, 2021. [Google Scholar]
- Zhai, T.; Chang, M.; Ma, Y.; Huang, L.; Li, L. Exploring the Changes and Driving Mechanisms in the Production-Transport-Consumption Process of Ecosystem Services Flow in the Yellow River Basin under the Background of Policy Changes. Ecol. Indic. 2023, 151, 110316. [Google Scholar] [CrossRef]
- Li, J.; Jiang, H.; Bai, Y.; Alatalo, J.M.; Li, X.; Jiang, H.; Liu, G.; Xu, J. Indicators for Spatial–Temporal Comparisons of Ecosystem Service Status between Regions: A Case Study of the Taihu River Basin, China. Ecol. Indic. 2016, 60, 1008–1016. [Google Scholar] [CrossRef]
- Sun, H.; Cao, W.; Liu, H.; Zhang, X.; Wang, L.; Wen, L. Evaluation and Driving Factors of Ecological Integrity in the Alxa League from 1990 to 2020. Front. Ecol. Evol. 2023, 11, 1266736. [Google Scholar] [CrossRef]
- Lu, Y.; Xu, X.; Zhao, J.; Han, F. Spatiotemporal Evolution of Mountainous Ecosystem Services in an Arid Region and Its Influencing Factors: A Case Study of the Tianshan Mountains in Xinjiang. Land 2022, 11, 2164. [Google Scholar] [CrossRef]
- Zulfikar, R. Estimation Model and Selection Method of Panel Data Regression: An Overview of Common Effect, Fixed Effect, and Random Effect Model. JEMA: Jur. Ilm. Bid. Akuntansi. 2018, 9, 1–10. [Google Scholar] [CrossRef]
- Yoo, W.; Mayberry, R.; Bae, S.; Singh, K.; He, Q.P.; Lillard, J.W., Jr. A Study of Effects of MultiCollinearity in the Multivariable Analysis. Int. J. Appl. Sci. Technol. 2014, 4, 9–19. [Google Scholar]
- Shi, L.; Halik, Ü.; Mamat, Z.; Aishan, T.; Welp, M. Identifying Mismatches of Ecosystem Services Supply and Demand under Semi-arid Conditions: The Case of the Oasis City Urumqi, China. Integr. Environ. Assess. Manag. 2021, 17, 1293–1304. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Wei, H.; Dong, X.; Liu, Y.; Xue, H. Evaluating the Ecological Benefits of Plantations in Arid Areas from the Perspective of Ecosystem Service Supply and Demand-Based on Emergy Analysis. Sci. Total Environ. 2020, 705, 135853. [Google Scholar] [CrossRef]
- Huxman, T.E.; Snyder, K.A.; Tissue, D.; Leffler, A.J.; Ogle, K.; Pockman, W.T.; Sandquist, D.R.; Potts, D.L.; Schwinning, S. Precipitation Pulses and Carbon Fluxes in Semiarid and Arid Ecosystems. Oecologia 2004, 141, 254–268. [Google Scholar] [CrossRef]
- Luo, Y.; Wu, L.; Wang, R.; Wang, X.; Du, B.; Pang, S. Will Vegetation Restoration Affect the Supply-Demand Relationship of Water Yield in an Arid and Semi-Arid Watershed? Sci. Total Environ. 2025, 959, 178292. [Google Scholar] [CrossRef]
- Kidron, G.J. Analysis of Dew Precipitation in Three Habitats within a Small Arid Drainage Basin, Negev Highlands, Israel. Atmos. Res. 2000, 55, 257–270. [Google Scholar] [CrossRef]
- Li, S.; Tang, Q.; Lei, J.; Xu, X.; Jiang, J.; Wang, Y. An Overview of Non-Conventional Water Resource Utilization Technologies for Biological Sand Control in Xinjiang, Northwest China. Env. Earth Sci. 2015, 73, 873–885. [Google Scholar] [CrossRef]
- Wang, P.; Xu, M. Evaluating the Inter-Annual Surplus/Deficit Dynamic of Water Retention Service in the Yellow River Basin, China. Ecol. Indic. 2022, 145, 109695. [Google Scholar] [CrossRef]
- Shao, Y.; Zhang, Y.; Wu, X.; Bourque, C.P.-A.; Zhang, J.; Qin, S.; Wu, B. Relating Historical Vegetation Cover to Aridity Patterns in the Greater Desert Region of Northern China: Implications to Planned and Existing Restoration Projects. Ecol. Indic. 2018, 89, 528–537. [Google Scholar] [CrossRef]
- Duan, Y.; Halike, A.; Luo, J.; Yao, K.; Yao, L.; Tang, H.; Tuheti, B. Multi-Scale Supply and Demand Relationships of Ecosystem Services Under Multiple Scenarios and Ecological Zoning to Promote Sustainable Urban Ecological Development in Arid Regions of China. Sustainability 2024, 16, 9641. [Google Scholar] [CrossRef]
- Yan, Y.; Li, J.; Li, J.; Jiang, T. Spatiotemporal Changes in the Supply and Demand of Ecosystem Services in the Kaidu-Kongque River Basin, China. Sustainability 2023, 15, 8949. [Google Scholar] [CrossRef]
- Chen, X.; Jia, L.; Jia, T.; Hao, Z. An Carbon Neutrality Industrial Chain of “Desert-Photovoltaic Power Generation-Ecological Agriculture”: Practice from the Ulan Buh Desert, Dengkou, Inner Mongolia. China Geol. 2022, 5, 549–552. [Google Scholar] [CrossRef]
- Huang, B.; Li, Z.; Zhao, Z.; Wu, H.; Zhou, H.; Cong, S. Near-Ground Impurity-Free Wind and Wind-Driven Sand of Photovoltaic Power Stations in a Desert Area. J. Wind Eng. Ind. Aerodyn. 2018, 179, 483–502. [Google Scholar] [CrossRef]
- Liu, X.; Wang, N.; Zhao, M.; Hu, X. Experimental Study on the Effect of Sand and Dust on the Performance of Photovoltaic Modules in Desert Areas. Energies 2024, 17, 682. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, J.; Mu, R.; Wang, D.; Wang, Z.; An, J.; Li, X. Effects of Two Ecological Governance Measures for Photovoltaic Power Stations on Plant Growth and Soil Nutrients. Plants 2025, 14, 797. [Google Scholar] [CrossRef]
- Farhadi, A.; Ahmadi, H.; Soufi, M.; Motamedvaziri, B.; Moeini, A. Assessment of the Potential of Semi-Arid Plants to Reduce Soil Erosion in the Konartakhteh Watershed, Iran. Arab. J. Geosci. 2018, 11, 518. [Google Scholar] [CrossRef]
- Ghasemzadeh, Z.; Parhizkar, M.; Zomorodian, M.; Shamsi, R.; mirmohammadmeygooni, S.; Shabanpour, M. The Role of Extracellular Polysaccharide Produced by Bradyrhizobium strain in Root Growth, Improvement of Soil Aggregate Stability and Reduction of Soil Detachment Capacity. Rhizosphere 2023, 27, 100771. [Google Scholar] [CrossRef]
- Du, H.; Xue, X.; Wang, T. Estimation of the quantity of aeolian saltation sediments blown into the Yellow River from the Ulanbuh Desert, China. J. of. Arid. Land 2018, 6, 205–218. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Y.; Yuan, X.; Shao, Y.; Bai, Y. Identifying Ecosystem Service Supply-Demand Imbalance for Sustainable Land Management in China’s Loess Plateau. Land Use Policy 2022, 123, 106423. [Google Scholar] [CrossRef]
- Wei, H.; Li, R.; Yang, Q. Research Advances of Vegetation Effect on Soil and Water Conservation in China. Acta Phytoecol. Sin. 2002, 26, 489–496. [Google Scholar]
- Song, S.; Chen, X.; Hu, Z.; Zan, C.; Liu, T.; De Maeyer, P.; Sun, Y. Deciphering the Impact of Wind Erosion on Ecosystem Services: An Integrated Framework for Assessment and Spatiotemporal Analysis in Arid Regions. Ecol. Indic. 2023, 154, 110693. [Google Scholar] [CrossRef]
- Chen, T.; Feng, Z.; Zhao, H.; Wu, K. Identification of Ecosystem Service Bundles and Driving Factors in Beijing and Its Surrounding Areas. Sci. Total Environ. 2020, 711, 134687. [Google Scholar] [CrossRef]
- Trinh, T.; Ishida, K.; Kavvas, M.; Ercan, A.; Carr, K. Assessment of 21st Century Drought Conditions at Shasta Dam Based on Dynamically Projected Water Supply Conditions by a Regional Climate Model Coupled with a Physically-Based Hydrology Model. Sci. Total Environ. 2017, 586, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Mashizi, A.K.; Sharafatmandrad, M. Investigating Tradeoffs between Supply, Use and Demand of Ecosystem Services and Their Effective Drivers for Sustainable Environmental Management. J. Environ. Manag. 2021, 289, 112534. [Google Scholar] [CrossRef]
- Wang, L.; Gao, Y.; Cao, X.; Lu, W. Carbon Dioxide Fluxes of Cyanobacterial Crusts and Underlying Soil under Different Precipitation Patterns in the Ulan Buh Desert, China. Front. Environ. Sci. 2022, 10, 930961. [Google Scholar] [CrossRef]
- Mashizi, A.K.; Sharafatmandrad, M. Water Regulation and Soil Retention Services in Semiarid Ecosystems of Southeastern Iran, 2018–2020. Int. J. Environ. Sci. Technol. 2021, 18, 3979–3994. [Google Scholar] [CrossRef]
- Wei, H.; Liu, H.; Xu, Z.; Ren, J.; Lu, N.; Fan, W.; Zhang, P.; Dong, X. Linking Ecosystem Services Supply, Social Demand and Human Well-Being in a Typical Mountain–Oasis–Desert Area, Xinjiang, China. Ecosyst. Serv. 2018, 31, 44–57. [Google Scholar] [CrossRef]
- Chen, J.; Jiang, B.; Bai, Y.; Xu, X.; Alatalo, J.M. Quantifying Ecosystem Services Supply and Demand Shortfalls and Mismatches for Management Optimisation. Sci. Total Environ. 2019, 650, 1426–1439. [Google Scholar] [CrossRef]
- Myhre, G.; Alterskjær, K.; Lowe, D. A Fast Method for Updating Global Fossil Fuel Carbon Dioxide Emissions. Environ. Res. Lett. 2009, 4, 034012. [Google Scholar] [CrossRef]
- Sharafatmandrad, M.; Mashizi, A.K. Temporal and Spatial Assessment of Supply and Demand of the Water-Yield Ecosystem Service for Water Scarcity Management in Arid to Semi-Arid Ecosystems. Water Resour. Manag. 2021, 35, 63–82. [Google Scholar] [CrossRef]
- Krasner, N.Z.; Fox, J.; Armstrong, A.; Ave, K.; Carvalho, F.; Li, Y.; Walston, L.J.; Ricketts, M.P.; Jordaan, S.M.; Abou Najm, M.; et al. Impacts of Photovoltaic Solar Energy on Soil Carbon: A Global Systematic Review and Framework. Renew. Sustain. Energy Rev. 2025, 208, 115032. [Google Scholar] [CrossRef]
- Meng, R.; Meng, Z.; Cai, J.; Li, H.; Ren, Y.; Guo, L. The Role of Typical Low Vertical Lattice Sand Barriers in Regulating the Airflow Field on Wind-Eroded Surfaces of Photovoltaic Power Plants. Front. Environ. Sci. 2024, 12, 1521144. [Google Scholar] [CrossRef]
Data Type | Variable | Unit | Resources |
---|---|---|---|
Meteorological | Solar radiation (SR) | % | National Meteorological Information Center (http://data.cma.cn/) |
Mean annual temperature (MAT) | °C | ||
Mean annual precipitation (AP) | mm | ||
Wind speed | m/s | ||
Physical geography | Land-use type | - | Data Sharing and Service Portal (https://data.casearth.cn/) |
Soil database | % | National Tibetan Plateau Scientific Data Center (http://data.tpdc.ac.cn/) | |
Normalized difference vegetation index (NDVI) | - | Google Earth Engine (https://earthengine.google.com/) | |
Digital elevation model (DEM) | m | Geospatial Data Cloud (http://www.gscloud.cn/) | |
Socio-economic factors | Carbon emissions data | t·people−1 | Carbon Emission Accounts and Datasets (CEADs) (https://www.ceads.net.cn/) |
Water consumption data (water for irrigation of farmland, forestry, animal husbandry, fishery and livestock, industry, urban and rural life, and the ecological environment) | m3·people−1 | Water Resources Department of Inner Mongolia Autonomous Region (https://slt.nmg.gov.cn/) | |
Population density (PD) | people·km−2 | Resources and Environmental Science and Data Center, Chinese Academy of Sciences (https://www.resdc.cn/) | |
Gross domestic product (GDP) | million yuan·km−2 |
Types | Driving Factors | Units |
---|---|---|
Natural Factors | AP | mm |
MAT | °C | |
PET | mm | |
SR | % | |
SPEI | - | |
NDVI | - | |
Land Use Factors | Dunes Proportion (DP) | % |
Cultivated Proportion (CP) | % | |
Construction Proportion (CsP) | % | |
Socio-Economic Factors | Policy Implementation (PI) | - |
PD | people·km−2 | |
GDP | million yuan·km−2 |
AP | −0.0321 | 0.0017 | −18.41 | 0.000 |
MAT | −0.2250 | 0.0027 | −84.82 | 0.000 |
PET | 0.0001 | 0.0013 | 0.10 | 0.919 |
SR | 0.0019 | 0.0026 | 0.72 | 0.469 |
SPEI | −0.0415 | 0.0176 | −2.36 | 0.018 |
NDVI | −0.6823 | 0.0333 | −20.48 | 0.000 |
DP | 0.0052 | 0.0014 | 3.59 | 0.000 |
CP | −0.0349 | 0.0013 | −27.01 | 0.000 |
CsP | 0.0038 | 0.0008 | 4.72 | 0.000 |
PI | 0.4635 | 0.0087 | 53.46 | 0.000 |
PD | −0.0597 | 0.0023 | −25.70 | 0.000 |
GDP | −0.0055 | 0.0013 | −4.32 | 0.000 |
Prob > F = 0.0000 | ||||
R2 = 0.2634 |
AP | −0.1612 | 0.0058 | −27.78 | 0.000 |
MAT | 0.0090 | 0.0062 | 1.45 | 0.147 |
PET | 0.0123 | 0.0016 | 7.75 | 0.000 |
SR | −0.0516 | 0.0095 | −5.41 | 0.000 |
SPEI | −0.3253 | 0.0226 | −14.38 | 0.000 |
NDVI | −1.0294 | 0.0425 | −24.24 | 0.000 |
DP | −0.0058 | 0.0019 | −2.99 | 0.003 |
CP | −0.0611 | 0.0014 | −44.24 | 0.000 |
CsP | −0.0266 | 0.0010 | −25.69 | 0.000 |
PI | 0.3377 | 0.0117 | 28.98 | 0.000 |
PD | −0.1438 | 0.0055 | −26.06 | 0.000 |
GDP | −0.0146 | 0.0016 | −9.34 | 0.000 |
Prob > F = 0.0000 | ||||
R2 = 0.1022 |
AP | −0.1612 | −0.0321 | −0.1291 | 0.0055 |
MAT | 0.0090 | −0.2250 | 0.2340 | 0.0056 |
PET | 0.0123 | 0.0001 | 0.0122 | 0.0009 |
SR | −0.0516 | 0.0019 | −0.0535 | 0.0092 |
SPEI | −0.3253 | −0.0415 | −0.2838 | 0.0142 |
NDVI | −1.0294 | −0.6823 | −0.3471 | 0.0263 |
DP | −0.0058 | 0.0052 | −0.0110 | 0.0013 |
CP | −0.0611 | −0.0349 | −0.0262 | 0.0005 |
CsP | −0.0266 | 0.0038 | −0.0304 | 0.0007 |
PI | 0.3377 | 0.4635 | −0.1258 | 0.0078 |
PD | −0.1438 | −0.0597 | −0.0841 | 0.0050 |
GDP | −0.0146 | −0.0055 | −0.0091 | 0.0009 |
Prob > chi2 = 0.0000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, W.; Wang, X.; Yang, Q.; Liu, H.; Jia, G.; Liu, H.; Wang, L.; Zhang, X.; Wen, L. Supply and Demand Balance of Ecosystem Services in the Ulanbuh Desert. Land 2025, 14, 1371. https://doi.org/10.3390/land14071371
Cao W, Wang X, Yang Q, Liu H, Jia G, Liu H, Wang L, Zhang X, Wen L. Supply and Demand Balance of Ecosystem Services in the Ulanbuh Desert. Land. 2025; 14(7):1371. https://doi.org/10.3390/land14071371
Chicago/Turabian StyleCao, Weijia, Xinyu Wang, Qingkang Yang, Huan Liu, Guoxiu Jia, Huamin Liu, Lixin Wang, Xuefeng Zhang, and Lu Wen. 2025. "Supply and Demand Balance of Ecosystem Services in the Ulanbuh Desert" Land 14, no. 7: 1371. https://doi.org/10.3390/land14071371
APA StyleCao, W., Wang, X., Yang, Q., Liu, H., Jia, G., Liu, H., Wang, L., Zhang, X., & Wen, L. (2025). Supply and Demand Balance of Ecosystem Services in the Ulanbuh Desert. Land, 14(7), 1371. https://doi.org/10.3390/land14071371