An Upscaling-Based Strategy to Improve the Ephemeral Gully Mapping Accuracy
Abstract
1. Introduction
2. Study Area
3. Data and Methods
3.1. Data Collection and Preparation
3.2. Methods
3.2.1. Generation of Effective Spectral Features
3.2.2. EGs Identification Strategies
3.2.3. Predictive Modeling Using Random Forest
- -
- Strategy 1 (Direct Sentinel-2): RF model trained and applied using 10 m spectral features derived from Sentinel-2 imagery.
- -
- Strategy 2 (Multi-resolution Pléiades Neo): RF model trained using high-resolution (0.6 m) Pléiades Neo features, and applied to resampled datasets at 2, 4, 6, and 8 m resolutions.
- -
- Strategy 3 (Upscaling): RF model trained on 0.6 m Pléiades Neo features and applied to 10 m Sentinel-2 imagery.
3.2.4. Accuracy Assessment
4. Results
4.1. Effective Spectral Features Maps
4.2. Effective Spectral Features Importance Degree
4.3. EGs Occurrence Probability Maps
4.4. Identified EGs Maps
4.5. Spatial Accuracy Assessment
5. Discussion
5.1. Complexities and Variabilities in EGs Identification
5.2. Integrated Role of Spectral Features and Spatial Resolution in EGs Mapping
5.3. Model Training and Upscaling Strategy
5.4. Integrated Impacts and Implications
5.5. Limitations and Future Directions
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Castillo, C.; Gómez, J. A century of gully erosion research: Urgency, complexity and study approaches. Earth-Sci. Rev. 2016, 160, 300–319. [Google Scholar] [CrossRef]
- Dai, W.; Hu, G.-h.; Yang, X.; Yang, X.-w.; Cheng, Y.-h.; Xiong, L.-y.; Strobl, J.; Tang, G.-a. Identifying ephemeral gullies from high-resolution images and DEMs using flow-directional detection. J. Mt. Sci. 2020, 17, 3024–3038. [Google Scholar] [CrossRef]
- Kang, H.; Guo, M.; Wang, W. Ephemeral gully erosion in concentrated flow channels induced by rainfall and upslope inflow on steep loessial slopes. Land Degrad. Dev. 2021, 32, 5037–5051. [Google Scholar] [CrossRef]
- Ollobarren, P.; Capra, A.; Gelsomino, A.; La Spada, C. Effects of ephemeral gully erosion on soil degradation in a cultivated area in Sicily (Italy). Catena 2016, 145, 334–345. [Google Scholar] [CrossRef]
- Wilson, G.; Wells, R.; Dabney, S.; Zhang, T. Filling an ephemeral gully channel: Impacts on physical soil quality. Catena 2019, 174, 164–173. [Google Scholar] [CrossRef]
- Xu, X.; Zheng, F.; Tang, Q.; Wilson, G.V.; Wu, M.; Han, Y.; Xiao, P.; Zhang, X.J. Upslope sediment-laden flow impacts on ephemeral gully erosion: Evidences from field monitoring and laboratory simulation. Catena 2022, 209, 105802. [Google Scholar] [CrossRef]
- Wells, R.R.; Momm, H.G.; Bennett, S.J.; Gesch, K.R.; Dabney, S.M.; Cruse, R.; Wilson, G.V. A measurement method for rill and ephemeral gully erosion assessments. Soil Sci. Soc. Am. J. 2016, 80, 203–214. [Google Scholar] [CrossRef]
- Tang, J.; Liu, G.; Xie, Y.; Duan, X.; Wang, D.; Zhang, S. Annual variation of ephemeral gully erosion in a cultivated catchment. Geoderma 2021, 401, 115166. [Google Scholar] [CrossRef]
- Daggupati, P.; Roy, S.; Mckague, K.; Patterson, C.; Biswas, A. Simulating Ephemeral Gully Erosion Using AnnAGNPS in Agricultural Fields of Southern Ontario, Canada. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 8–13 April 2018; p. 13703. [Google Scholar]
- Ireland, H.A.; Eargle, D.H.; Sharpe, C.F.S. Principles of Gully Erosion in the Piedmont of South Carolina; US Department of Agriculture: Washington, DC, USA, 1939.
- Moore, I.; Burch, G.; Mackenzie, D. Topographic effects on the distribution of surface soil water and the location of ephemeral gullies. Trans. ASAE 1988, 31, 1098–1107. [Google Scholar] [CrossRef]
- Porta, J.; Ramos, J.; Boixadera, J. Mechanical measures for runoff management and erosion control in the vineyards of north east Spain. In Conserving Soil Resources: European Perspectives; Selected papers from the First International Congress of the European Society for Soil Conservation; CAB International: Wallingford, UK, 1994; pp. 369–378. [Google Scholar]
- Shi, H.; Xiao, H.; Liu, G.; Abd Elbasit, M.A.; Zheng, F.; Zhang, Q.; Zhang, Y.; Guo, Z. Identifying interrill, rill, and ephemeral gully erosion evolution by using rare earth elements as tracers. J. Hydrol. 2022, 612, 128271. [Google Scholar] [CrossRef]
- Casalí, J.; Loizu, J.; Campo, M.; De Santisteban, L.; Álvarez-Mozos, J. Accuracy of methods for field assessment of rill and ephemeral gully erosion. Catena 2006, 67, 128–138. [Google Scholar] [CrossRef]
- Wang, R.; Sun, H.; Yang, J.; Zhang, S.; Fu, H.; Wang, N.; Liu, Q. Quantitative evaluation of gully erosion using multitemporal UAV data in the southern black soil region of Northeast China: A case study. Remote Sens. 2022, 14, 1479. [Google Scholar] [CrossRef]
- Ghosh, S.; Kundu, S. Morphometric characterization and erosion assessment of gullies in the lateritic badlands of Eastern India using ALOS AW3D30 DEM and topographic indices. Geocarto Int. 2022, 37, 10096–10129. [Google Scholar] [CrossRef]
- Fei, J.; Liu, J.; Ke, L.; Wang, W.; Wu, P.; Zhou, Y. A deep learning-based method for mapping alpine intermittent rivers and ephemeral streams of the Tibetan Plateau from Sentinel-1 time series and DEMs. Remote Sens. Environ. 2022, 282, 113271. [Google Scholar] [CrossRef]
- Gafurov, A. Mapping of rill erosion of the middle volga (Russia) region using deep neural network. ISPRS Int. J. Geo-Inf. 2022, 11, 197. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, B.; Yin, Z.; Hao, B.; Wu, S.; Feng, H.; Siddique, K.H. Ephemeral gully development in the hilly and gully region of China’s loess plateau. Land Degrad. Dev. 2024, 35, 128–141. [Google Scholar] [CrossRef]
- Kılıç, M.; Gündoğan, R.; Günal, H.; Budak, M. An integrated framework to identify and map gullies in a Mediterranean region of Turkey. Geocarto Int. 2022, 37, 12846–12866. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Shit, P.K.; Alqadhi, S.; Almohamad, H.; Hasher, F.F.b.; Abdo, H.G.; Mallick, J. Utilizing machine learning algorithms for the development of Gully Erosion susceptibility maps: Evidence from the Chotanagpur Plateau Region, India. Sustainability 2024, 16, 6569. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, B.; Feng, H.; Wu, S.; Yang, J.; Zou, Y.; Siddique, K.H. Ephemeral gully recognition and accuracy evaluation using deep learning in the hilly and gully region of the Loess Plateau in China. Int. Soil Water Conserv. Res. 2022, 10, 371–381. [Google Scholar] [CrossRef]
- Mohebzadeh, H.; Biswas, A.; DeVries, B.; Rudra, R.; Daggupati, P. Transferability of predictive models to map susceptibility of ephemeral gullies at large scale. Nat. Hazards 2024, 120, 4527–4561. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, G.; Wang, C.; Xing, S. Assessment of the gully erosion susceptibility using three hybrid models in one small watershed on the Loess Plateau. Soil Tillage Res. 2022, 223, 105481. [Google Scholar] [CrossRef]
- Fathololoumi, S.; Vasava, H.B.; Saurette, D.; Daggupati, P.; Biswas, A. Enhanced ephemeral gully mapping through multi-classifier integration and spectral feature analysis. Catena 2025, 248, 108590. [Google Scholar] [CrossRef]
- Perras, M.A.; Diederichs, M.S.; Besaw, D. Geological and geotechnical observations from the Niagara Tunnel Project. Bull. Eng. Geol. Environ. 2014, 73, 1303–1323. [Google Scholar] [CrossRef]
- Banks, W.D.; Brunton, F.R. Collaboration between Ontario Geological Survey, consultants and municipal staff results in discovery and development of a safe and sustainable bedrock groundwater supply for the town of Shelburne, southern Ontario, Canada. In Proceedings of the GeoOttawa 2017 IAH-CNC 70th Canadian Geotechnical Conference & 12th Joint CGS/IAH-CNC Groundwater Conference, Ottawa, ON, Canada, 1–4 October 2017. [Google Scholar]
- Bannari, A.; Morin, D.; Bonn, F.; Huete, A. A review of vegetation indices. Remote Sens. Rev. 1995, 13, 95–120. [Google Scholar] [CrossRef]
- Escadafal, R.; Belghit, A.; Ben-Moussa, A. Indices spectraux pour la télédétection de la dégradation des milieux naturels en Tunisie aride. In Proceedings of the 6th International Symposium on Physical Measurements and Signatures in Remote Sensing, Val d’Isere, France, 17–21 January 1994; pp. 17–21. [Google Scholar]
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Rigatti, S.J. Random forest. J. Insur. Med. 2017, 47, 31–39. [Google Scholar] [CrossRef]
- Sheshukov, A.Y.; Sekaluvu, L.; Hutchinson, S.L. Accuracy of topographic index models at identifying ephemeral gully trajectories on agricultural fields. Geomorphology 2018, 306, 224–234. [Google Scholar] [CrossRef]
- Yibeltal, M.; Tsunekawa, A.; Haregeweyn, N.; Adgo, E.; Meshesha, D.T.; Masunaga, T.; Tsubo, M.; Billi, P.; Ebabu, K.; Fenta, A.A. Morphological characteristics and topographic thresholds of gullies in different agro-ecological environments. Geomorphology 2019, 341, 15–27. [Google Scholar] [CrossRef]
- Karydas, C.; Panagos, P. Towards an assessment of the ephemeral gully erosion potential in Greece using Google Earth. Water 2020, 12, 603. [Google Scholar] [CrossRef]
- Castillo, C.; Taguas, E.V.; Zarco-Tejada, P.; James, M.R.; Gómez, J.A. The normalized topographic method: An automated procedure for gully mapping using GIS. Earth Surf. Process. Landf. 2014, 39, 2002–2015. [Google Scholar] [CrossRef]
- Shahabi, H.; Jarihani, B.; Tavakkoli Piralilou, S.; Chittleborough, D.; Avand, M.; Ghorbanzadeh, O. A semi-automated object-based gully networks detection using different machine learning models: A case study of Bowen catchment, Queensland, Australia. Sensors 2019, 19, 4893. [Google Scholar] [CrossRef]
- Shruthi, R.B.; Kerle, N.; Jetten, V. Object-based gully feature extraction using high spatial resolution imagery. Geomorphology 2011, 134, 260–268. [Google Scholar] [CrossRef]
- Shruthi, R.B.; Kerle, N.; Jetten, V.; Abdellah, L.; Machmach, I. Quantifying temporal changes in gully erosion areas with object oriented analysis. Catena 2015, 128, 262–277. [Google Scholar] [CrossRef]
- Desprats, J.-F.; Raclot, D.; Rousseau, M.; Cerdan, O.; Garcin, M.; Le Bissonnais, Y.; Ben Slimane, A.; Fouché, J.; Monfort-Climent, D. Mapping linear erosion features using high and very high resolution satellite imagery. Land Degrad. Dev. 2013, 24, 22–32. [Google Scholar] [CrossRef]
- Pimentel, D. Soil erosion: A food and environmental threat. Environ. Dev. Sustain. 2006, 8, 119–137. [Google Scholar] [CrossRef]
- Lal, R. Soil degradation by erosion. Land Degrad. Dev. 2001, 12, 519–539. [Google Scholar] [CrossRef]
- Montgomery, D.R. Soil erosion and agricultural sustainability. Proc. Natl. Acad. Sci. USA 2007, 104, 13268–13272. [Google Scholar] [CrossRef]
- Lal, R. Soil erosion and the global carbon budget. Environ. Int. 2003, 29, 437–450. [Google Scholar] [CrossRef]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef]
- Turner, B.L.; Lambin, E.F.; Reenberg, A. The emergence of land change science for global environmental change and sustainability. Proc. Natl. Acad. Sci. USA 2007, 104, 20666–20671. [Google Scholar] [CrossRef] [PubMed]
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C. Solutions for a cultivated planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. Agricultural sustainability and intensive production practices. Nature 2002, 418, 671–677. [Google Scholar] [CrossRef] [PubMed]
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food security: The challenge of feeding 9 billion people. Science 2010, 327, 812–818. [Google Scholar] [CrossRef]
Index | Formula | Description |
---|---|---|
NDVI | The formation of EGs causes the loss of topsoil and consequently the loss of vegetation. Therefore, in the areas covered by EGs, the value of the NDVI is lower than non-EG areas. | |
NDWI | EGs are the result of washing and loss of soil. As a result, these areas are more concentrated than the areas around the EGs and the water accumulates in the EGs and the NDWI values in the places of EGs are higher than non-EGs in agricultural lands/farms. | |
Norm NIR | The values of the NIR band are influenced by the chlorophyll in the plants. Therefore, with the loss of vegetation due to the formation of EGs, the Norm NIR index values decrease. In the EGs areas, the values of this index are lower than the non-EGs areas. Also, the red band reflectance values are higher in areas without vegetation than in areas with vegetation. As a result, in agricultural areas, the values of the Norm Red index in EGs areas are higher than non-EGs areas. | |
Norm Red | ||
Coloration index | Coloration index is calculated based on red and blue bands. The values of this index in EGs areas are higher than non-EGs areas in agricultural lands/farms. | |
Soil line | EGs is a phenomenon related to soil. Also, EGs formation affects the vegetation. Considering that in the calculation of Soil line and SQRT index, two NIR and Red bands related to vegetation and soil information are used, they can be effective in identifying EGs. The type of spectral behavior of NIR and Red bands in soil and plant covers causes Soil line and SQRT index values to be different in EGs areas from non-EGs areas. | |
SQRT |
Effective Spectral Features | Minimum | Maximum | Range | Mean | Standard Deviation | |
---|---|---|---|---|---|---|
Red | Non-Gully | 0 | 1 | 1 | 0.071 | 0.010 |
Gully | 0.019 | 0.141 | 0.122 | 0.058 | 0.009 | |
NIR | Non-Gully | 0 | 1 | 1 | 0.1265 | 0.018 |
Gully | 0.022 | 0.237 | 0.214 | 0.100 | 0.018 | |
NDVI | Non-Gully | 0 | 0.996 | 0.997 | 0.711 | 0.027 |
Gully | 0.423 | 0.944 | 0.521 | 0.680 | 0.025 | |
NDWI | Non-Gully | 0 | 1 | 1 | 0.323 | 0.028 |
Gully | 0.060 | 0.624 | 0.565 | 0.343 | 0.026 | |
Norm Red | Non-Gully | 0 | 1 | 1 | 0.186 | 0.041 |
Gully | 0.060 | 0.514 | 0.454 | 0.233 | 0.042 | |
Norm NIR | Non-Gully | 0 | 0.998 | 0.998 | 0.244 | 0.035 |
Gully | 0.092 | 0.730 | 0.638 | 0.228 | 0.021 | |
Soil line | Non-Gully | 0 | 0.990 | 0.990 | 0.672 | 0.020 |
Gully | 0.547 | 0.897 | 0.350 | 0.662 | 0.013 | |
Coloration index | Non-Gully | 0 | 1 | 1 | 0.344 | 0.057 |
Gully | 0.174 | 0.701 | 0.527 | 0.408 | 0.053 | |
SQRT | Non-Gully | 0 | 0.990 | 0.990 | 0.499 | 0.033 |
Gully | 0.262 | 0.852 | 0.591 | 0.467 | 0.028 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fathololoumi, S.; Saurette, D.D.; Mann, H.S.; Kadota, N.; Vasava, H.B.; Naeimi, M.; Daggupati, P.; Biswas, A. An Upscaling-Based Strategy to Improve the Ephemeral Gully Mapping Accuracy. Land 2025, 14, 1344. https://doi.org/10.3390/land14071344
Fathololoumi S, Saurette DD, Mann HS, Kadota N, Vasava HB, Naeimi M, Daggupati P, Biswas A. An Upscaling-Based Strategy to Improve the Ephemeral Gully Mapping Accuracy. Land. 2025; 14(7):1344. https://doi.org/10.3390/land14071344
Chicago/Turabian StyleFathololoumi, Solmaz, Daniel D. Saurette, Harnoordeep Singh Mann, Naoya Kadota, Hiteshkumar B. Vasava, Mojtaba Naeimi, Prasad Daggupati, and Asim Biswas. 2025. "An Upscaling-Based Strategy to Improve the Ephemeral Gully Mapping Accuracy" Land 14, no. 7: 1344. https://doi.org/10.3390/land14071344
APA StyleFathololoumi, S., Saurette, D. D., Mann, H. S., Kadota, N., Vasava, H. B., Naeimi, M., Daggupati, P., & Biswas, A. (2025). An Upscaling-Based Strategy to Improve the Ephemeral Gully Mapping Accuracy. Land, 14(7), 1344. https://doi.org/10.3390/land14071344