Study on the Effectiveness of Temporary Vegetation Measures on the Regulation of Runoff, Sediment Yield and Hydraulic Characteristics on the Spoil Heaps
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Soil
2.2. Experimental Design and Procedures
2.3. Simulated Rainfall Experiments
2.4. Data Analysis
3. Results
3.1. Characteristics of Runoff and Sediment Yield
3.2. Hydraulic Parameters
3.2.1. Runoff Patterns and Resistance Coefficients
3.2.2. Shear and Runoff Power
3.3. Runoff and Sediment Reduction Benefits
3.4. Parameter Correlations and Erosion Dynamic Coupling Mechanisms
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Riquetti, N.B.; Mello, C.R.; Leandro, D.; Guzman, J.A.; Beskow, S. Assessment of the Soil-Erosion-Sediment for Sustainable Development of South America. J. Environ. Manag. 2022, 321, 115933. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, S.C.; Silva, T.I. Dam Construction and Loss of Geodiversity in the Araguari River Basin, Brazil. Land Degrad. Dev. 2012, 23, 419–426. [Google Scholar] [CrossRef]
- Nyssen, J.; Poesen, J.; Moeyersons, J.; Luyten, E.; Veyret-Picot, M.; Deckers, J.; Haile, M.T.K.; Govers, G. Impact of Road Building on Gully Erosion Risk: A Case Study from the Northern Ethiopian Highlands. Earth Surf. Process. Landf. 2002, 27, 1267–1283. [Google Scholar] [CrossRef]
- Li, J.M.; Li, L.; Wang, Z.G.; Zhang, C.W.; Wang, Y.F.; Wang, W.L.; Zhang, G.H.; Huang, J.Q.; Li, H.; Lv, X.; et al. The Contributions of the Roots, Stems, and Leaves of Three Grass Species to Water Erosion Reduction on Spoil Heaps. J. Hydrol. 2021, 603, 127003. [Google Scholar] [CrossRef]
- Niu, Y.B.; Gao, Z.L.; Li, Y.H.; Lou, Y.C.; Zhang, S.; Zhang, L.T.; Du, J.; Zhang, X.; Luo, K. Characteristics of Rill Erosion in Spoil Heaps under Simulated Inflow: A Field Runoff Plot Experiment. Soil Tillage Res. 2020, 202, 104655. [Google Scholar] [CrossRef]
- Nearing, M.A.; Xie, Y.; Liu, B.Y.; Ye, Y. Natural and Anthropogenic Rates of Soil Erosion. Int. Soil Water Conserv. Res. 2017, 5, 77–84. [Google Scholar] [CrossRef]
- He, L.; Chen, J.; Cheng, C.; Yuan, J.; Qu, B.; Wei, Y. Assessment and spatiotemporal analysis of flood vulnerability in the Yangtze River Economic Belt. Water Resour. Hydropower Eng. 2024, 55, 24–39. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, L.; Gao, Z.; Yang, S.; Li, Y.; Tian, H. Dynamic Processes of Soil Erosion by Runoff on Engineered Landforms Derived from Expressway Construction: A Case Study of Typical Steep Spoil Heap. Catena 2015, 128, 108–121. [Google Scholar] [CrossRef]
- Gao, Y.; Yin, Y.; Li, B.; He, K.; Wang, X. Post-Failure Behavior Analysis of the Shenzhen “12.20” CDW Landfill Landslide. Waste Manag. 2019, 83, 171–183. [Google Scholar] [CrossRef]
- Iqbal, J.; Dai, F.C.; Hong, M.; Tu, X.B.; Xie, Q.Z. Failure Mechanism and Stability Analysis of an Active Landslide in the Xiangjiaba Reservoir Area, Southwest China. J. Earth Sci. 2018, 29, 646–661. [Google Scholar] [CrossRef]
- Li, J.; Chen, L.; Ren, H.; Sun, B.; Yang, H.; Xiong, Y.; Sun, B. Response of runoff and sediment production and sediment and water benefits of engineering spoil heaps to vegetation characteristics. Trans. Chin. Soc. Agric. Eng. (Trans. CSAE) 2024, 40, 142–151. (In Chinese) [Google Scholar] [CrossRef]
- Lee, M.-G.; Song, C.-S. Characteristics of the Soil Erosion with the Rainfall and Geotechnical Conditions. J. Korean Soc. Agric. Eng. 2011, 53, 53–58. [Google Scholar] [CrossRef]
- Shen, H.O.; Zheng, F.L.; Wen, L.L.; Han, Y.; Hu, W. Impacts of Rainfall Intensity and Slope Gradient on Rill Erosion Processes at Loessial Hillslope. Soil Tillage Res. 2016, 155, 429–436. [Google Scholar] [CrossRef]
- Dong, J.Z.; Zhang, K.L.; Guo, Z.L. Runoff and Soil Erosion from Highway Construction Spoil Deposits: A Rainfall Simulation Study. Transp. Res. Part D Transp. Environ. 2012, 17, 8–14. [Google Scholar] [CrossRef]
- Barbosa, F.T.; Bertol, I.; Werner, R.d.S.; Ramos, J.C.; Ramos, R.R. Critical Slope Length for Water Erosion for Three Crop Residue Types and Rates in Two Sowing Directions in No-Till. Rev. Bras. Ciênc. Solo 2012, 36, 1279–1290. [Google Scholar] [CrossRef]
- Nyssen, J.; Vermeersch, D. Slope Aspect Affects Geomorphic Dynamics of Coal Mining Spoil Heaps in Belgium. Geomorphology 2010, 123, 109–121. [Google Scholar] [CrossRef]
- Li, L.; Nearing, M.A.; Polyakov, V.O.; Nichols, M.H.; Pierson, F.B.; Cavanaugh, M.L. Evolution of Rock Cover, Surface Roughness, and Its Effect on Soil Erosion under Simulated Rainfall. Geoderma 2020, 379, 114622. [Google Scholar] [CrossRef]
- Li, J.; Wang, W.; Guo, M.; Kang, H.; Wang, Z.; Huang, J.; Sun, B.; Wang, K.; Zhang, G.; Bai, Y. Effects of Soil Texture and Gravel Content on the Infiltration and Soil Loss of Spoil Heaps under Simulated Rainfall. J. Soils Sediments 2020, 20, 3896–3908. [Google Scholar] [CrossRef]
- Peng, X.D.; Shi, D.M.; Jiang, D.; Wang, S.S.; Li, Y.X. Runoff Erosion Process on Different Underlying Surfaces from Disturbed Soils in the Three Gorges Reservoir Area, China. Catena 2014, 123, 215–224. [Google Scholar] [CrossRef]
- Wang, X.Y.; Li, Z.X.; Cai, C.F.; Shi, Z.H.; Xu, Q.X.; Fu, Z.Y.; Guo, Z.L. Effects of Rock Fragment Cover on Hydrological Response and Soil Loss from Regosols in a Semi-Humid Environment in South-West China. Geomorphology 2012, 151–152, 234–242. [Google Scholar] [CrossRef]
- Lv, J.; Luo, H.; Xie, Y. Effects of Rock Fragment Content, Size and Cover on Soil Erosion Dynamics of Spoil Heaps through Multiple Rainfall Events. Catena 2019, 172, 179–189. [Google Scholar] [CrossRef]
- Luo, H.; Rong, Y.B.; Lv, J.; Xie, Y.S. Runoff Erosion Processes on Artificially Constructed Conically-Shaped Overburdened Stockpiles with Different Gravel Contents: Laboratory Experiments with Simulated Rainfall. Catena 2019, 175, 93–100. [Google Scholar] [CrossRef]
- Wen, X.; Zhen, L. Soil Erosion Control Practices in the Chinese Loess Plateau: A Systematic Review. Environ. Dev. 2020, 34, 100493. [Google Scholar] [CrossRef]
- Rickson, R.J. Controlling Sediment at Source: An Evaluation of Erosion Control Geotextiles. Earth Surf. Process. Landf. 2006, 31, 550–560. [Google Scholar] [CrossRef]
- Mügler, C.; Ribolzi, O.; Janeau, J.-L.; Rochelle-Newall, E.; Latsachack, K.; Thammahacksa, C.; Viguier, M.; Jardé, E.; Henri-Des-Tureaux, T.; Sengtaheuanghoung, O.; et al. Experimental and Modelling Evidence of Short-Term Effect of Raindrop Impact on Hydraulic Conductivity and Overland Flow Intensity. J. Hydrol. 2019, 570, 401–410. [Google Scholar] [CrossRef]
- Bhattacharyya, R.; Smets, T.; Fullen, M.; Poesen, J.; Booth, C. Effectiveness of Geotextiles in Reducing Runoff and Soil Loss: A Synthesis. Catena 2010, 81, 184–195. [Google Scholar] [CrossRef]
- Whitman, B.; Zech, W.; Donald, W. Improvements in Small-Scale Standardized Testing of Geotextiles Used in Silt Fence Applications. Geotext. Geomembr. 2019, 47, 598–609. [Google Scholar] [CrossRef]
- Li, J.; Cao, Y.; Yao, J.; Jia, G.; Quan, X.; Zhai, H. Temporal and spatial variation analysis of soil erosion in Beijing-Tianjin-Hebei region based on RUSLE model. Water Resour. Hydropower Eng. 2024, 55, 186–199. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, Z.; Xu, W.; Li, L.; Huang, J.; Deng, L.; Wang, Q. Effects of Temporal Conservation Measures on Water Erosion Processes of Disturbed Soil Accumulation in Construction Projects. J. Clean. Prod. 2021, 319, 128612. [Google Scholar] [CrossRef]
- Luo, H.; Zhao, T.N.; Dong, M.; Gao, J.; Peng, X.F.; Guo, Y.; Wang, Z.M.; Liang, C. Field Studies on the Effects of Three Geotextiles on Runoff and Erosion of Road Slope in Beijing, China. Catena 2013, 109, 150–156. [Google Scholar] [CrossRef]
- De Baets, S.; Poesen, J.; Knapen, A.; Barberá, G.G.; Navarro, J.A. Root Characteristics of Representative Mediterranean Plant Species and Their Erosion-Reducing Potential during Concentrated Runoff. Plant Soil 2007, 294, 169–183. [Google Scholar] [CrossRef]
- Vannoppen, W.; Baets, S.; Keeble, J.; Dong, Y.F.; Poesen, J. How Do Root and Soil Characteristics Affect the Erosion-Reducing Potential of Plant Species? Ecol. Eng. 2017, 109, 186–195. [Google Scholar] [CrossRef]
- Yang, S.; Gao, Z.; Li, Y.; Niu, Y.; Su, Y.; Wang, K. Erosion Control of Hedgerows under Soils Affected by Disturbed Soil Accumulation in the Slopes of Loess Plateau, China. Catena 2019, 181, 104079. [Google Scholar] [CrossRef]
- Wang, L.J.; Zhang, Y.L.; Jia, J.C.; Zhen, Q.; Zhang, X.C. Effect of Vegetation on the Flow Pathways of Steep Hillslopes: Overland Flow Plot-Scale Experiments and Their Implications. Catena 2021, 204, 105438. [Google Scholar] [CrossRef]
- de Almeida, W.S.; Panachuki, E.; de Oliveira, P.T.S.; da Silva Menezes, R.; Sobrinho, T.A.; de Carvalho, D.F. Effect of Soil Tillage and Vegetal Cover on Soil Water Infiltration. Soil Tillage Res. 2018, 175, 130–138. [Google Scholar] [CrossRef]
- Li, J.M.; Li, H.; Guo, M.M.; Ding, W.F.; Zhang, C.W.; Liu, J.G.; Xu, W.S.; Tong, X.X.; Sun, B.Y. Influences of Vegetation Types and Near-Surface Characteristics on Hydrodynamics and Soil Erosion of Steep Spoil Heaps under Rainfall and Overland Flow Conditions. Soil Tillage Res. 2025, 247, 106378. [Google Scholar] [CrossRef]
- USDA. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE); USDA: Washington, DC, USA, 1997. [Google Scholar]
- Wang, L.H.; Dalabay, N.; Lu, P.; Wu, F.Q. Effects of Tillage Practices and Slope on Runoff and Erosion of Soil from the Loess Plateau, China, Subjected to Simulated Rainfall. Soil Tillage Res. 2017, 166, 147–156. [Google Scholar] [CrossRef]
- Ricks, M.D.; Horne, M.A.; Faulkner, B.; Zech, W.C.; Fang, X.; Donald, W.N.; Perez, M.A. Design of a Pressurized Rainfall Simulator for Evaluating Performance of Erosion Control Practices. Water 2019, 11, 2386. [Google Scholar] [CrossRef]
- ASTM D6459-19; Standard Test Method for Determination of Rolled Erosion Control Product Performance in Protecting Hillslopes from Rainfall-Induced Erosion. ASTM: West Conshohocken, PA, USA, 2015.
- Shenzhen Meteorological Bureau; Planning, Land, and Resources Commission of Shenzhen Municipality. Rainstorm Intensity Formula and Calculation Chart of Shenzhen City; Shenzhen Standards Press: Shenzhen, China, 2015. (In Chinese) [Google Scholar]
- Li, J.; Li, L.; Wang, W.; Kang, H.; Guo, M.; Huang, J.; Wang, Y.; Lou, Y.; Tong, X.; Nie, H. Hydrological and Erosion Responses of Steep Spoil Heaps to Taproot and Fibrous Root Grasses under Simulated Rainfalls. J. Hydrol. 2023, 618, 129169. [Google Scholar] [CrossRef]
- Luk, S.H.; Merz, W. Use of the Salt Tracing Technique to Determine the Velocity of Overland Flow. Use Salt Tracing Tech. Determ. Veloc. Overl. Flow 1992, 5, 289–301. [Google Scholar]
- Sha, J.D.; Bai, Q.J. Experimental Study on Hydraulic Characteristics of Rill Flows over Clay Soil Slope. J. Sediment Res. 2001, 6, 39–44. [Google Scholar]
- Govers, G.; Giménez, R.; Van Oost, K. Rill Erosion: Exploring the Relationship between Experiments, Modelling and Field Observations. Earth Sci. Rev. 2007, 84, 87–102. [Google Scholar] [CrossRef]
- Evaluating Irregular Slopes for Soil Loss Prediction. Available online: https://www.cabidigitallibrary.org/doi/full/10.5555/19741913147 (accessed on 13 September 2024).
- Nearing, M.A.; Norton, L.D.; Bulgakov, D.A.; Larionov, G.A.; West, L.T.; Dontsova, K.M. Hydraulics and Erosion in Eroding Rills. Water Resour. Res. 1997, 33, 865–876. [Google Scholar] [CrossRef]
- Knapen, A.; Poesen, J.; Govers, G.; Gyssels, G.; Nachtergaele, J. Resistance of Soils to Concentrated Flow Erosion: A Review. Earth Sci. Rev. 2007, 80, 75–109. [Google Scholar] [CrossRef]
- Bagnold, R.A. An Approach to the Sediment Transport Problem from General Physics; U.S. Government Printing Office: Washington, DC, USA, 1966. [Google Scholar]
- Riley, S.J. Aspects of the Differences in the Erodibility of the Waste Rock Dump and Natural Surfaces, Ranger Uranium Mine, Northern Territory, Australia. Appl. Geogr. 1995, 15, 309–323. [Google Scholar] [CrossRef]
- The Central People’s Government of the People’s Republic of China. Available online: https://www.gov.cn/gongbao/content/2023/content_5738894.htm (accessed on 3 April 2023).
- Zhang, L.; Dong, J.; Yuan, L.; Zhu, Y.; Huang, Z.; Li, W.; Wang, H.; Tang, L.; Tian, H.; Gao, Z. Sediment-reducing benefits by runoff regulation under engineering measures in steep slope of abandoned soil deposits in Chinese loessial region. Trans. Chin. Soc. Agric. Eng. 2019, 35, 101–109. (In Chinese) [Google Scholar] [CrossRef]
- Niu, Y.; Gao, Z.; Liu, Z.; Zhang, S. Experimental study on the effects of slope surface of engineering aceumulation on overland flow and sediment reduction. South-North Water Transf. Water Sci. Technol. 2015, 13, 862–866. (In Chinese) [Google Scholar] [CrossRef]
- Yang, S.; Gao, Z.; Li, Y.; Niu, Y.; Kai, W.; Bai, H.; Qi, X.; Li, Y. Erosion resistance effects and mechanism of hedgerows in slope of engineering accumulation. Trans. Chin. Soc. Agric. Eng. 2017, 33, 147–154. (In Chinese) [Google Scholar] [CrossRef]
- Gan, Z.; Ye, J.; Zhou, Q.; Zhou, Z.; Shang, Z. Effects of grass vegetations on the processes of soil erosion over slope lands in simulated rainfalls. Acta Ecol. Sin. 2010, 30, 2387–2396. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, X.; Li, P.; Li, Z.B.; Yu, G.Q.; Li, C. Effects of Precipitation and Different Distributions of Grass Strips on Runoff and Sediment in the Loess Convex Hillslope. Catena 2018, 162, 130–140. [Google Scholar] [CrossRef]
- Liu, J.; Li, P.; Liu, G.; Flanagan, D.C. Quantifying the Effects of Plant Litter in the Topsoil on the Soil Detachment Process by Overland Flow in Typical Grasslands of the Loess Plateau, China. Hydrol. Process. 2020, 34, 2076–2087. [Google Scholar] [CrossRef]
- Zhang, Z.; Nie, W.; Xu, W.; Huang, J.; Li, L.; Li, J.; Zhang, W.; Liu, J. Effects of runoff and sediment reduction on engineering accumulation slopes under different soil and water conservation temporary measures. Trans. Chin. Soc. Agric. Eng. 2022, 38, 141–150. (In Chinese) [Google Scholar] [CrossRef]
- Xue, D.; Guo, X.; Zhang, X. Runoff and Sediment Reduction Under Different Slope Eeological Restoration Modes of Waste Dump in Arid Mining Area. J. Soil Water Conserv. 2021, 35, 15–21. (In Chinese) [Google Scholar] [CrossRef]
- Nie, H.; Wang, W.; Guo, M.; Kang, H.; Li, J.; Bai, Y. Runoff sediment relationship and erosion dynamic characteristies for two types of engineering deposits under rainfall condition. Chin. J. Appl. Ecol. 2020, 31, 3141–3153. (In Chinese) [Google Scholar] [CrossRef]
- Zhou, T.; Su, Z.; Liu, G.; Wang, J.; Liu, Y.; Wu, Z.; Wang, L. Effects of typical ecological restoration measures for engineering accumulation on sediment yield and hydrodynamic process. Trans. Chin. Soc. Agric. Eng. 2022, 38, 91–100. (In Chinese) [Google Scholar] [CrossRef]
- Li, Y.; Niu, Y.; Wang, Z.; Gao, Z.; Zhang, S.; Liu, Z. Hydrodynamic parameters and their relationships of runoff over engineering accumulation slope. Trans. Chin. Soc. Agric. Eng. 2015, 31, 83–88. (In Chinese) [Google Scholar] [CrossRef]
- Li, J.; Zhang, C.; Wang, Z.; Wang, Y.; Xu, W.; Zhang, G.; Pu, J.; Liu, J. Impact of Different Vegetation Types on Runoff Characteristics of Spoil Heaps. J. Yangtze River Sci. Res. Inst. 2021, 38, 60–68. (In Chinese) [Google Scholar]
Underlay Underlying Surface | Runoff Yielding | Sediment Yielding | ||
---|---|---|---|---|
Sub-Rainfall Yield/(L·m−2) | Runoff Reduction Benefits (%) | Sediment Yield Per Rainfall Event (g·m−2) | Sediment Reduction Benefits (%) | |
BS | 85.42 | - | 606.12 | - |
TF-300 cm | 40.73 | −52.32 | 7.38 | −98.78 |
TF-75 cm | 42.49 | −50.26 | 41.02 | −93.23 |
GS-300 cm | 46.14 | −45.98 | 47.70 | −92.13 |
GS-75 cm | 48.14 | −43.64 | 110.10 | −81.83 |
ST | 42.75 | −49.95 | 11.31 | −98.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pu, J.; Li, J.; Wang, W.; Wang, Z.; Wang, J.; Wang, K.; Li, X.; Zhu, X.; Xu, W.; Liu, J. Study on the Effectiveness of Temporary Vegetation Measures on the Regulation of Runoff, Sediment Yield and Hydraulic Characteristics on the Spoil Heaps. Land 2025, 14, 951. https://doi.org/10.3390/land14050951
Pu J, Li J, Wang W, Wang Z, Wang J, Wang K, Li X, Zhu X, Xu W, Liu J. Study on the Effectiveness of Temporary Vegetation Measures on the Regulation of Runoff, Sediment Yield and Hydraulic Characteristics on the Spoil Heaps. Land. 2025; 14(5):951. https://doi.org/10.3390/land14050951
Chicago/Turabian StylePu, Jian, Jianming Li, Wenlong Wang, Zhigang Wang, Jiale Wang, Ke Wang, Xiao Li, Xiudi Zhu, Wensheng Xu, and Jigen Liu. 2025. "Study on the Effectiveness of Temporary Vegetation Measures on the Regulation of Runoff, Sediment Yield and Hydraulic Characteristics on the Spoil Heaps" Land 14, no. 5: 951. https://doi.org/10.3390/land14050951
APA StylePu, J., Li, J., Wang, W., Wang, Z., Wang, J., Wang, K., Li, X., Zhu, X., Xu, W., & Liu, J. (2025). Study on the Effectiveness of Temporary Vegetation Measures on the Regulation of Runoff, Sediment Yield and Hydraulic Characteristics on the Spoil Heaps. Land, 14(5), 951. https://doi.org/10.3390/land14050951