Leakage Effects from Reforestation: Estimating the Impact of Agricultural Displacement for Carbon Markets
Abstract
:1. Introduction
2. Background and Conceptual Framework
2.1. Policy Context
Area of Study: Brazilian Amazon
2.2. Conceptualizing Agricultural Displacement and Deforestation Leakage
2.3. Modeling the Leakage Rationale
3. Materials and Methods
3.1. Dataset
3.2. Empirical Modeling Approaches
Spatial Weight Matrix Construction and Sensitivity Tests
4. Results
4.1. The Extension of Leakage Caused by Forest Plantation
4.2. Livestock Intensification Fails to Offset Displacement Effects
4.3. Economic Drivers of Deforestation Leakage
5. Discussion
5.1. The Extension of Leakage Caused by Reforestation
5.2. Drivers of Deforestation Leakage
5.3. The Failure of Livestock Intensification to Offset Displacement
5.4. Toward Better Leakage Accounting: Implications for Carbon Market and Large Scale Reforestation
5.5. Limitations and Future Research
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Griscom, B.W.; Adams, J.; Ellis, P.W.; Houghton, R.A.; Lomax, G.; Miteva, D.A.; Schlesinger, W.H.; Shoch, D.; Siikamäki, J.V.; Smith, P.; et al. Natural climate solutions. Proc. Natl. Acad. Sci. USA 2017, 114, 11645–11650. [Google Scholar] [CrossRef] [PubMed]
- Mitchard, E.T. The tropical forest carbon cycle and climate change. Nature 2018, 559, 527–534. [Google Scholar] [CrossRef] [PubMed]
- Pugh, T.A.; Lindeskog, M.; Smith, B.; Poulter, B.; Arneth, A.; Haverd, V.; Calle, L. Role of forest regrowth in global carbon sink dynamics. Proc. Natl. Acad. Sci. USA 2019, 116, 4382–4387. [Google Scholar] [CrossRef] [PubMed]
- Lewis, S.L.; Wheeler, C.E.; Mitchard, E.T.; Koch, A. Restoring natural forests is the best way to remove atmospheric carbon. Nature 2019, 568, 25–28. [Google Scholar] [CrossRef]
- Barros, F.d.V.; Lewis, K.; Robertson, A.D.; Pennington, R.T.; Hill, T.C.; Matthews, C.; Lira-Martins, D.; Mazzochini, G.G.; Oliveira, R.S.; Rowland, L. Cost-effective restoration for carbon sequestration across Brazil’s biomes. Sci. Total Environ. 2023, 876, 162600. [Google Scholar] [CrossRef]
- Long, H.; Zhang, Y.; Ma, L.; Tu, S. Land use transitions: Progress, challenges and prospects. Land 2021, 10, 903. [Google Scholar] [CrossRef]
- de Aguiar, A.P.D.; Câmara, G.; Ribeiro, D.F.M.P.; Sampaio, G.; Aragão, L.E.O.C.; Brondizio, M.; Nobre, C.A.; Rosa, N.S.; Oliveira, M.G.P.; Alencar, R.C.C. Land use change emission scenarios: Anticipating a forest transition process in the Brazilian Amazon. Glob. Change Biol. 2016, 22, 1821–1840. [Google Scholar] [CrossRef]
- Lambin, E.F.; Meyfroidt, P. Global land use change, economic globalization, and the looming land scarcity. Proc. Natl. Acad. Sci. USA 2011, 108, 3465–3472. [Google Scholar] [CrossRef]
- Meyfroidt, P.; Rudel, T.K.; Lambin, E.F. Forest transitions, trade, and the global displacement of land use. Proc. Natl. Acad. Sci. USA 2010, 107, 20917–20921. [Google Scholar] [CrossRef]
- Robalino, J.A.; Pfaff, A. Contagious development: Neighbor interactions in deforestation. J. Dev. Econ. 2012, 97, 427–436. [Google Scholar] [CrossRef]
- Richards, P.D.; Walker, R.T.; Arima, E.Y. Spatially complex land change: The Indirect effect of Brazil’s agricultural sector on land use in Amazonia. Glob. Environ. Change 2014, 29, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Haya, B.K.; Evans, S.; Brown, L.; Bukoski, J.; Butsic, V.; Cabiyo, B.; Jacobson, R.; Kerr, A.; Potts, M.; Sanchez, D.L. Comprehensive review of carbon quantification by improved forest management offset protocols. Front. For. Glob. Change 2023, 6, 958879. [Google Scholar] [CrossRef]
- West, T.A.; Grogan, K.A.; Swisher, M.E.; Caviglia-Harris, J.L.; Sills, E.; Harris, D.; Roberts, D.; Putz, F.E. A hybrid optimization-agent-based model of REDD+ payments to households on an old deforestation frontier in the Brazilian Amazon. Environ. Model. Softw. 2018, 100, 159–174. [Google Scholar] [CrossRef]
- Searchinger, T.D.; Wirsenius, S.; Beringer, T.; Dumas, P. Assessing the efficiency of changes in land use for mitigating climate change. Nature 2018, 564, 249–253. [Google Scholar] [CrossRef]
- Cohn, A.S.; Bowman, M.; Zilberman, D.M.; O’Neill, K. The viability of cattle ranching intensification in Brazil as a strategy to spare land and mitigate greenhouse gas emissions. Clim. Change 2014, 126, 463–485. [Google Scholar]
- Koch, N.; zu Ermgassen, E.K.; Wehkamp, J.; Oliveira Filho, F.J.; Schwerhoff, G. Agricultural productivity and forest conservation: Evidence from the Brazilian Amazon. Am. J. Agric. Econ. 2019, 101, 919–940. [Google Scholar] [CrossRef]
- García, V.R.; Gaspart, F.; Kastner, T.; Meyfroidt, P. Agricultural intensification and land use change: Assessing country-level induced intensification, land sparing and rebound effect. Environ. Res. Lett. 2020, 15, 085007. [Google Scholar] [CrossRef]
- Etter, A.; Andrade, A.; Nelson, C.R.; Cortés, J.; Saavedra, K. Assessing restoration priorities for high-risk ecosystems: An application of the IUCN Red List of Ecosystems. Land Use Policy 2020, 99, 104874. [Google Scholar] [CrossRef]
- Azevedo, T.R.; Costa Junior, C.; Brandão Junior, A.; Cremer, M.d.S.; Piatto, M.; Tsai, D.S.; Barreto, P.; Martins, H.; Sales, M.; Galuchi, T.; et al. SEEG initiative estimates of Brazilian greenhouse gas emissions from 1970 to 2015. Sci. Data 2018, 5, 180045. [Google Scholar] [CrossRef]
- Streck, C. REDD+ and leakage: Debunking myths and promoting integrated solutions. Clim. Policy 2021, 21, 843–852. [Google Scholar] [CrossRef]
- Moffette, F.; Gibbs, H.K. Agricultural Displacement and Deforestation Leakage in the Brazilian Legal Amazon. Land Econ. 2021, 97, 155–179. [Google Scholar] [CrossRef]
- Gibbs, H.K.; Rausch, L.; Munger, J.; Schelly, I.; Morton, D.C.; Noojipady, P.; Soares-Filho, B.; Barreto, P.; Micol, L.; Walker, N.F. Brazil’s Soy Moratorium. Science 2015, 347, 377–378. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Y.; Wang, D.; Yao, X.; Wang, S.; Chi, T.; Meng, Y. Forest emissions reduction assessment using optical satellite imagery and space LiDAR fusion for carbon stock estimation. Remote Sens. 2023, 15, 1410. [Google Scholar] [CrossRef]
- Chagas, T.; Galt, H.; Lee, D.; Neeff, T.; Streck, C. A Close Look at the Quality of REDD+ Carbon Credits. 2020. Available online: https://coilink.org/20.500.12592/wmkwj7 (accessed on 20 November 2024).
- Filewod, B.; McCarney, G. Avoiding carbon leakage from nature-based offsets by design. One Earth 2023, 6, 790–802. [Google Scholar] [CrossRef]
- Instituto Nacional de Pesquisas Espaciais (INPE). Projeto PRODES: Monitoramento da Floresta Amazônica Brasileira por Satélite. 2024. Available online: http://www.obt.inpe.br/OBT/assuntos/programas/amazonia/prodes (accessed on 14 March 2025).
- Souza, C.M., Jr.; Shimbo, J.Z.; Rosa, M.R.; Parente, L.L.; Alencar, A.A.; Rudorff, B.F.; Hasenack, H.; Matsumoto, M.; Ferreira, L.G.; Souza-Filho, P.W.; et al. Reconstructing three decades of land use and land cover changes in brazilian biomes with landsat archive and earth engine. Remote Sens. 2020, 12, 2735. [Google Scholar] [CrossRef]
- Waring, B.; Neumann, M.; Prentice, I.C.; Adams, M.; Smith, P.; Siegert, M. Forests and decarbonization–roles of natural and planted forests. Front. For. Glob. Change 2020, 3, 534891. [Google Scholar] [CrossRef]
- Di Sacco, A.; Hardwick, K.A.; Blakesley, D.; Brancalion, P.H.; Breman, E.; Cecilio Rebola, L.; Chomba, S.; Dixon, K.; Elliott, S.; Ruyonga, G.; et al. Ten golden rules for reforestation to optimize carbon sequestration, biodiversity recovery and livelihood benefits. Glob. Change Biol. 2021, 27, 1328–1348. [Google Scholar] [CrossRef]
- Busch, J.; Ferretti-Gallon, K. What drives and stops deforestation, reforestation, and forest degradation? An updated meta-analysis. Rev. Environ. Econ. Policy 2023, 17, 217–250. [Google Scholar] [CrossRef]
- Henders, S.; Ostwald, M. Forest Carbon Leakage Quantification Methods and Their Suitability for Assessing Leakage in REDD. Forests 2012, 3, 33–58. [Google Scholar] [CrossRef]
- Pfaff, A.; Walker, R. Regional interdependence and forest “transitions”: Substitute deforestation limits the relevance of local reversals. Land Use Policy 2010, 27, 119–129. [Google Scholar] [CrossRef]
- Arima, E.Y.; Richards, P.; Walker, R.; Caldas, M.M. Statistical confirmation of indirect land use change in the Brazilian Amazon. Environ. Res. Lett. 2011, 6, 024010. [Google Scholar] [CrossRef]
- Brandão, A., Jr.; Rausch, L.; Paz Durán, A.; Costa, C., Jr.; Spawn, S.A.; Gibbs, H.K. Estimating the potential for conservation and farming in the Amazon and Cerrado under four policy scenarios. Sustainability 2020, 12, 1277. [Google Scholar] [CrossRef]
- Kastner, T.; Chaudhary, A.; Gingrich, S.; Marques, A.; Persson, U.M.; Bidoglio, G.; Le Provost, G.; Schwarzmüller, F. Global agricultural trade and land system sustainability: Implications for ecosystem carbon storage, biodiversity, and human nutrition. One Earth 2021, 4, 1425–1443. [Google Scholar] [CrossRef]
- Escobar, N.; Valin, H.; Frank, S.; Galperin, D.; Wade, C.M.; Ringwald, L.; Tanner, D.; Hinkel, N.; Havlík, P.; Baker, J.S.; et al. Understanding Uncertainty in Market-Mediated Responses to US Oilseed Biodiesel Demand: Sensitivity of ILUC Emission Estimates to GLOBIOM Parametric Uncertainty. Environ. Sci. Technol. 2024, 59, 302–314. [Google Scholar] [CrossRef]
- Meyfroidt, P.; De Bremond, A.; Ryan, C.M.; Archer, E.; Aspinall, R.; Chhabra, A.; Camara, G.; Corbera, E.; DeFries, R.; Díaz, S.; et al. Ten facts about land systems for sustainability. Proc. Natl. Acad. Sci. USA 2022, 119, e2109217118. [Google Scholar] [CrossRef]
- Leblois, A.; Damette, O.; Wolfersberger, J. What has driven deforestation in developing countries since the 2000s? Evidence from new remote-sensing data. World Dev. 2017, 92, 82–102. [Google Scholar] [CrossRef]
- Merry, F.; Soares-Filho, B. Will intensification of beef production deliver conservation outcomes in the Brazilian Amazon? Elem. Sci. Anth 2017, 5, 24. [Google Scholar] [CrossRef]
- Alix-Garcia, J.M.; Shapiro, E.N.; Sims, K.R. Forest conservation and slippage: Evidence from Mexico’s national payments for ecosystem services program. Land Econ. 2012, 88, 613–638. [Google Scholar] [CrossRef]
- Honey-Rosés, J.; Baylis, K.; Ramirez, M.I. A spatially explicit estimate of avoided forest loss. Conserv. Biol. 2011, 25, 1032–1043. [Google Scholar] [CrossRef]
- Andam, K.S.; Ferraro, P.J.; Pfaff, A.; Sanchez-Azofeifa, G.A.; Robalino, J.A. Measuring the effectiveness of protected area networks in reducing deforestation. Proc. Natl. Acad. Sci. USA 2008, 105, 16089–16094. [Google Scholar] [CrossRef]
- Sills, E.O.; Herrera, D.; Kirkpatrick, A.J.; Brandão, A., Jr.; Dickson, R.; Hall, S.; Pattanayak, S.; Shoch, D.; Vedoveto, M.; Young, L.; et al. Estimating the impacts of local policy innovation: The synthetic control method applied to tropical deforestation. PLoS ONE 2015, 10, e0132590. [Google Scholar] [CrossRef] [PubMed]
- Anselin, L. Spatial Econometrics: Methods and Models; Springer: Santa Barbara, CA, USA, 1988. [Google Scholar] [CrossRef]
- Elhorst, J.P. Applied spatial econometrics: Raising the bar. Spat. Econ. Anal. 2010, 5, 9–28. [Google Scholar] [CrossRef]
- Baylis, K.; Fullerton, D.; Shah, P. What Drives Forest Leakage. Working Paper, Department of Agricultural and Consumer Economics, University of Illinois at Urbana-Champaign. 2016. Available online: https://conference.nber.org/confer/2016/SI2016/EEE/Baylis_Fullerton_Shah.pdf (accessed on 20 November 2024).
- Belotti, F.; Hughes, G.; Mortari, A.P. Spatial panel-data models using Stata. Stata J. 2017, 17, 139–180. [Google Scholar] [CrossRef]
- Research Council, T.N. Advancing Land Change Modeling; The National Academies Press: Washington, DC, USA, 2014. [Google Scholar] [CrossRef]
- Geist, H.J.; Lambin, E.F. Proximate Causes and Underlying Driving Forces of Tropical Deforestation. BioScience 2002, 52, 143–150. [Google Scholar] [CrossRef]
- Instituto Brasileiro de Geografia e Estatística (IBGE). Sistema IBGE de Recuperação Automática (SIDRA). 2023. Available online: https://sidra.ibge.gov.br (accessed on 20 November 2024).
- Instituto Brasileiro de Geografia e Estatística (IBGE). Produto Interno Bruto dos Municípios. 2023; Municipal GDP Dataset. Available online: https://www.ibge.gov.br/estatisticas/economicas/contas-nacionais/9088-produto-interno-bruto-dos-municipios.html (accessed on 20 November 2024).
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef]
- Copernicus Climate Change Service (C3S). ERA5: Fifth Generation of ECMWF Atmospheric Reanalyses of the Global Climate; Copernicus Climate Change Service: Bonn, Germany, 2017; Available online: https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview (accessed on 12 January 2024).
- Instituto Brasileiro de Geografia e Estatística (IBGE). Estimativas da População por Município. 2023. Available online: https://www.ibge.gov.br/estatisticas/sociais/populacao/9103-estimativas-de-populacao.html (accessed on 20 November 2024).
- Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis (IBAMA). Áreas Embargadas por Desmatamento Ilegal. 2023; IBAMA Open Data Portal. Available online: http://dadosabertos.ibama.gov.br/dataset/termos-de-embargo (accessed on 20 November 2024).
- Aihounton, G.B.; Henningsen, A. Units of measurement and the inverse hyperbolic sine transformation. Econom. J. 2021, 24, 334–351. [Google Scholar] [CrossRef]
- Bellemare, M.F.; Wichman, C.J. Elasticities and the inverse hyperbolic sine transformation. Oxf. Bull. Econ. Stat. 2020, 82, 50–61. [Google Scholar] [CrossRef]
- Norton, E.C. The inverse hyperbolic sine transformation and retransformed marginal effects. Stata J. 2022, 22, 702–712. [Google Scholar] [CrossRef]
- Vale, P.; Gibbs, H.; Vale, R.; Munger, J.; Brandão, A., Jr.; Christie, M.; Florence, E. Mapping the cattle industry in Brazil’s most dynamic cattle-ranching state: Slaughterhouses in Mato Grosso, 1967–2016. PLoS ONE 2019, 14, e0215286. [Google Scholar] [CrossRef]
- Barreto, P.; Pereira, R.; Brandão, A., Jr.; Baima, S. Os Frigoríficos vão Ajudar a Zerar o Desmatamento da Amazônia; Instituto do Homem e Meio Ambiente da Amazônia (Imazon) and Instituto Centro de Vida (ICV): Belém and Cuiabá, Brazil, 2017; Available online: https://imazon.org.br/os-frigorificos-vao-ajudar-a-zerar-o-desmatamento-da-amazonia/ (accessed on 12 January 2024).
- Sloan, S. Reforestation reversals and forest transitions. Land Use Policy 2022, 112, 105800. [Google Scholar] [CrossRef]
- Searchinger, T.; Heimlich, R.; Houghton, R.A.; Dong, F.; Elobeid, A.; Fabiosa, J.; Tokgoz, S.; Hayes, D.; Yu, T.H. Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 2008, 319, 1238–1240. [Google Scholar] [CrossRef] [PubMed]
- Lapola, D.M.; Schaldach, R.; Alcamo, J.; Bondeau, A.; Koch, J.; Koelking, C.; Priess, J.A. Indirect land-use changes can overcome carbon savings from biofuels in Brazil. Proc. Natl. Acad. Sci. USA 2010, 107, 3388–3393. [Google Scholar] [CrossRef] [PubMed]
- van Zonneveld, M.; Turmel, M.; Hellin, J. Decision-Making to Diversify Farm Systems for Climate Change Adaptation. Front. Sustain. Food Syst. 2020, 4, 32. [Google Scholar] [CrossRef]
- Miranda, J.; Börner, J.; Kalkuhl, M.; Soares-Filho, B. Land speculation and conservation policy leakage in Brazil. Environ. Res. Lett. 2019, 14, 045006. [Google Scholar] [CrossRef]
- Nunes, S.; Oliveira, L.; Siqueira, J.; Morton, D.C.; Souza, C.M. Unmasking secondary vegetation dynamics in the Brazilian Amazon. Environ. Res. Lett. 2020, 15, 034057. [Google Scholar] [CrossRef]
- Lennox, G.D.; Gardner, T.A.; Thomson, J.R.; Ferreira, J.; Berenguer, E.; Lees, A.C.; Mac Nally, R.; Aragão, L.E.; Ferraz, S.F.; Louzada, J.; et al. Second rate or a second chance? Assessing biomass and biodiversity recovery in regenerating Amazonian forests. Glob. Change Biol. 2018, 24, 5680–5694. [Google Scholar] [CrossRef]
Variable | Description | Source |
---|---|---|
Total native vegetation area | Hectares of native vegetation (forest and savanna land cover) | MapBiomas [27] |
Annual native vegetation loss | Ratio of annual vegetation loss (%) relative to the year 2000 | MapBiomas [27] |
Forest plantation area | Area of forest plantation, in hectares | MapBiomas [27] |
Stocking rate for cattle | Number of cattle per hectare of pastureland | IBGE [50] & MapBiomas [27] |
Land rent (BRL/ha) by municipality | Annual agricultural profit, adjusted for inflation * | IBGE [50] |
Municipal Gross Domestic Product of agricultural activities | Agricultural GDP per capita (BRL), adjusted for inflation * | IBGE [51] |
Precipitation | Total annual precipitation (mm) at the municipal level | CHIRPS [52] |
Temperature | Average annual temperature (Celsius) at the municipal level | Copernicus Climate Center [53] |
Population density (person/km2) | Total population by the area of the municipality | IBGE [54] |
Environmental law enforcement | Area of embargoes (km2) due to illegal deforestation | IBAMA [55] |
Variable | OLS | Fixed Effects | First Differences |
---|---|---|---|
(Intercept) | 1.2832 | −0.0215 | |
(1.2257) | (0.0168) | ||
Vegetation loss (lagged 1yr) | 0.7970 *** | 0.5620 *** | 0.3190 *** |
(0.0149) | (0.0214) | (0.0255) | |
Forestry area | 0.0057 * | −0.0220 ** | −0.0063 |
(0.0032) | (0.0088) | (0.0164) | |
Stocking rate | 0.0043 | 0.0020 | −0.0305 |
(0.0190) | (0.0396) | (0.0570) | |
GDP per capita | −0.0019 | −0.0160 | −0.0164 ** |
(0.0028) | (0.0120) | (0.0078) | |
Population density | −0.0197 *** | 0.0017 | −0.0120 |
(0.0070) | (0.0219) | (0.0289) | |
Enforcement | -4.8997 | −1.7904 | −11.2718 |
(4.8102) | (7.2238) | (6.9847) | |
Rainfall | −0.0177 | −0.1281 | 0.0011 |
(0.0325) | (0.0790) | (0.0838) | |
Temperature | −0.2689 | −0.1755 | −0.0378 |
(0.2787) | (1.2065) | (0.9349) | |
Year trend | −0.0012 | -0.0025 | |
(0.0015) | (0.0049) | ||
0.0830 *** | −0.2203 *** | −0.2028 *** | |
(0.0287) | (0.0504) | (0.0549) | |
−0.0059 | 0.1302 ** | 0.1565 ** | |
(0.0264) | (0.0586) | (0.0625) | |
0.0202 | 0.0579 | 0.0933 | |
(0.0265) | (0.0588) | (0.0621) | |
Obs. (n) | 1856 | 1856 | 1457 |
R2 | 0.672 | 0.345 | 0.132 |
RMSE | 0.33 | 0.27 | 0.45 |
Variable | 50 km | 100 km | 150 km | 200 km | 250 km | 300 km |
---|---|---|---|---|---|---|
Vegetation loss (lagged 1yr) | 0.5630 *** | 0.5630 *** | 0.5628 *** | 0.5625 *** | 0.5624 *** | 0.5623 *** |
(0.0216) | (0.0215) | (0.0214) | (0.0214) | (0.0214) | (0.0214) | |
Forestry area | −0.0216 ** | −0.0217 ** | −0.0216 ** | −0.0214 ** | −0.0214 * | −0.0213 ** |
(0.0089) | (0.0088) | (0.0088) | (0.0088) | (0.0088) | (0.0088) | |
Stocking rate | 0.0029 | 0.0043 | 0.0052 | 0.0056 | 0.0059 | 0.0060 |
(0.0399) | (0.0397) | (0.0396) | (0.0396) | (0.0396) | (0.0396) | |
GDP per capita | −0.0167 | −0.0165 | −0.0161 | −0.0159 | −0.0157 | −0.0156 |
(0.0121) | (0.0120) | (0.0120) | (0.0120) | (0.0120) | (0.0120) | |
Population density | 0.0027 | 0.0020 | 0.0015 | 0.0012 | 0.0011 | 0.0010 |
(0.0221) | (0.0220) | (0.0219) | (0.0219) | (0.0219) | (0.0219) | |
Enforcement | −1.7205 | −1.5264 | −1.6576 | −1.7890 | −1.8872 | −1.9590 |
(7.2720) | (7.2455) | (7.2326) | (7.2267) | (7.2237) | (7.2221) | |
Rainfall | −0.1222 | −0.1302 | −0.1336 * | −0.1351 * | −0.1358 * | −0.1362 * |
(0.0795) | (0.0793) | (0.0792) | (0.0792) | (0.0791) | (0.0791) | |
Temperature | −0.1775 | −0.2175 | −0.2162 | −0.2092 | −0.2028 | −0.1975 |
(1.2157) | (1.2114) | (1.2095) | (1.2086) | (1.2082) | (1.2080) | |
−0.1338 *** | −0.2440 *** | −0.2925 *** | −0.3127 *** | −0.3220 *** | −0.3267 *** | |
(0.0411) | (0.0549) | (0.0598) | (0.0616) | (0.0624) | (0.0627) | |
0.0730 | 0.1063+ | 0.1098+ | 0.1077 | 0.1052 | 0.1030 | |
(0.0502) | (0.0618) | (0.0651) | (0.0663) | (0.0668) | (0.0670) | |
0.0224 | 0.0494 | 0.0586 | 0.0608 | 0.0610 | 0.0607 | |
(0.0479) | (0.0618) | (0.0657) | (0.0670) | (0.0674) | (0.0676) | |
Obs. (n) | 1843 | 1843 | 1843 | 1843 | 1843 | 1843 |
R2 | 0.340 | 0.344 | 0.346 | 0.347 | 0.348 | 0.348 |
RMSE | 0.27 | 0.27 | 0.27 | 0.27 | 0.27 | 0.27 |
Term | Fixed Effects (FE) |
---|---|
Vegetation loss (lagged 1yr) | 0.573 *** |
(0.007) *** | |
Forestry area | −0.013 |
(0.003) | |
Proximity to forestry | −0.617 |
(0.486) | |
Lagged proximity (1 year) | 0.554 |
(0.625) | |
Lagged proximity (2 years) | 1.303 *** |
(0.476) | |
Lagged proximity (3 years) | 0.110 |
(0.108) | |
Stocking rate | −0.055 *** |
(0.012) | |
GDP per capita | −0.007 |
(0.004) | |
Population density | 0.009 |
(0.006) | |
Enforcement | −1.742 |
(1.765) | |
Rainfall | 1.076 |
(0.6024) | |
Rainfall squared | −0.066 |
(0.036) | |
Temperature | 1.82 *** |
(0.3816) | |
Obs. (n) | 15,327 |
R2 | 0.362 |
RMSE | 0.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, D.S.; Nunes, S. Leakage Effects from Reforestation: Estimating the Impact of Agricultural Displacement for Carbon Markets. Land 2025, 14, 963. https://doi.org/10.3390/land14050963
Silva DS, Nunes S. Leakage Effects from Reforestation: Estimating the Impact of Agricultural Displacement for Carbon Markets. Land. 2025; 14(5):963. https://doi.org/10.3390/land14050963
Chicago/Turabian StyleSilva, Daniel S., and Samia Nunes. 2025. "Leakage Effects from Reforestation: Estimating the Impact of Agricultural Displacement for Carbon Markets" Land 14, no. 5: 963. https://doi.org/10.3390/land14050963
APA StyleSilva, D. S., & Nunes, S. (2025). Leakage Effects from Reforestation: Estimating the Impact of Agricultural Displacement for Carbon Markets. Land, 14(5), 963. https://doi.org/10.3390/land14050963