An Adaptive Graph Convolutional Network with Spatial Autocorrelation for Enhancing 3D Soil Pollutant Mapping Precision from Sparse Borehole Data
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Soil Sampling
2.2. The Construction of the ASI-GCN Model
2.2.1. The Principle of the GCN Model for 3D Spatial Interpolation
2.2.2. ASI-GCN: Adaptive Enhancements for 3D Soil Mapping
- (1)
- Constrained message passing mechanism
- Wadj: Initial adjacency matrix without self-loops.
- Wadj_1: Validation-masked matrix that blocks message passing from validation nodes to ensure the transmission of true information.
- Wadj_2: Self-loop-enhanced matrix to retain the aggregated message of the nodes.
- (2)
- Dynamic graph structure learning
- (3)
- Residual correction mechanism
Algorithm 1 Residual correction mechanism |
Primary prediction: Generate initial estimates using ASI-GCN. |
Residual learning: Compute residuals at sampled nodes, then predict via a secondary ASI-GCN or Kriging model. |
Final output: Corrected predictions are obtained as |
2.3. Performance and Uncertainty Evaluation of the ASI-GCN Model
3. Results
3.1. Three-Dimensional Spatial Distribution of Pollutants
3.2. Performance Assessment of the ASI-GCN Model
3.3. Uncertainty Assessment of the ASI-GCN Model
3.4. Pollution Volume Estimation Accuracy
3.5. Sensitivity to Sparse Sampling
4. Discussion
4.1. Pollutant Characteristics and Soil Texture Drive Vertical Heterogeneity
4.2. ASI-GCN’s Success: Dual-Module Learning and Residual Correction
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- FAO; UNEP. Global Assessment of Soil Pollution: Summary for Policymakers; FAO: Rome, Italy, 2021. [Google Scholar]
- Qiao, P.; Dong, N.; Lei, M.; Yang, S.; Gou, Y. An effective method for determining the optimal sampling scale based on the purposes of soil pollution investigations and the factors influencing the pollutants. J. Hazard. Mater. 2021, 418, 126296. [Google Scholar] [CrossRef]
- Zheng, S.; Wang, J.; Zhuo, Y.; Yang, D.; Liu, R. Spatial distribution model of DEHP contamination categories in soil based on Bi-LSTM and sparse sampling. Ecotoxicol. Environ. Saf. 2022, 229, 113092. [Google Scholar] [CrossRef]
- Yin, G.; Chen, X.; Zhu, H.; Chen, Z.; Su, C.; He, Z.; Qiu, J.; Wang, T. A novel interpolation method to predict soil heavy metals based on a genetic algorithm and neural network model. Sci. Total Environ. 2022, 825, 153948. [Google Scholar] [CrossRef]
- Zhu, D.; Huang, Z.; Shi, L.; Wu, L.; Liu, Y. Inferring spatial interaction patterns from sequential snapshots of spatial distributions. Int. J. Geogr. Inf. Sci. 2018, 32, 783–805. [Google Scholar] [CrossRef]
- Qiu, Z.; Yue, L.; Liu, X. Void Filling of Digital Elevation Models with a Terrain Texture Learning Model Based on Generative Adversarial Networks. Remote Sens. 2019, 11, 2829. [Google Scholar] [CrossRef]
- Yan, L.; Tang, X.; Zhang, Y. High accuracy interpolation of DEM using generative adversarial network. Remote Sens. 2021, 13, 676. [Google Scholar] [CrossRef]
- Zhu, D.; Zhang, F.; Wang, S.; Wang, Y.; Cheng, X.; Huang, Z.; Liu, Y. Understanding Place Characteristics in Geographic Contexts through Graph Convolutional Neural Networks. Ann. Am. Assoc. Geogr. 2020, 110, 408–420. [Google Scholar] [CrossRef]
- Appleby, G.; Liu, L.; Liu, L. Kriging convolutional networks. Proc. AAAI Conf. Artif. Intell. 2020, 34, 3187–3194. [Google Scholar] [CrossRef]
- Wu, Y.; Zhuang, D.; Labbe, A.; Sun, L. Inductive Graph neural networks for spatiotemporal kriging. Proc. AAAI Conf. Artif. Intell. 2021, 35, 4478–4485. [Google Scholar] [CrossRef]
- Sun, Y.; Lei, S.; Zhao, Y.; Wei, C.; Yang, X.; Han, X.; Li, Y.; Xia, J.; Cai, Z. Spatial distribution prediction of soil heavy metals based on sparse sampling and multi-source environmental data. J. Hazard. Mater. 2024, 465, 133114. [Google Scholar] [CrossRef]
- Zhang, R.J.; Ji, X.H.; Xie, Y.H.; Xue, T.; Liu, S.H.; Tian, F.X.; Pan, S.F. A novel graph convolutional neural network model for predicting soil Cd and As pollution: Identification of influencing factors and interpretability. Ecotoxicol. Environ. Saf. 2025, 292, 117926. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Shen, Y.; Chen, L.; Ng, C.W.W. Rainfall Spatial Interpolation with Graph Neural Networks. Lect. Notes Comput. Sci. 2023, 13946, 175–191. [Google Scholar]
- Li, Z.; Tao, H.; Zhao, D.; Li, H. Three-dimensional empirical Bayesian kriging for soil PAHs interpolation considering the vertical soil lithology. Catena 2022, 212, 106098. [Google Scholar] [CrossRef]
- Beijing Municipal Environmental Protection Bureau. Screening Levels for Soil Environmental Risk Assessment of Sites; Beijing Municipal Administration of Quality and Technical Supervision: Beijing, China, 2011. [Google Scholar]
- EPA-600/4-84-049; Soil Sampling Quality Assurance User’s Guide. U.S. Environmental Protection Agency: Las Vegas, NV, USA, 1989.
- State Environmental Protection Administration of China. Technical Specification for Soil Environmental Monitoring; China Environment Press: Beijing, China, 2004. Available online: https://english.mee.gov.cn/Resources/standards/Soil/Method_Standard4/200710/t20071024_111895.shtml (accessed on 7 August 2024).
- Kipf, T.N.; Welling, M. Semi-Supervised Classification with Graph Convolutional Networks. arXiv 2016, arXiv:1609.02907. [Google Scholar]
- Ying, R.; Bourgeois, D.; You, J.; Zitnik, M.; Leskovec, J. GNNExplainer: Generating Explanations for Graph Neural Networks. arXiv 2019, arXiv:1903.03894. [Google Scholar]
- Jin, W.; Ma, Y.; Liu, X.; Tang, X.; Wang, S.; Tang, J. Graph Structure Learning for Robust Graph Neural Networks. arXiv 2020, arXiv:2005.10203. [Google Scholar]
- Gal, Y.; Ghahramani, Z. Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning. In Proceedings of the 33rd International Conference on Machine Learning, New York, NY, USA, 19–24 June 2016; pp. 1050–1059. [Google Scholar]
- Nguyen, K.T.; Ahmed, M.B.; Mojiri, A.; Huang, Y.; Zhou, J.L.; Li, D. Advances in As contamination and adsorption in soil for effective management. J. Environ. Manag. 2021, 296, 113274. [Google Scholar] [CrossRef]
- Xie, Z.; Wang, J.; Wei, X.; Li, F.; Chen, M.; Wang, J.; Gao, B. Interactions between arsenic adsorption/desorption and indigenous bacterial activity in shallow high arsenic aquifer sediments from the Jianghan Plain, Central China. Sci. Total Environ. 2018, 644, 382–388. [Google Scholar] [CrossRef]
- Li, J.; Wan, H.; Shang, S. Comparison of interpolation methods for mapping layered soil particle-size fractions and texture in an arid oasis. Catena 2020, 190, 10451. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, N.; Xue, M.; Tao, S. Impact of soil organic matter on the distribution of polycyclic aromatic hydrocarbons (PAHs) in soils. Environ. Pollut. 2010, 158, 2170–2174. [Google Scholar] [CrossRef]
- Hou, Y.; Li, Y.; Tao, H.; Cao, H.; Liao, X.; Liu, X. Three-dimensional distribution characteristics of multiple pollutants in the soil at a steelworks mega-site based on multi-source information. J. Hazard. Mater. 2023, 448, 130934. [Google Scholar] [CrossRef]
- Meng, X.; Chen, H.; Wu, M. Pollution characteristics of polycyclic aromatic hydrocarbons in unsaturated zone of the different workshops at a large iron and steel industrial site of Beijing, China. Pol. J. Environ. Stud. 2020, 30, 781–792. [Google Scholar] [CrossRef]
- Chang, W.; Um, Y.; Hoffman, B.; Holoman, T.R.P. Molecular characterization of polycyclic aromatic hydrocarbon (PAH)-degrading methanogenic communities. Biotechnol. Progr. 2005, 21, 682–688. [Google Scholar] [CrossRef] [PubMed]
- Dou, J.; Liu, X.; Hu, Z.; Deng, D. Anaerobic BTEX biodegradation linked to nitrate and sulfate reduction. J. Hazard. Mater. 2008, 151, 720–729. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Bian, J.; Ruan, D.; Zhang, C. Adsorption of benzene on soils under different influential factors: An experimental investigation, importance order and prediction using artificial neural network. J. Environ. Manag. 2022, 306, 114467. [Google Scholar] [CrossRef] [PubMed]
- Goovaerts, P. Geostatistics for Natural Resources Evaluation; Oxford University Press: New York, NY, USA, 1997; p. 496. [Google Scholar]
- Yang, Y.; Jia, M. 3D spatial interpolation of soil heavy metals by combining kriging with depth function trend model. J. Hazard. Mater. 2024, 461, 132571. [Google Scholar] [CrossRef] [PubMed]
- Bradley, V.C.; Kuriwaki, S.; Isakov, M.; Sejdinovic, D.; Meng, X.L.; Flaxman, S. Unrepresentative big surveys significantly overestimated US vaccine uptake. Nature 2021, 600, 695–700. [Google Scholar] [CrossRef]
- Wang, J.; Gao, B.; Stein, A. The spatial statistic trinity: A generic framework for spatial sampling and inference. Environ. Modell. Softw. 2020, 134, 104835. [Google Scholar] [CrossRef]
- Shen, F.; Xu, C.; Wang, J.; Hu, M.; Guo, G.; Fang, T.; Zhu, X.; Cao, H.; Tao, H.; Hou, Y. A new method for spatial three-dimensional prediction of soil heavy metals contamination. Catena 2024, 235, 107658. [Google Scholar] [CrossRef]
- Meng, X.L. Statistical paradises and paradoxes in big data (i) law of large populations, big data paradox, and the 2016 us presidential election. Ann. Appl. Stat. 2018, 12, 685–726. [Google Scholar] [CrossRef]
Pollutants | Count | Model | R | RMSE (mg/kg) | MAE (mg/kg) |
---|---|---|---|---|---|
As | 215 | ASI-GCN_RC_G | 0.728 | 4.914 | 3.916 |
ASI-GCN_RC_K | 0.678 | 5.190 | 4.168 | ||
ASI-GCN | 0.721 | 5.041 | 4.066 | ||
OK | 0.374 | 6.534 | 5.125 | ||
IDW | 0.300 | 7.320 | 5.773 | ||
Bayesian_K | 0.316 | 7.746 | 5.698 | ||
BaP | 207 | ASI-GCN_RC_G | 0.825 | 1.656 | 1.096 |
ASI-GCN_RC_K | 0.800 | 1.755 | 1.187 | ||
ASI-GCN | 0.819 | 1.699 | 1.214 | ||
OK | 0.447 | 2.592 | 1.585 | ||
IDW | 0.529 | 2.491 | 1.454 | ||
Bayesian_K | 0.458 | 2.672 | 1.342 | ||
Ben | 174 | ASI-GCN_RC_G | 0.781 | 159.040 | 112.315 |
ASI-GCN_RC_K | 0.700 | 178.316 | 128.787 | ||
ASI-GCN | 0.755 | 167.710 | 124.389 | ||
OK | 0.520 | 214.492 | 162.454 | ||
IDW | 0.361 | 248.342 | 175.867 | ||
Bayesian_K | 0.557 | 214.732 | 145.066 |
Soil Pollutants | Spatial Interpolation Models | Pollution Volumes (m3) | Percentage of Pollution Volumes (%) |
---|---|---|---|
As | ASI-GCN_RC_G | 12,244 | 43.7 |
ASI-GCN_RC_K | 12,084 | 43.2 | |
ASI-GCN | 12,988 | 46.4 | |
OK | 13,712 | 49.0 | |
IDW | 12,220 | 43.6 | |
Bayesian_K | 9900 | 35.4 | |
BaP | ASI-GCN_RC_G | 24,284 | 86.7 |
ASI-GCN_RC_K | 26,464 | 94.5 | |
ASI-GCN | 26,600 | 95.0 | |
OK | 25,972 | 92.8 | |
IDW | 26,476 | 94.6 | |
Bayesian_K | 21,004 | 75.0 | |
Ben | ASI-GCN_RC_G | 26,600 | 95.0 |
ASI-GCN_RC_K | 26,600 | 95.0 | |
ASI-GCN | 26,600 | 95.0 | |
OK | 26,600 | 95.0 | |
IDW | 26,600 | 95.0 | |
Bayesian_K | 26,504 | 94.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, H.; Li, Z.; Nie, S.; Li, H.; Zhao, D. An Adaptive Graph Convolutional Network with Spatial Autocorrelation for Enhancing 3D Soil Pollutant Mapping Precision from Sparse Borehole Data. Land 2025, 14, 1348. https://doi.org/10.3390/land14071348
Tao H, Li Z, Nie S, Li H, Zhao D. An Adaptive Graph Convolutional Network with Spatial Autocorrelation for Enhancing 3D Soil Pollutant Mapping Precision from Sparse Borehole Data. Land. 2025; 14(7):1348. https://doi.org/10.3390/land14071348
Chicago/Turabian StyleTao, Huan, Ziyang Li, Shengdong Nie, Hengkai Li, and Dan Zhao. 2025. "An Adaptive Graph Convolutional Network with Spatial Autocorrelation for Enhancing 3D Soil Pollutant Mapping Precision from Sparse Borehole Data" Land 14, no. 7: 1348. https://doi.org/10.3390/land14071348
APA StyleTao, H., Li, Z., Nie, S., Li, H., & Zhao, D. (2025). An Adaptive Graph Convolutional Network with Spatial Autocorrelation for Enhancing 3D Soil Pollutant Mapping Precision from Sparse Borehole Data. Land, 14(7), 1348. https://doi.org/10.3390/land14071348