Sacrificing Wilderness for Renewables? Land Artificialization from Inadequate Spatial Planning of Wind Energy in Evvoia, Greece
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Delineation
2.2. Data Sets
2.3. Data Analysis
3. Results
3.1. Land Artificialization
3.2. Landscape Fragmentation
3.3. Wilderness Loss
3.4. Ecologically Sensitive Zones
3.5. Red-Listed Species
4. Discussion
4.1. Land Artificialization
4.2. Landscape Fragmentation
4.3. Wilderness Loss
4.4. Ecologically Sensitive Zones
4.5. Impact on Threatened and Important Species
4.6. Impact on Ecosystem Functions
4.7. The Role of SEA in Spatial Planning
4.8. The Role of EIAs in Spatial Planning
4.9. Policy Recommendations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
EIA | Environmental Impact Assessment |
EU | European Union |
KBA | Key Biodiversity Area |
RES | Renewable Energy Sources |
RFI | Roadless Fragmentation Index |
SEA | Strategic Environmental Assessment |
SES | Special Environmental Study |
WPS | Wind power station(s) |
References
- Pörtner, H.-O.; Scholes, R.J.; Arneth, A.; Barnes, D.K.A.; Burrows, M.T.; Diamond, S.E.; Duarte, C.M.; Kiessling, W.; Leadley, P.; Managi, S.; et al. Overcoming the coupled climate and biodiversity crises and their societal impacts. Science 2023, 380, eabl4881. [Google Scholar] [CrossRef] [PubMed]
- Díaz, S.; Settele, J.; Brondízio, E.S.; Ngo, H.T.; Agard, J.; Arneth, A.; Balvanera, P.; Brauman, K.A.; Butchart, S.H.M.; Chan, K.M.A.; et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 2019, 366, eaax3100. [Google Scholar] [CrossRef] [PubMed]
- CBD. Kunming-Montreal Global Biodiversity Framework. In Proceedings of the Conference of the Parties to the Convention of Biological Diversity. COP15, Montreal, QC, Canada, 7–19 December 2022; CBD: Montreal, QC, Canada, 2022. [Google Scholar]
- UN. The Paris Agreement. 2015. Available online: https://unfccc.int/sites/default/files/english_paris_agreement.pdf (accessed on 6 April 2025).
- EC. Regulation (EU) 2024/1991 of the European Parliament and of the Council of 24 June 2024 on Nature Restoration and Amending Regulation (EU) 2022/869. 2024. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=OJ:L_202401991 (accessed on 6 April 2025).
- EC. EU Biodiversity Strategy for 2030. Bringing Nature Back Into Our Lives; Brussels, 20.5.2020.COM (2020) 380 Final; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- EC. Regulation (EU) 2021/1119 of the European Parliament and of the Council of 30 June 2021 Establishing the Framework for Achieving Climate Neutrality and Amending Regulations (EC) No 401/2009 and (EU) 2018/1999 (‘European Climate Law’). 2021, p. 55. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32021R1119 (accessed on 6 April 2025).
- Bashiru, O.; Ochem, C.; Enyejo, L.A.; Nkula Manuel, H.N.; Adeoye, T.O. The crucial role of renewable energy in achieving the sustainable development goals for cleaner energy. Glob. J. Eng. Technol. Adv. 2024, 19, 11–36. [Google Scholar] [CrossRef]
- Kyei, S.K.; Boateng, H.K.; Frimpong, A.J. Renewable energy innovations: Fulfilling SDG targets. Clean Energy 2025, 9, 190–203. [Google Scholar] [CrossRef]
- Iacobuţă, G.I.; Höhne, N.; van Soest, H.L.; Leemans, R. Transitioning to Low-Carbon Economies under the 2030 Agenda: Minimizing Trade-Offs and Enhancing Co-Benefits of Climate-Change Action for the SDGs. Sustainability 2021, 13, 10774. [Google Scholar] [CrossRef]
- Nazir, M.S.; Ali, Z.M.; Bilal, M.; Sohail, H.M.; Iqbal, H.M.N. Environmental impacts and risk factors of renewable energy paradigm—A review. Environ. Sci. Pollut. Res. 2020, 27, 33516–33526. [Google Scholar] [CrossRef]
- EC. The European Green Deal. 2019. Available online: https://ec.europa.eu/commission/presscorner/detail/en/ip_19_6691 (accessed on 6 April 2025).
- EC. Amending Directive (EU) 2018/2001, Regulation (EU) 2018/1999 and Directive 98/70/EC as Regards the Promotion of Energy from Renewable Sources, and Repealing Council Directive (EU) 2015/652. 2023. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=OJ:L_202302413 (accessed on 6 April 2025).
- EC. Directive 2009/147/EC of the European Parliament and of the Council of 30 November 2009 on the Conservation of Wild Birds (Document 32009L0147). 2009. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32009L0147 (accessed on 6 April 2025).
- EC. Council Directive 92/43/EEC of 21 May 1992 on the Conservation of Natural Habitats and of Wild Fauna and Flora. 1992. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:31992L0043 (accessed on 6 April 2025).
- EEA. The European Environment-State and Outlook 2020. Knowledge for Transition to a Sustainable Europe; Publications Office of the European Union: Luxembourg, 2019. [Google Scholar]
- Grubert, E.; Luz Benites Lazaro, L.; Popp, A.; Merfort, L.; Luo, T.; Kati, V.; Meshram, P.; Dorn, F.M.; Hernández, D. Making low-carbon energy sustainable. One Earth 2024, 7, 163–166. [Google Scholar] [CrossRef]
- Aneja, R.; Yadav, M.; Gupta, S. The dynamic impact assessment of clean energy and green innovation in realizing environmental sustainability of G-20. Sustain. Dev. 2024, 32, 2454–2473. [Google Scholar] [CrossRef]
- EC. Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions REPowerEU Plan. Com/2022/230final. 2022. Available online: https://eur-lex.europa.eu/resource.html?uri=cellar:fc930f14-d7ae-11ec-a95f-01aa75ed71a1.0001.02/DOC_1&format=PDF (accessed on 6 April 2025).
- EU. Consolidated Text: Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the Promotion of the Use of Energy from Renewable Sources (Recast) (Document 02018L2001-20240716). 2024. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:02018L2001-20240716 (accessed on 6 April 2025).
- EC. Directive 2001/42/EC of the European Parliament and of the Council of 27 June 2001on the Assessment of the Effects of Certain Plans and Programmes on the Environment (Document 32009L0147). 2001. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32001L0042 (accessed on 6 April 2025).
- EC. Directive 2011/92/EU of the European Parliament and of the Council of 13 December 2011 on the Assessment of the Effects of Certain Public and Private Projects on the Environment (Document 32011L0092). 2011. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32011L0092 (accessed on 6 April 2025).
- EC. Directive 2014/52/EU of the European Parliament and of the Council of 16 April 2014 Amending Directive 2011/92/EU on the Assessment of the Effects of Certain Public and Private Projects on the Environment. 2014. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32014L0052 (accessed on 6 April 2025).
- Bennun, L.; Fletcher, C.; Cook, A.; Wilson, D.; Jobson, B.; Asante-Owusu, R.; Dakmejian, A.; Liu, Q. Guidance on Biodiversity Cumulative Impact Assessment for Wind and Solar Developments and Associated Infrastructure; IUCN: Gland, Switzerland; The Biodiversity Consultancy: Cambridge, UK, 2024. [Google Scholar]
- WindEurope. Wind Energy in Europe. 2024 Statistics and the Outlook for 2025–2030. Published in February 2025. Available online: https://windeurope.org/intelligence-platform/product/wind-energy-in-europe-2024-statistics-and-the-outlook-for-2025-2030/ (accessed on 6 April 2025).
- UNCCD. Global Land Outlook, 1st ed.; UNCCD: Bonn, Germany, 2017; p. 340. [Google Scholar]
- Kati, V.; Kassara, C.; Vrontisi, Z.; Moustakas, A. The biodiversity-wind energy-land use nexus in a global biodiversity hotspot. Sci. Total Environ. 2021, 768, 144471. [Google Scholar] [CrossRef]
- Mayer, J.; Peters, R.; Bange, J.; Mauz, M.; Platis, A.; Zarfl, C. A continental approach to estimate the area required for proposed wind-power parks and their overlap with protected areas in Africa. Environ. Res. Lett. 2025, 20, 03420. [Google Scholar] [CrossRef]
- Serrano, D.; Margalida, A.; Pérez-García, J.M.; Juste, J.; Traba, J.; Valera, F.; Carrete, M.; Aihartza, J.; Real, J.; Mañosa, S.; et al. Renewables in Spain threaten biodiversity. Science 2020, 370, 1282–1283. [Google Scholar] [CrossRef] [PubMed]
- Rehbein, J.A.; Watson, J.E.M.; Lane, J.L.; Sonter, L.J.; Venter, O.; Atkinson, S.C.; Allan, J.R. Renewable energy development threatens many globally important biodiversity areas. Glob. Change Biol. 2020, 26, 3040–3051. [Google Scholar] [CrossRef] [PubMed]
- Kiesecker, J.; Baruch-Mordo, S.; Kennedy, C.M.; Oakleaf, J.R.; Baccini, A.; Griscom, B.W. Hitting the Target but Missing the Mark: Unintended Environmental Consequences of the Paris Climate Agreement. Front. Environ. Sci. 2019, 7, 151. [Google Scholar] [CrossRef]
- Bennun, L.; van Bochove, J.; Ng, C.; Fletcher, C.; Wilson, D.; Phair, N.; Carbone, G. Mitigating Biodiversity Impacts Associated with Solar and Wind Energy Development. Guidelines for Project Developers; IUCN: Gland, Switzerland; The Biodiversity Consultancy: Cambridge, UK, 2021. [Google Scholar]
- EC. Commission Notice. Guidance Document on Wind Energy Developments and EU Nature Legislation; COM(2020) 7730 Final. Brussels, 18.11.2020; Publications Office of the European Union: Luxembourg, 2020. [Google Scholar]
- Kiesecker, J.M.; Evans, J.S.; Oakleaf, J.R.; Dropuljić, K.Z.; Vejnović, I.; Rosslowe, C.; Cremona, E.; Bhattacharjee, A.L.; Nagaraju, S.K.; Ortiz, A.; et al. Land use and Europe’s renewable energy transition: Identifying low-conflict areas for wind and solar development. Front. Environ. Sci. 2024, 12, 1355508. [Google Scholar] [CrossRef]
- IPBES. Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; IPBES: Bonn, Germany, 2019. [Google Scholar]
- Weiskopf, S.R.; Isbell, F.; Arce-Plata, M.I.; Di Marco, M.; Harfoot, M.; Johnson, J.; Lerman, S.B.; Miller, B.W.; Morelli, T.L.; Mori, A.S.; et al. Biodiversity loss reduces global terrestrial carbon storage. Nat. Commun. 2024, 15, 4354. [Google Scholar] [CrossRef]
- Cabernard, L.; Pfister, S.; Hellweg, S. Biodiversity impacts of recent land-use change driven by increases in agri-food imports. Nat. Sustain. 2024, 7, 1512–1524. [Google Scholar] [CrossRef]
- EC. Proposal for a Directive of the European Parliament and the Council on Soil Monitoring and Resilience (Soil Monitoring Law) [COM(2023) 416 Final]; Publications Office of the European Union: Luxembourg, 2023. [Google Scholar]
- Marquard, E.; Bartke, S.; Gifreu i Font, J.; Humer, A.; Jonkman, A.; Jürgenson, E.; Marot, N.; Poelmans, L.; Repe, B.; Rybski, R.; et al. Land consumption and land take: Enhancing conceptual clarity for evaluating spatial governance in the EU context. Sustainability 2020, 12, 8269. [Google Scholar] [CrossRef]
- RECAI. Renewable Energy Country Attractiveness Index. Available online: https://www.ey.com/content/dam/ey-unified-site/ey-com/en-gl/insights/energy-resources/documents/ey-gl-recai-63-top-40-ranking-06-2024.pdf (accessed on 1 April 2025).
- RAE. Geospatial Map for Energy Units and Requests from the Regulatory Authority for Energy. Available online: https://geo.rae.gr/?lang=EN (accessed on 28 April 2025).
- MEE. National Energy and Climate Plan; Hellenic Republic, Ministry of Environment and Energy: Athens, Greece, 2024.
- OECD. OECD Environmental Performance Reviews: Greece 2020; OECD: Paris, France, 2020. [Google Scholar]
- OECD. Taming Wildfires in the Context of Climate Change: The Case of Greece; Oecd Environment Policy Paper No. 4; OECD: Paris, France, 2024; p. 43. [Google Scholar]
- ECOMIND. Environmental Impact Assessment Study for the Project: Construction and Operation of a Complex of Eleven Wind Power Stations (WPS) at the Locations: ‘Kerasia,’ ‘Katarti—Anemitsa,’ ‘Anemitsa II,’ ‘Pyxaria II,’ ‘Prionas II,’ ‘Gerakovouni II,’ ‘Gerakovouni—Vaskantira II,’ ‘Tanaida,’ ‘Kalpakovrachos,’ ‘Psilos Vrachos,’ and ‘Tsagkaraki—Petres’ with a Total Capacity of 279.6 MW and Their Associated Infrastructure in the Municipalities of Dirfys-Messapia and Mantoudi-Limni-Agia Anna of the Regional Unit of Euboea, and in the Municipality of Lokroi of the Regional Unit of Phthiotis; EcoMind Consulting, 2024; p. 829. (In Greek) [Google Scholar]
- Copernicus. CORINE Land Cover 2018 (Vector/Raster 100 m), Europe. v20. Available online: https://land.copernicus.eu/en/products/corine-land-cover/clc2018?tab=download (accessed on 15 June 2022).
- Ibisch, P.L.; Hoffmann, M.T.; Kreft, S.; Pe’er, G.; Kati, V.; Biber-Freudenberger, L.; DellaSala, D.A.; Vale, M.M.; Hobson, P.R.; Selva, N. A global map of roadless areas and their conservation status. Science 2016, 354, 1423–1427. [Google Scholar] [CrossRef]
- Dhar, A.; Naeth, M.A.; Jennings, P.D.; Gamal El-Din, M. Perspectives on environmental impacts and a land reclamation strategy for solar and wind energy systems. Sci. Total Environ. 2020, 718, 134602. [Google Scholar] [CrossRef]
- SDF. Natura 2000-Standard Data Form. Site Code GR2420011-ORI KENTRIKIS EVVOIAS, PARAKTIA ZONI KAI NISIDES. Available online: https://natura2000.eea.europa.eu/Natura2000/sdf/#/sdf?site=GR2420011&release=55 (accessed on 13 April 2025).
- HNHS. Greek Coastline at Scale 1:90000 (Last Update 22/10/2018). Hellenic Navy Hydrographic Service. Available online: https://www.hnhs.gr/en/?option=com_opencart&Itemid=268&route=product/product&path=86&product_id=271 (accessed on 9 June 2018).
- OSM. Open Street Map. Available online: https://download.geofabrik.de/europe/greece.html (accessed on 1 October 2024).
- Kassara, C.; Petridou, M.; Tzortzakaki, O.; Papantoniou, E.; Galani, T.; Kati, V.; Psaraleksi, M.; Gkotsis, D.; Papaioannou, H.; Kati, V. The Roadless Map of Greece. Mendeley Data, v2. 2022. Available online: https://data.mendeley.com/datasets/s6zh89fb5c/2 (accessed on 6 January 2025).
- EEA. Ecosystem Coverage in Europe. Available online: https://www.eea.europa.eu/en/analysis/indicators/ecosystem-coverage-in-europe?activeAccordion=546a7c35-9188-4d23-94ee-005d97c26f2b (accessed on 11 March 2025).
- EIONET. Natura 2000 Database December 2021. v.32. Available online: https://www.eea.europa.eu/data-and-maps/data/natura-14/natura-2000-spatial-data (accessed on 10 February 2022).
- Key Biodiversity Areas Partnership. Key Biodiversity Areas Factsheet: Mountains of Central Evvoia. Extracted from the World Database of Key Biodiversity Areas. Available online: https://www.keybiodiversityareas.org/ (accessed on 13 April 2025).
- Spiliopoulou, K.; Rigal, F.; Plumptre, A.J.; Trigas, P.; Paragamian, K.; Hochkirch, A.; Lymberakis, P.; Portolou, D.; Stoumboudi, M.T.; Triantis, K.A. KBAscope: Key biodiversity area identification in R. Ecography 2024, 2024, e07061. [Google Scholar] [CrossRef]
- IUCN. The IUCN Red List of Threatened Species. Available online: https://www.iucnredlist.org (accessed on 15 January 2025).
- Arapis, Τ.; Papadopoulou, D.; Savvidis, G.A.; Ioannidis, I.; Kardakari, N.; Karamanlidis, A.; Papazoglou, F.; Papamichael, G.; Hatzirvassanis, V. Deliverable “Study 6: Volumes of Specific Environmental Studies of 1st Group of Areas, TA3: Evaluation—Demarcation of Protected Area”. Consultant: GEOANALYSIS S.A. Contracting Authority: Ministry of Energy and Environment/General Directorate of Environmental Policy/Directorate of Biodiversity and Natural Environment Management/Department of Protected Areas; GeoAnalysis: Athens, Greece, 2022; p. 139. [Google Scholar]
- Kati, V.; Kassara, C. Sustainable Spatial Planning for Windfarms in Greece. Mendeley Data V.3. Available online: https://data.mendeley.com/datasets/kh3fjww93t/3 (accessed on 27 March 2025).
- Kati, V.; Kassara, C.; Panagos, P.; Tampouratzi, L.; Gotsis, D.; Tzortzakaki, O.; Petridou, M.; Psaralexi, M.; Sidiropoulos, L.; Vasilakis, D.; et al. The overlooked threat of land take from wind energy infrastructures: Quantification, drivers and policy gaps. J. Environ. Manag. 2023, 348, 119340. [Google Scholar] [CrossRef] [PubMed]
- Hesselbarth, M.H.K.; Sciaini, M.; With, K.A.; Wiegand, K.; Nowosad, J. landscapemetrics: An open-source R tool to calculate landscape metrics. Ecography 2019, 42, 1648–1657. [Google Scholar] [CrossRef]
- Jaeger, J.A.G. Landscape division, splitting index, and effective mesh size: New measures of landscape fragmentation. Landsc. Ecol. 2000, 15, 115–130. [Google Scholar] [CrossRef]
- McGarigal, K.; Cushman, S.A.; Ene, E. FRAGSTATS v4: Spatial Pattern Analysis Program for Categorical Maps; Computer Software Program; University of Massachusetts: Boston, MA, USA, 2023. [Google Scholar]
- Kati, V.; Kassara, C.; Psaralexi, M.; Tzortzakaki, O.; Petridou, M.; Galani, A.; Hoffmann, M.T. Conservation policy under a roadless perspective: Minimizing fragmentation in Greece. Biol. Conserv. 2020, 252, 108828. [Google Scholar] [CrossRef]
- Kati, V.; Petridou, M.; Tzortzakaki, O.; Papantoniou, E.; Galani, A.; Psaralexi, M.; Gotsis, D.; Papaioannou, H.; Kassara, C. How much wilderness is left? A roadless approach under the Global and the European Biodiversity Strategy focusing on Greece. Biol. Conserv. 2023, 281, 110015. [Google Scholar] [CrossRef]
- ESRI. ArcGISDesktop, Version 10.7; Environmental Systems Research Institute: Redlands, CA, USA, 2018. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024; Available online: https://www.R-project.org/ (accessed on 27 March 2025).
- Dai, T.; Jose Valanarasu, J.M.; Zhao, Y.; Zheng, S.; Sun, Y.; Patel, V.M.; Jordaan, S.M. Land Resources for Wind Energy Development Requires Regionalized Characterizations. Environ. Sci. Technol. 2024, 58, 5014–5023. [Google Scholar] [CrossRef]
- Diffendorfer, J.E.; Compton, R.W. Land Cover and Topography Affect the Land Transformation Caused by Wind Facilities. PLoS ONE 2014, 9, e88914. [Google Scholar] [CrossRef]
- Diffendorfer, J.E.; Dorning, M.A.; Keen, J.R.; Kramer, L.A.; Taylor, R.V. Geographic context affects the landscape change and fragmentation caused by wind energy facilities. PeerJ 2019, 7, e7129. [Google Scholar] [CrossRef]
- Balotari-Chiebáo, F.; Byholm, P. Quantifying land impacts of wind energy: A regional-scale assessment in Finland. Environ. Dev. Sustain. 2024. [Google Scholar] [CrossRef]
- Didham, R.K. Ecological Consequences of Habitat Fragmentation. eLS; John Wiley & Sons: Chichester, UK, 2010. [Google Scholar]
- Haddad, N.M.; Brudvig, L.A.; Clobert, J.; Davies, K.F.; Gonzalez, A.; Holt, R.D.; Lovejoy, T.E.; Sexton, J.O.; Austin, M.P.; Collins, C.D.; et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 2015, 1, e1500052. [Google Scholar] [CrossRef]
- Krauss, J.; Bommarco, R.; Guardiola, M.; Heikkinen, R.K.; Helm, A.; Kuussaari, M.; Lindborg, R.; Öckinger, E.; Pärtel, M.; Pino, J.; et al. Habitat fragmentation causes immediate and time-delayed biodiversity loss at different trophic levels. Ecol. Lett. 2010, 13, 597–605. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves-Souza, T.; Chase, J.M.; Haddad, N.M.; Vancine, M.H.; Didham, R.K.; Melo, F.L.P.; Aizen, M.A.; Bernard, E.; Chiarello, A.G.; Faria, D.; et al. Species turnover does not rescue biodiversity in fragmented landscapes. Nature 2025, 640, 702–706. [Google Scholar] [CrossRef] [PubMed]
- Laurance, W.F.; Nascimento, H.E.M.; Laurance, S.G.; Andrade, A.; Ewers, R.M.; Harms, K.E.; Luizão, R.C.C.; Ribeiro, J.E. Habitat Fragmentation, Variable Edge Effects, and the Landscape-Divergence Hypothesis. PLoS ONE 2007, 2, e1017. [Google Scholar] [CrossRef] [PubMed]
- Ioannidis, K.; Tsakaldimi, M.; Koutsovoulou, K.; Daskalakou, E.N.; Ganatsas, P. Effect of Seedling Provenance and Site Heterogeneity on Abies cephalonica Performance in a Post-Fire Environment. Sustainability 2021, 13, 6097. [Google Scholar] [CrossRef]
- Hoffmann, M.T.; Kreft, S.; Kati, V.; Ibisch, P.L. Roadless Areas as Key Approach to Conservation of Functional Forest Ecosystems. In Reference Module in Earth Systems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- McClung, M.R.; Moran, M.D. Minimizing Impacts of Future Renewable Energy Development on the World’s Desert Ecosystems. Front. Sustain. 2022, 3, 900468. [Google Scholar] [CrossRef]
- Kati, V.; Selva, N.; Sjögren-Gulve, P. Greek roadless policy: A model for Europe. Science 2022, 375, 984. [Google Scholar] [CrossRef]
- BCL. Biodiversity Conservation Lab/University of Ioannina, Roadless Project. Available online: https://bc.lab.uoi.gr/en/research/projects/roadless/ (accessed on 16 April 2025).
- HR. Voluntary National Review 2022 on the Implementation of the 2030 Agenda for Sustainable Development; Hellenic Republic; National Printing House: Athens, Greece, 2022. [Google Scholar]
- EC. Commission Staff Working Document: Criteria and Guidance for Protected Areas Designations; SWD (2022) 23 Final; EC: Brussels, Belgium, 2022; p. 27. [Google Scholar]
- EC. Commission Staff Working Document. Fitness Check of the EU Nature Legislation (Birds and Habitats Directives); EC: Brussels, Belgium, 2016; p. 126. [Google Scholar]
- Kati, V.; Hovardas, T.; Dieterich, M.; Ibisch, P.L.; Mihok, B.; Selva, N. The challenge of implementing the European network of protected areas Natura 2000. Conserv. Biol. 2015, 29, 260–270. [Google Scholar] [CrossRef]
- IUCN. A Global Standard for the Identification of Key Biodiversity Areas. Ver. 1; IUCN: Gland, Switzerland, 2016; p. 37. [Google Scholar]
- Willemse, L.P.M.; Hochkirch, A.; Heller, K.-G.; Kati, V.; Papapavlou, K.; Τzirkalli, E. Parnassiana Dirphys. The IUCN Red List of Threatened Species 2016: e.T68450165A70624666. Available online: https://www.iucnredlist.org/species/68450165/70624666 (accessed on 19 September 2024).
- Tzortzakaki, O.; Willemse, L.P.M.; Hochkirch, A. Pholidoptera Lucasi. The IUCN Red List of Threatened Species 2023: e.T68451909A226342703. Available online: https://www.iucnredlist.org/species/68451909/226342703 (accessed on 19 September 2024).
- Bitzilekis, E. Zonites Euboeicus. The IUCN Red List of Threatened Species 2024: e.T171441A229932518. Available online: https://www.iucnredlist.org/species/171441/229932518 (accessed on 19 September 2024).
- Suarez, D.; Arribas, P.; Jimenez-Garcia, E.; Emerson, B.C. Dispersal ability and its consequences for population genetic differentiation and diversification. Proc. Biol. Sci. 2022, 289, 20220489. [Google Scholar] [CrossRef]
- IUCN SPC. Guidelines for Using the IUCN Red List Categories and Criteria. Version 16; Prepared by the Standards and Petitions Committee; IUCN: Gland, Switzerland, 2024; p. 122. Available online: http://www.iucnredlist.org/documents/RedListGuidelines.pdf (accessed on 6 April 2025).
- NCESD. National State of the Environment Report—SoER 2018; NCESD: Athens, Greece, 2018. [Google Scholar]
- Hochkirch, A.; Bilz, M.; Ferreira, C.C.; Danielczak, A.; Allen, D.; Nieto, A.; Rondinini, C.; Harding, K.; Hilton-Taylor, C.; Pollock, C.M.; et al. A multi-taxon analysis of European Red Lists reveals major threats to biodiversity. PLoS ONE 2023, 18, e0293083. [Google Scholar] [CrossRef]
- Tóth, G.; Ivits, E.; Prokop, G.; Gregor, M.; Fons-Esteve, J.; Milego Agràs, R.; Mancosu, E. Impact of Soil Sealing on Soil Carbon Sequestration, Water Storage Potentials and Biomass Productivity in Functional Urban Areas of the European Union and the United Kingdom. Land 2022, 11, 840. [Google Scholar] [CrossRef]
- Lal, R. Digging deeper: A holistic perspective of factors affecting soil organic carbon sequestration in agroecosystems. Glob. Change Biol. 2018, 24, 3285–3301. [Google Scholar] [CrossRef] [PubMed]
- McDaniel, M.D.; Saha, D.; Dumont, M.G.; Hernández, M.; Adams, M.A. The Effect of Land-Use Change on Soil CH4 and N2O Fluxes: A Global Meta-Analysis. Ecosystems 2019, 22, 1424–1443. [Google Scholar] [CrossRef]
- Pennock, D.; McKenzie, N.; Montanarella, L. Status of the World’s Soil Resources; Technical Summary; FAO: Rome, Italy, 2015. [Google Scholar]
- Mullu, D.A. Review on the Effect of Habitat Fragmentation on Ecosystem. J. Nat. Sci. Res. 2016, 6, 1–15. [Google Scholar]
- Munir, T.; Malik, M.F.; Naseem, S.; Azzam, A. Habitat fragmentation-a menace of biodiversity: A review. Int. J. Fauna Biol. Stud. 2018, 5, 37–41. [Google Scholar]
- Flores-Rentería, D.; Rincón, A.; Morán-López, T.; Hereş, A.M.; Pérez-Izquierdo, L.; Valladares, F.; Curiel Yuste, J. Habitat fragmentation is linked to cascading effects on soil functioning and CO(2) emissions in Mediterranean holm-oak-forests. PeerJ 2018, 6, e5857. [Google Scholar] [CrossRef]
- Fragoso-López, P.I.; Rodríguez-Laguna, R.; Otazo-Sánchez, E.M.; González-Ramírez, C.A.; Valdéz-Lazalde, J.R.; Cortés-Blobaum, H.J.; Razo-Zárate, R. Carbon Sequestration in Protected Areas: A Case Study of an Abies religiosa (H.B.K.) Schlecht. et Cham Forest. Forests 2017, 8, 429. [Google Scholar] [CrossRef]
- MEECC. Strategic Environmental Assessment for the Special Physical Planning Framework for the Development of Renewable Energy Sources and Land Management; Ministry of Environment, Energy and Climate Change: Athens, Greece, 2007.
- Vasilakis, D.P.; Whitfield, D.P.; Kati, V. A balanced solution to the cumulative threat of industrialized wind farm development on cinereous vultures (Aegypius monachus) in south-eastern Europe. PLoS ONE 2017, 12, e0172685. [Google Scholar] [CrossRef]
- Bounas, A.; Vasilakis, D.; Kret, E.; Zakkak, S.; Chatzinikolaou, Y.; Kapsalis, E.; Arkumarev, V.; Dobrev, D.; Stamenov, A.; Stoychev, S.; et al. Cumulative collision risk and population-level consequences of industrial wind-power plant development for two vulture species: A quantitative warning. Environ. Impact Assess. Rev. 2025, 110, 107669. [Google Scholar] [CrossRef]
- Moustakas, A.; Georgiakakis, P.; Kret, E.; Kapsalis, E. Wind turbine power and land cover effects on cumulative bat deaths. Sci. Total Environ. 2023, 892, 164536. [Google Scholar] [CrossRef]
- Vlami, V.; Danek, J.; Zogaris, S.; Gallou, E.; Kokkoris, I.P.; Kehayias, G.; Dimopoulos, P. Residents’ Views on Landscape and Ecosystem Services during a Wind Farm Proposal in an Island Protected Area. Sustainability 2020, 12, 2442. [Google Scholar] [CrossRef]
- Pavlis, E. Large-Scale Wind Energy Farm Development and its Impacts on the Landscape: A Review of the Greek Case. J. Landsc. Ecol. 2025, 18, 24–61. Available online: https://sciendo.com/article/10.2478/jlecol-2025-0019 (accessed on 19 September 2024).
- Maguire, K.; Tanner, S.J.; Winikoff, J.B.; Williams, R. Utility-Scale Solar and Wind Development in Rural Areas: Land Cover Change (2009–20) (Report No. ERR-330); U.S. Department of Agriculture, Economic Research Service: Washington, DC, USA, 2024. [Google Scholar]
- Vasilakis, D.P.; Whitfield, D.P.; Schindler, S.; Poirazidis, K.S.; Kati, V. Reconciling endangered species conservation with wind farm development: Cinereous vultures (Aegypius monachus) in south-eastern Europe. Biol. Conserv. 2016, 196, 10–17. [Google Scholar] [CrossRef]
- O’Faircheallaigh, C. Public participation and environmental impact assessment: Purposes, implications, and lessons for public policy making. Environ. Impact Assess. Rev. 2010, 30, 19–27. [Google Scholar] [CrossRef]
- Milieu Ltd.; IEEP; ICF. Evaluation Study to Support the Fitness Check of the Birds and Habitats Directives; Publications Office of the European Union: Luxembourg, 2016. [Google Scholar]
- Nita, A.; Fineran, S.; Rozylowicz, L. Researchers’ perspective on the main strengths and weaknesses of Environmental Impact Assessment (EIA) procedures. Environ. Impact Assess. Rev. 2022, 92, 106690. [Google Scholar] [CrossRef]
- Peterson, K.; Kose, M.; Uustal, M. Screening decisions concerning the likely impacts of plans and projects on natura 2000 sites. J. Environ. Assess. Policy Manag. 2010, 12, 185–214. [Google Scholar] [CrossRef]
- EC. Commission Guidance Document on Streamlining Environmental Assessments Conducted Under Article 2(3) of the Environmental Impact Assessment Directive (Directive 2011/92/EU of the European Parliament and of the Council, as amended by Directive 2014/52/EU) (2016/C 273/01). 2016. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52016XC0727(01) (accessed on 6 April 2025).
- EC; COWI A/S; Milieu Ltd.; McGuinn, J.; Lukacova, Z.; McNeill, A.; Lantieri, A. Environmental Impact Assessment of Projects—Guidance on the Preparation of the Environmental Impact Assessment Report (Directive 2011/92/EU as Amended by 2014/52/EU); Directorate-General for Environment; European Commission: Brussels, Belgium, 2017; p. 126. [Google Scholar]
- European Parliament; Ballesteros, M. Transposition and Implementation of the 2014 Directive on the Assessment of the Effects of Certain Public and Private Projects on the Environment. Briefing Requested by the European Parliament’s Committee on Petitions (Directorate-General for Internal Policies of the Union). 2018. Available online: https://op.europa.eu/en/publication-detail/-/publication/3597ff7d-0fe2-11e9-81b4-01aa75ed71a1 (accessed on 6 April 2025).
- Caro-Gonzalez, A.L.; Nita, A.; Toro, J.; Zamorano, M. From procedural to transformative: A review of the evolution of effectiveness in EIA. Environ. Impact Assess. Rev. 2023, 103, 107256. [Google Scholar] [CrossRef]
- Hughes, R.M.; Chambers, D.M.; DellaSala, D.A.; Karr, J.R.; Lubetkin, S.C.; O’Neal, S.; Vadas, R.L.; Woody, C.A. Environmental impact assessments should include rigorous scientific peer review. Water Biol. Secur. 2024, 3, 100269. [Google Scholar] [CrossRef]
- Zakaria, P. Strengthening the Independence of Environmental Protection Agencies and Participation in Environmental Impact Assessments; Transparency International: Berlin, Germany, 2024. [Google Scholar]
- EC; JRC; Elsner, P.; Collaer, J.; Uihlein, A. The Onshore Wind Potential of the EU and Neighbouring Countries; JRC139999; European Commission & Joint Recent Center: Brussels, Belgium, 2025. [Google Scholar]
- EC. Guidelines on Wilderness in Natura 2000. Management of Terrestrial Wilderness and Wild Areas Within the Natura 2000 Network; European Commission: Brussels, Belgium, 2013. [Google Scholar]
- DGENV. Directorate General for Environment. Guidelines for Defining, Mapping, Monitoring and Strictly Protecting EU Primary and Old-Growth Forests; European Commission: Brussels, Belgium, 2023. [Google Scholar]
- CoE. European Landscape Convention. European Treaty Series No176; Council of Europe: Strasbourg, France, 2000. [Google Scholar]
- Lai, J.; Kooijmans, L.M.J.; Sun, W.; Lombardozzi, D.; Campbell, J.E.; Gu, L.; Luo, Y.; Kuai, L.; Sun, Y. Terrestrial photosynthesis inferred from plant carbonyl sulfide uptake. Nature 2024, 634, 855–861. [Google Scholar] [CrossRef] [PubMed]
- Bosco, L.; Wubs, E.R.J.; Pe’er, G.; Decleer, K.; Vandewalle, M.; Venn, S.; Mauerhofer, V.; Gallé, R.; Kati, V.; Selva, N.; et al. Scientists: The Green Deal Needs to be Urgently Revived; Zenodo: Geneva, Switzerland, 2025. [Google Scholar]
MAES Type | Corine Land Cover | Study Area (km2) | WPS (km2) | Total (km2) | Total (%) | R (km) |
---|---|---|---|---|---|---|
Natural habitats | ||||||
Forest | 311: Broadleaved forests | 0.05 | 0.00 | 0.00 | 0% | 0.00 |
312: Coniferous forests | 25.25 | 4.49 | 4.55 | 18% | 2.91 | |
313: Mixed forests | 3.31 | 0.00 | 0.00 | 0% | 0.00 | |
324: Transitional woodland/shrub | 21.19 | 2.21 | 2.29 | 11% | 3.77 | |
Subtotal | 49.80 | 6.70 | 6.83 | 14% | 6.68 | |
Grassland | 321: Natural grassland | 17.89 | 2.68 | 2.69 | 15% | 0.72 |
Heathland and shrub | 322: Moors and heathland | 2.95 | 0.82 | 0.84 | 28% | 1.34 |
323: Sclerophyllous vegetation | 29.17 | 1.62 | 1.71 | 6% | 4.67 | |
Subtotal | 32.12 | 2.44 | 2.56 | 8% | 6.01 | |
Open areas | 333: Sparsely vegetated areas | 11.55 | 2.73 | 2.77 | 24% | 1.86 |
Semi-natural habitats | ||||||
Cropland | 243: Heterogeneous agricultural areas | 2.60 | 0.00 | 0.00 | 0% | 0.00 |
Artificial habitats | ||||||
Urban | 131: Mineral extraction sites | 0.77 | 0.00 | 0.00 | 0% | 0.00 |
Total | 10 land cover types | 114.73 | 14.55 | 14.85 | 13% | 15.27 |
Subtotals reflect the sum of the original values, not the rounded display values to two decimals |
Number of Patches | Mean Patch Size (km2) | Mean Patch Distance (km) | Effective Mesh Size (km2) | Mean Edge Density (km/km2) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MAES Type | C | F | F/C | C | F | F/C | C | F | F-C | C | F | F/C | C | F | F-C |
Forest | 19 | 58 | 3.1 | 2.6 | 0.7 | 0.3 | 6 | 4.7 | −1.3 | 21.5 | 13.5 | 0.6 | 1.32 | 1.57 | 0.25 |
Grassland | 13 | 26 | 2 | 1.4 | 0.6 | 0.4 | 4.4 | 4.6 | 0.2 | 4.4 | 3.3 | 0.8 | 0.89 | 0.93 | 0.04 |
Heathland and shrub | 21 | 41 | 2 | 1.5 | 0.7 | 0.5 | 5.4 | 5 | −0.3 | 4.6 | 3.2 | 0.7 | 1.22 | 1.27 | 0.05 |
Sparsely vegetated areas | 5 | 28 | 5.6 | 2.3 | 0.3 | 0.1 | 4.2 | 4.3 | 0.1 | 3.7 | 1.2 | 0.3 | 0.75 | 0.76 | 0.01 |
Cropland | 6 | 6 | 1 | 0.4 | 0.4 | 1 | 2.2 | 2.2 | 0 | 0.6 | 0.6 | 1.0 | 0.84 | 0.84 | 0.00 |
Urban | 1 | 1 | 1 | 0.8 | 0.8 | 1 | - | - | - | - | - | - | - | - | - |
Total | 65 | 160 | 2.5 | 9.0 | 3.5 | 3.3 | 22.2 | 20.8 | −1.4 | 34.8 | 21.8 | 3.4 | 5.0 | 5.4 | 0.4 |
Ecologically Sensitive Zone | WPS Polygons | Roads | ||
---|---|---|---|---|
km2 | % | km | % | |
Natura 2000 site (GR2420011) | 14.08 | 97 | 14.9 | 98 |
Zone I “Nature Protection Zone” | 14.08 | 97 | 14.9 | 98 |
Key Biodiversity Area (GR111) | 12.29 | 84 | 14.25 | 93 |
Potential Key Biodiversity Areas | 3.86 | 27 | 2.21 | 14 |
Wilderness areas | 9.26 | 64 | 12.10 | 79 |
Suggested wind farm exclusion zone | 14.55 | 100 | 15.27 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kati, V.; Spiliopoulou, K.; Stefanidis, A.; Kassara, C. Sacrificing Wilderness for Renewables? Land Artificialization from Inadequate Spatial Planning of Wind Energy in Evvoia, Greece. Land 2025, 14, 1296. https://doi.org/10.3390/land14061296
Kati V, Spiliopoulou K, Stefanidis A, Kassara C. Sacrificing Wilderness for Renewables? Land Artificialization from Inadequate Spatial Planning of Wind Energy in Evvoia, Greece. Land. 2025; 14(6):1296. https://doi.org/10.3390/land14061296
Chicago/Turabian StyleKati, Vassiliki, Konstantina Spiliopoulou, Apostolis Stefanidis, and Christina Kassara. 2025. "Sacrificing Wilderness for Renewables? Land Artificialization from Inadequate Spatial Planning of Wind Energy in Evvoia, Greece" Land 14, no. 6: 1296. https://doi.org/10.3390/land14061296
APA StyleKati, V., Spiliopoulou, K., Stefanidis, A., & Kassara, C. (2025). Sacrificing Wilderness for Renewables? Land Artificialization from Inadequate Spatial Planning of Wind Energy in Evvoia, Greece. Land, 14(6), 1296. https://doi.org/10.3390/land14061296