Integrating Environmental Variables into Geostatistical Interpolation: Enhancing Soil Mapping for the MEDALUS Model in Montenegro
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Sampling and Analysis
2.3. Geostatistical Analysis and Interpolation Methods
- Inverse distance weighting method (IDW);
- Ordinary kriging (OK);
- Compositional kriging (COK);
- Universal kriging (UK);
- Geographically weighted regression (GWR);
- Geographically weighted regression kriging (GWRK);
- Spline interpolation (SI);
- Radial basis functions method (RBF);
- Empirical Bayesian kriging (EBK);
- Empirical Bayesian kriging regression prediction (EBKRP);
- Empirical-based classification (EBC).
2.3.1. Inverse Distance Weighting Method (IDW)
2.3.2. Ordinary Kriging (OK)
2.3.3. Compositional Kriging (COK)
2.3.4. Universal Kriging (UK)
2.3.5. Geographically Weighted Regression (GWR)
2.3.6. Geographically Weighted Regression Kriging (GWRK)
2.3.7. Spline Interpolation (SI)
2.3.8. Radial Basis Functions Method (RBF)
2.3.9. Empirical Bayesian Kriging (EBK)
2.3.10. Empirical Bayesian Kriging Regression Prediction (EBKRP)
2.3.11. Empirical-Based Classification (EBC)
2.4. Auxiliary Variables
2.5. Validation Methods
3. Results
3.1. Descriptive Statistics
3.2. Comparative Analysis of Different Interpolation Methods
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
IDW | Inverse distance weighting |
OK | Ordinary kriging |
COK | Compositional kriging |
UK | Universal kriging |
GWR | Geographically weighted regression |
GWRK | Geographically weighted regression kriging |
SI | Spline interpolation |
RBF | Radial basis functions |
EBK | Empirical Bayesian kriging |
EBKRP | Empirical Bayesian kriging regression prediction |
EBC | Empirical-based classification |
GIS | Geographic information systems |
NDVI | Normalized difference vegetation index |
NIR | Near-infrared |
LULC | Land Use Land Cover |
CLC | CORINE Land Cover |
DEM | Digital elevation model |
TWI | Terrain wetness index |
OLS | Ordinary least squares |
RMSE | Root mean square error |
R2 | Coefficient of determination |
r | Pearson’s correlation coefficient |
T | Temperature |
R | Precipitation |
FAO | Food and Agriculture Organization |
ZHMS | Institute of Hydrometeorology and Seismology |
MEDALUS | Mediterranean desertification and land use |
USGS | United States Geological Survey |
UNCCD | United Nations Convention to Combat Desertification |
PCA | Principal Components Analysis |
References
- Longley, P.A.; Goodchild, M.F.; Maguire, D.J.; Rhind, D.W. Geographic Information Science and Systems; John Wiley & Sons: New York, NY, USA, 2015. [Google Scholar]
- McBratney, A.; Mendonça Santos, M.; Minasny, B. On Digital Soil Mapping. Geoderma 2003, 117, 3–52. [Google Scholar] [CrossRef]
- Chen, S.; Arrouays, D.; Leatitia Mulder, V.; Poggio, L.; Minasny, B.; Roudier, P.; Libohova, Z.; Lagacherie, P.; Shi, Z.; Hannam, J.; et al. Digital Mapping of GlobalSoilMap Soil Properties at a Broad Scale: A Review. Geoderma 2022, 409, 115567. [Google Scholar] [CrossRef]
- Minasny, B.; McBratney, A.B. Digital Soil Mapping: A Brief History and Some Lessons. Geoderma 2016, 264, 301–311. [Google Scholar] [CrossRef]
- Yaalon, D.H. The Earliest Soil Maps and Their Logic. Bulletin of the International Society of Soil Science; International Society of Soil Science: Wageningen, The Netherland, 1989. [Google Scholar]
- Miller, B.A.; Schaetzl, R.J. The Historical Role of Base Maps in Soil Geography. Geoderma 2014, 230–231, 329–339. [Google Scholar] [CrossRef]
- Meng, Q.; Liu, Z.; Borders, B.E. Assessment of Regression Kriging for Spatial Interpolation—Comparisons of Seven GIS Interpolation Methods. Cartogr. Geogr. Inf. Sci. 2013, 40, 28–39. [Google Scholar] [CrossRef]
- Aboelsoud, H.; Abdel-Rahman, M. Rapid Field Technique for Soil Salinity Appraisal in North Nile Delta Using EM38 through Some Empirical Relations. Int. J. Plant Soil Sci. 2017, 14, 1–9. [Google Scholar] [CrossRef] [PubMed]
- AbdelRahman, M.A.; Shalaby, A.; Aboelsoud, M.H.; Moghanm, F.S. GIS Spatial Model Based for Determining Actual Land Degradation Status in Kafr El-Sheikh Governorate, North Nile Delta. Model. Earth Syst. Environ. 2017, 4, 359–372. [Google Scholar] [CrossRef]
- Lee, E.M.; Griffiths, J.S. The Importance of Pedological Soil Survey in Land Use Planning, Resource Assessment and Site Investigation. Geol. Soc. Lond. Eng. Geol. Spec. Publ. 1987, 4, 453–466. [Google Scholar] [CrossRef]
- Kumar, S.; Singh, R.P. Spatial Distribution of Soil Nutrients in a Watershed of Himalayan Landscape Using Terrain Attributes and Geostatistical Methods. Environ. Earth Sci. 2016, 75, 6. [Google Scholar] [CrossRef]
- Webster, R.; Oliver, M. Geostatistics for Environmental Scientists; John Wiley & Sons: Brisbane, Australia, 2001. [Google Scholar]
- Zhang, C.; McGrath, D. Geostatistical and GIS Analyses on Soil Organic Carbon Concentrations in Grassland of Southeastern Ireland from Two Different Periods. Geoderma 2004, 119, 261–275. [Google Scholar] [CrossRef]
- AbdelRahman, M.A.; Zakarya, Y.M.; Metwaly, M.M.; Koubouris, G. Deciphering Soil Spatial Variability through Geostatistics and Interpolation Techniques. Sustainability 2020, 13, 194. [Google Scholar] [CrossRef]
- Ruhe, R.V. Elements of the Soil Landscape. In Proceedings of the 7th International Soil Classification Congress, Madison, WI, USA, 5–13 August 1960; International Society of Soil Science: Madison, WI, USA, 1960. [Google Scholar]
- Moore, I.D.; Gessler, P.E.; Nielsen, G.A.; Peterson, G.A. Soil Attribute Prediction Using Terrain Analysis. Soil Sci. Soc. Am. J. 1993, 57, 443–452. [Google Scholar] [CrossRef]
- Iqbal, J.; Read, J.J.; Thomasson, A.J.; Jenkins, J.N. Relationships Between Soil–Landscape and Dryland Cotton Lint Yield. Soil Sci. Soc. Am. J. 2005, 69, 872–882. [Google Scholar] [CrossRef]
- Rezaei, S.A.; Gilkes, R.J. The Effects of Landscape Attributes and Plant Community on Soil Chemical Properties in Rangelands. Geoderma 2005, 125, 167–176. [Google Scholar] [CrossRef]
- Herbst, M.; Diekkrüger, B.; Vereecken, H. Geostatistical Co-regionalization of Soil Hydraulic Properties in a Micro-scale Catchment Using Terrain Attributes. Geoderma 2006, 132, 206–221. [Google Scholar] [CrossRef]
- Zhang, S.; Huang, Y.; Shen, C.; Ye, H.; Du, Y. Spatial Prediction of Soil Organic Matter Using Terrain Indices and Categorical Variables as Auxiliary Information. Geoderma 2012, 171–172, 35–43. [Google Scholar] [CrossRef]
- Janzen, H.; Campbell, C.; Izaurralde, R.; Cesar, C.; Ellert, B.H.; Juma, N.G.; McGill, W.B.; Zentner, R.P. Management Effects on Soil C Storage on the Canadian Prairies. Soil Tillage Res. 1998, 47, 181–195. [Google Scholar] [CrossRef]
- Mueller, T.G.; Pierce, F.J. Soil Carbon Maps. Soil Sci. Soc. Am. J. 2003, 67, 258. [Google Scholar] [CrossRef]
- Kalivas, D.; Triantakonstantis, D.; Kollias, V. Spatial Prediction of Two Soil Properties Using Topographic Information. Global NEST J. 2002, 4, 41–49. [Google Scholar]
- Hengl, T.; Heuvelink, G.; Stein, A. Comparison of Kriging with External Drift and Regression-Kriging; Geo-Information Science and Earth Observation; University of Twente: Enschede, The Netherlands, 2003. [Google Scholar]
- Penížek, V.; Borůvka, L. Soil Depth Prediction Supported by Primary Terrain Attributes: A Comparison of Methods. Plant Soil Environ. 2006, 52, 424–430. [Google Scholar] [CrossRef]
- Kadović, R.; Bohajar, Y.A.M.; Perović, V.; Belanović-Simić, S.; Todosijević, M.; Tošić, S.; Anđelić, M.; Mlađan, D.; Dovezenski, U. Land Sensitivity Analysis of Degradation Using MEDALUS Model: Case Study of Deliblato Sands, Serbia. Arch. Environ. Prot. 2016, 42, 114–124. [Google Scholar] [CrossRef]
- Shen, Q.; Wang, Y.; Wang, X.; Liu, X.; Zhang, X.; Zhang, S. Comparing Interpolation Methods to Predict Soil Total Phosphorus in the Mollisol Area of Northeast China. Catena 2019, 174, 59–72. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, C.; Li, W. Comparison of Geographically Weighted Regression and Regression Kriging for Estimating the Spatial Distribution of Soil Organic Matter. GISci. Remote Sens. 2012, 49, 915–932. [Google Scholar] [CrossRef]
- Pham Gia, T.; Kappas, M.; Huynh Van, C.; Nguyen, H.K.L. Application of Ordinary Kriging and Regression Kriging Method for Soil Properties Mapping in Hilly Region of Central Vietnam. ISPRS Int. J. Geo-Inf. 2019, 8, 147. [Google Scholar] [CrossRef]
- Li, J.; Heap, A.D. Spatial Interpolation Methods Applied in the Environmental Sciences: A Review. Environ. Model. Softw. 2014, 53, 173–189. [Google Scholar] [CrossRef]
- Wadoux, A.M.J.-C.; Minasny, B.; McBratney, A.B. Machine Learning for Digital Soil Mapping: Applications, Challenges and Suggested Solutions. Earth-Sci. Rev. 2020, 210, 103359. [Google Scholar] [CrossRef]
- Jordan, M.I.; Mitchell, T.M. Machine Learning: Trends, Perspectives, and Prospects. Science 2015, 349, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Padarian, J.; Minasny, B.; McBratney, A.B. Machine Learning and Soil Sciences: A Review Aided by Machine Learning Tools. Soil 2020, 6, 35–52. [Google Scholar] [CrossRef]
- Sekulić, A.; Kilibarda, M.; Heuvelink, G.B.M.; Nikolić, M.; Bajat, B. Random Forest Spatial Interpolation. Remote Sens. 2020, 12, 1687. [Google Scholar] [CrossRef]
- Sorenson, P.; Bedard-Haughn, A.K.; St. Luce, M. Combining Predictive Soil Mapping and Process Models to Estimate Future Carbon Sequestration Potential under No-Till. Can. J. Soil Sci. 2024, 104, 469–481. [Google Scholar] [CrossRef]
- Ren, L.; Lu, H.; He, L.; Zhang, Y. Characterization of Monochlorobenzene Contamination in Soils Using Geostatistical Interpolation and 3D Visualization for Agrochemical Industrial Sites in Southeast China. Arch. Environ. Prot. 2016, 42, 17–24. [Google Scholar] [CrossRef]
- Kumar, P.; Pandey, P.C.; Singh, B.K.; Katiyar, S.; Mandal, V.P.; Rani, M.; Tomar, V.; Patairiya, S. Estimation of Accumulated Soil Organic Carbon Stock in Tropical Forest Using Geospatial Strategy. Egypt. J. Remote Sens. Space Sci. 2016, 19, 109–123. [Google Scholar] [CrossRef]
- Wang, S.; Zhuang, Q.; Wang, Q.; Jin, X.; Han, C. Mapping Stocks of Soil Organic Carbon and Soil Total Nitrogen in Liaoning Province of China. Geoderma 2017, 305, 250–263. [Google Scholar] [CrossRef]
- Salković, E.; Djurović, I.; Knežević, M.; POpović-Bugarin, V.; Topalović, A. Digitization and Mapping of National Legacy Soil Data of Montenegro. Soil Water Res. 2018, 13, 83–89. [Google Scholar] [CrossRef]
- Government of Montenegro. Third National Report of Montenegro on Climate Change; UNDP: Podgorica, Montenegro, 2020.
- ZHMS. Institute of Hydrometeorology and Seismology. Available online: https://www.meteo.co.me (accessed on 5 April 2023).
- Buric, D.; Ducic, V.; Mihajlovic, J. The Climate of Montenegro: Modificators and Types—Part Two. Glas. Srp. Geogr. Drus. 2014, 94, 73–90. [Google Scholar] [CrossRef]
- Fuštić, B.; Đuretić, G. Soils of Montenegro; University of Montenegro: Podgorica, Montenegro, 2000. [Google Scholar]
- Spalević, V. Pedological Characteristics of Montenegro. Speleol. Monten. 2024, 85, 97. [Google Scholar] [CrossRef]
- FAO. World Fertilizer Trends and Outlook to 2018; Food and Agriculture Organization of the United Nations: Rome, Italy, 2015. [Google Scholar]
- Boardman, J.; Poesen, J. Soil Erosion in Europe: Major Processes, Causes and Consequences. In Soil Erosion in Europe; Wiley: Hoboken, NJ, USA, 2006; pp. 477–487. [Google Scholar] [CrossRef]
- Lal, R. Soil Degradation by Erosion. Land Degrad. Dev. 2001, 12, 519–539. [Google Scholar] [CrossRef]
- Gyssels, G.; Poesen, J.; Bochet, E.; Li, Y. Impact of Plant Roots on the Resistance of Soils to Erosion by Water: A Review. Prog. Phys. Geogr. Earth Environ. 2005, 29, 189–217. [Google Scholar] [CrossRef]
- Gribov, A.; Krivoruchko, K. Empirical Bayesian Kriging Implementation and Usage. Sci. Total Environ. 2020, 722, 137290. [Google Scholar] [CrossRef]
- Radočaj, D.; Jurišić, M.; Zebec, V.; Plaščak, I. Delineation of Soil Texture Suitability Zones for Soybean Cultivation: A Case Study in Continental Croatia. Agronomy 2020, 10, 823. [Google Scholar] [CrossRef]
- Kumar, S.; Lal, R.; Liu, D. A Geographically Weighted Regression Kriging Approach for Mapping Soil Organic Carbon Stock. Geoderma 2012, 189–190, 627–634. [Google Scholar] [CrossRef]
- Li, J.; Wan, H.; Shang, S. Comparison of Interpolation Methods for Mapping Layered Soil Particle-Size Fractions and Texture in an Arid Oasis. Catena 2020, 190, 104514. [Google Scholar] [CrossRef]
- Giustini, F.; Ciotoli, G.; Rinaldini, A.; Ruggiero, L.; Voltaggio, M. Mapping the Geogenic Radon Potential and Radon Risk by Using Empirical Bayesian Kriging Regression: A Case Study from a Volcanic Area of Central Italy. Sci. Total Environ. 2019, 661, 449–464. [Google Scholar] [CrossRef]
- Lötter, M.; Le Maitre, D. Fine-Scale Delineation of Strategic Water Source Areas for Surface Water in South Africa Using Empirical Bayesian Kriging Regression Prediction; South African National Biodiversity Institute (SANBI): Pretoria, South Africa, 2021. [Google Scholar]
- Pesquer, L.; Cortés, A.; Pons, X. Parallel Ordinary Kriging Interpolation Incorporating Automatic Variogram Fitting. Comput. Geosci. 2010, 37, 464–473. [Google Scholar] [CrossRef]
- Zhao, Z.; Luo, S.; Zhao, X.; Zhang, J.; Li, S.; Luo, Y.; Dai, J. A Novel Interpolation Method for Soil Parameters Combining RBF Neural Network and IDW in the Pearl River Delta. Agronomy 2024, 14, 2469. [Google Scholar] [CrossRef]
- Lu, G.Y.; Wong, D.W. An Adaptive Inverse-Distance Weighting Spatial Interpolation Technique. Comput. Geosci. 2008, 34, 1044–1055. [Google Scholar] [CrossRef]
- Li, J.; Heap, A.D. A Review of Comparative Studies of Spatial Interpolation Methods in Environmental Sciences: Performance and Impact Factors. Ecol. Inform. 2011, 6, 228–241. [Google Scholar] [CrossRef]
- Isaaks, E.H.; Srivastava, R.M. An Introduction to Applied Geostatistics; Oxford University Press: New York, NY, USA, 1989. [Google Scholar]
- Oliver, M.A.; Webster, R. How Geostatistics Can Help You. Soil Use Manag. 1991, 7, 206–217. [Google Scholar] [CrossRef]
- Wongsosaputro, J.; Pauwels, L.L.; Chan, F. Testing for Structural Breaks in Discrete Choice Models. In Proceedings of the 19th International Congress on Modelling and Simulation (MODSIM2011), Perth, Australia, 12–16 December 2011; Chan, F., Marinova, D., Anderssen, R., Eds.; Modelling and Simulation Society of Australia and New Zealand: Perth, Australia, 2011; pp. 1153–1159. [Google Scholar]
- Goovaerts, P. Geostatistics for Natural Resources Evaluation; Oxford University Press: New York, NY, USA, 1997. [Google Scholar]
- Goovaerts, P. Ordinary Cokriging Revisited. Math. Geol. 1998, 30, 21–42. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Y.K.; Schilling, K.; Skopec, M. Cokriging Estimation of Daily Suspended Sediment Loads. J. Hydrol. 2006, 327, 389–398. [Google Scholar] [CrossRef]
- Hengl, T.; Heuvelink, G.B.; Rossiter, D.G. About Regression-Kriging: From Equations to Case Studies. Comput. Geosci. 2007, 33, 1301–1315. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Brunsdon, C.A.; Charlton, M.E. Geographically Weighted Regression: The Analysis of Spatially Varying Relationships; John Wiley & Sons: New York, NY, USA, 2002. [Google Scholar]
- Brunsdon, C.; Fotheringham, A.S.; Charlton, M.E. Geographically Weighted Regression: A Method for Exploring Spatial Nonstationarity. Geogr. Anal. 1996, 28, 281–298. [Google Scholar] [CrossRef]
- Yu, D.; Peterson, N.A.; Reid, R.J. Exploring the Impact of Non-Normality on Spatial Non-Stationarity in Geographically Weighted Regression Analyses: Tobacco Outlet Density in New Jersey. GISci. Remote Sens. 2009, 46, 329–346. [Google Scholar] [CrossRef]
- de Boor, C. A Practical Guide to Splines; Springer: New York, NY, USA, 2001. [Google Scholar]
- Robinson, T.; Metternicht, G. Testing the Performance of Spatial Interpolation Techniques for Mapping Soil Properties. Comput. Electron. Agric. 2006, 50, 97–108. [Google Scholar] [CrossRef]
- Press, W.H.; Teukolsky, S.A.; Vetterling, T.W.; Flannery, B.P. Numerical Recipes in C++: The Art of Scientific Computing; Cambridge University Press: New York, NY, USA, 2002. [Google Scholar]
- Buhmann, M.D. Radial Basis Functions: Theory and Implementations; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Zhang, J.; Peng, J.; Chen, X.; Shi, X.; Feng, Z.; Meng, Y.; Chen, W.; Liu, Y. Comparative Study on Different Interpolation Methods and Source Analysis of Soil Toxic Element Pollution in Cangxi County, Guangyuan City, China. Sustainability 2024, 16, 3545. [Google Scholar] [CrossRef]
- Basu, K. Spatio-Temporal Mapping of Tuberculosis Using Log-Empirical Bayesian; Indian Statistical Institute/Applied Statistics Unit: Kolkata, India, 2016. [Google Scholar]
- Krivoruchko, K. Empirical Bayesian Kriging: Implemented in ArcGIS; ESRI: New York, NY, USA, 2012; Volume 5. [Google Scholar]
- ESRI. What Is EBK Regression Prediction? Available online: https://pro.arcgis.com/en/pro-app/latest/help/analysis/geostatistical-analyst/what-is-ebk-regression-prediction-.htm (accessed on 5 September 2024).
- USGS. U.S. Geological Survey. Available online: https://www.usgs.gov/ (accessed on 12 October 2023).
- Lian, G.; Guo, X.D.; Fu, B.J. Spatial Distribution of Soil Properties in a Small Catchment. Sci. Geogr. Sin. 2008, 1, 554–558. [Google Scholar]
- Hengl, T.; Mendes de Jesus, J.; Heuvelink, G.B.M.; Ruiperez Gonzalez, M.; Kilibarda, M.; Blagotić, A.; Shangguan, W.; Wright, M.N.; Geng, X.; Bauer-Marschallinger, B.; et al. SOILGRIDS250M: Global Gridded Soil Information Based on Machine Learning. PLoS ONE 2017, 12, e0169748. [Google Scholar] [CrossRef]
- Beven, K.J.; Kirkby, M.J. A Physically Based, Variable Contributing Area Model of Basin Hydrology. Hydrol. Sci. Bull. 1979, 24, 43–69. [Google Scholar] [CrossRef]
- Blaga, L. Aspects Regarding the Significance of the Curvature Types and Values in the Studies of Geomorphometry Assisted by GIS. Univ. Oradea 2012, 6, 1145. [Google Scholar]
- Kornejady, A.; Ownegh, M.; Bahremand, A. Landslide Susceptibility Assessment Using Maximum Entropy Model with Two Different Data Sampling Methods. Catena 2017, 152, 144–162. [Google Scholar] [CrossRef]
- Mondal, A.; Khare, D.; Kundu, S.; Mondal, S.; Mukherjee, S.; Mukhopadhyay, A. Spatial Soil Organic Carbon (SOC) Prediction by Regression Kriging Using Remote Sensing Data. Egypt J. Remote Sens. Space Sci. 2017, 20, 61–70. [Google Scholar] [CrossRef]
- Cao, S.; Lu, A.; Wang, J.; Huo, L. Modeling and Mapping of Cadmium in Soils Based on Qualitative and Quantitative Auxiliary Variables in a Cadmium Contaminated Area. Sci. Total Environ. 2017, 580, 430–439. [Google Scholar] [CrossRef]
- Propastin, P.A.; Kappas, M. Reducing Uncertainty in Modeling the NDVI-Precipitation Relationship: A Comparative Study Using Global and Local Regression Techniques. GISci. Remote Sens. 2008, 45, 47–67. [Google Scholar] [CrossRef]
- Prietzel, J.; Christophel, D. Organic Carbon Stocks in Forest Soils of the German Alps. Geoderma 2014, 221–222, 28–39. [Google Scholar] [CrossRef]
- Girona-García, A.; Badía-Villas, D.; Jiménez-Morillo, N.T.; de la Rosa, J.M.; González-Pérez, J.A. Soil C and N Isotope Composition After a Centennial Scots Pine Afforestation in Podzols of Native European Beech Forests in NE-Spain. Catena 2018, 165, 434–441. [Google Scholar] [CrossRef]
- Zanella, A.; Jabiol, B.; Ponge, J.; Sartori, G.; De Waal, R.; Van Delft, B.; Englisch, M. A European Morpho-Functional Classification of Humus Forms. Geoderma 2011, 164, 3–4. [Google Scholar] [CrossRef]
- An, D.; Zhao, G.; Chang, C.; Wang, Z.; Li, P.; Zhang, T.; Jia, J. Hyperspectral Field Estimation and Remote-Sensing Inversion of Salt Content in Coastal Saline Soils of the Yellow River Delta. Int. J. Remote Sens. 2016, 37, 455–470. [Google Scholar] [CrossRef]
- Keshavarzi, A.; Tuffour, H.O.; Brevik, E.C.; Ertunç, G. Spatial Variability of Soil Mineral Fractions and Bulk Density in Northern Ireland: Assessing the Influence of Topography Using Different Interpolation Methods and Fractal Analysis. Catena 2021, 207, 105646. [Google Scholar] [CrossRef]
- Barrena-González, J.; Lavado Contador, J.F.; Pulido Fernández, M. Mapping Soil Properties at a Regional Scale: Assessing Deterministic vs. Geostatistical Interpolation Methods at Different Soil Depths. Sustainability 2022, 14, 10049. [Google Scholar] [CrossRef]
- Minasny, B.; McBratney, A.B.; Mendonça-Santos, M.L.; Odeh, I.O.; Guyon, B. Prediction and Digital Mapping of Soil Carbon Storage in the Lower Namoi Valley. Soil Res. 2006, 44, 233. [Google Scholar] [CrossRef]
- Hunt, E.R., Jr.; Everitt, J.H.; Ritchie, J.C.; Moran, M.S.; Booth, D.T.; Anderson, G.L.; Clark, P.E.; Seyfried, M.S. Applications and Research Using Remote Sensing for Rangeland Management. Photogramm. Eng. Remote Sens. 2003, 69, 675–693. [Google Scholar] [CrossRef]
- Gao, L.; Huang, M.; Zhang, W.; Qiao, L.; Wang, G.; Zhang, X. Comparative Study on Spatial Digital Mapping Methods of Soil Nutrients Based on Different Geospatial Technologies. Sustainability 2021, 13, 3270. [Google Scholar] [CrossRef]
- Mishra, U.; Lal, R.; Liu, D.; Van Meirvenne, M. Predicting the Spatial Variation of the Soil Organic Carbon Pool at a Regional Scale. Soil Sci. Soc. Am. J. 2010, 74, 906–914. [Google Scholar] [CrossRef]
- Holt, J.B.; Lo, C.P. The Geography of Mortality in the Atlanta Metropolitan Area. Comput. Environ. Urban Syst. 2008, 32, 149–164. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, C.; Li, W. Predictive Mapping of Soil Total Nitrogen at a Regional Scale: A Comparison between Geographically Weighted Regression and Cokriging. Appl. Geogr. 2013, 42, 73–85. [Google Scholar] [CrossRef]
- Peng, Y.; Xiong, X.; Adhikari, K.; Knadel, M.; Grunwald, S.; Greve, M.H. Modeling Soil Organic Carbon at Regional Scale by Combining Multi-Spectral Images with Laboratory Spectra. PLoS ONE 2015, 10, e0142295. [Google Scholar] [CrossRef]
(a) Pedology (WBR, 2011) | Area (km2) | Area (%) |
Leptosols | 6769.9 | 48.74 |
Leptic Cambisol | 5386.4 | 38.78 |
Feralic Cambisol | 838.4 | 6.04 |
Haplic Gleysol | 246.2 | 1.77 |
Fluvisol | 183.5 | 1.32 |
Colluvic Regosol | 150.1 | 1.08 |
Arenosols | 8.5 | 0.06 |
Regosols | 7.1 | 0.05 |
Haplic Planosol | 5.7 | 0.04 |
Haplic Cambisol | 4.9 | 0.04 |
Molic Umbrisol | 3.1 | 0.02 |
Fluvic Cambisol | 2.7 | 0.02 |
Calcaric | 1.5 | 0.01 |
Mollic Fluvisol | 0.4 | 0.003 |
Salt production | 0.4 | 0.003 |
Histosol | 0.2 | 0.001 |
Island | 0.2 | 0.001 |
Haplic Cambisol and Anthrosol | 0.1 | 0.001 |
Water | 280.4 | 2.02 |
Settlements | 2.5 | 0.02 |
(b) CLC Code (2018) | Area (km2) | Area (%) |
111 | 1.8 | 0.01 |
112 | 194.8 | 1.4 |
121 | 16.2 | 0.1 |
131 | 17.3 | 0.1 |
141 | 4.8 | 0.03 |
211 | 7.6 | 0.1 |
221 | 28.6 | 0.2 |
231 | 266.9 | 1.9 |
241 | 1.3 | 0.0 |
242 | 291.4 | 2.1 |
243 | 1629.5 | 11.7 |
311 | 3669.6 | 26.4 |
312 | 986.9 | 7.1 |
313 | 1053.7 | 7.6 |
321 | 1025.0 | 7.4 |
322 | 5.3 | 0.0 |
323 | 109.4 | 0.8 |
324 | 2926.6 | 21.1 |
332 | 167.0 | 1.2 |
333 | 949.9 | 6.8 |
334 | 76.3 | 0.5 |
411 | 108.8 | 0.8 |
421 | 1.0 | 0.01 |
(c) Elevation (m) | Area (km2) | Area (%) |
<600 | 2512.7 | 18.1 |
600–1200 | 5967.5 | 43.0 |
1200–1800 | 3447.6 | 24.8 |
1800–2400 | 1950.6 | 14.1 |
>2400 | 0.5 | 0.004 |
(d) Slope (%) | Area (km2) | Area (%) |
<6 | 1365.7 | 9.8 |
6–18 | 3723.7 | 26.8 |
18–35 | 4215.7 | 30.4 |
>35 | 4573.7 | 33.0 |
Clay | Sand | Humus | Depth | |||
---|---|---|---|---|---|---|
Number of soil samples | Interpolation | 829 | 829 | 829 | 2613 | |
Validation | 100 | 100 | 100 | 180 | ||
auxiliary variables | ||||||
Interpolation method | IDW | / | / | / | / | |
OK | / | / | / | / | ||
COK | R | slope | DEM | NDVI | ||
UK | / | / | / | / | ||
GWR | TWI, R, T * | DEM *, slope, NDVI | DEM *, slope, NDVI, R | DEM, slope, NDVI *, TWI, R, and plan curvature | ||
GWRK | TWI, R, T * | DEM *, slope, NDVI | DEM *, slope, NDVI, R | DEM, slope, NDVI *, TWI, R, and plan curvature | ||
SI | / | / | / | / | ||
RBF | / | / | / | / | ||
EBK | / | / | / | / | ||
EBKRP | TWI, R, T * | DEM *, slope, NDVI | DEM *, slope, NDVI, R | DEM, slope, NDVI *, TWI, R, and plan curvature | ||
EBC | soil type, DEM, slope | soil type, DEM, slope | soil type, DEM, CLC | soil type, DEM, slope |
Soil Characteristics | Min | Max | Mean | Standard Deviation |
---|---|---|---|---|
Clay (%) | 0 | 51.0 | 9.6 | 7.4 |
Sand (%) | 0 | 89.3 | 32.6 | 20.3 |
Humus (%) | 0.1 | 43.6 | 5.4 | 5.4 |
Depth (cm) | 0 | 160.0 | 15.7 | 28.4 |
Clay | Sand | Humus | Depth | ||||||
---|---|---|---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | R2 | RMSE | R2 | RMSE | ||
Interpolation method | IDW | 0.283 | 7.584 | 0.205 | 20.759 | 0.340 | 4.574 | 0.743 | 5.115 |
OK | 0.257 | 7.240 | 0.218 | 18.528 | 0.395 | 4.110 | 0.594 | 6.536 | |
COK | 0.301 | 7.357 | 0.257 | 18.199 | 0.438 | 3.947 | 0.673 | 10.9 | |
UK | 0.205 | 7.516 | 0.217 | 18.527 | 0.395 | 4.145 | 0.637 | 6.220 | |
GWR | 0.183 | 7.507 | 0.048 | 18.989 | 0.080 | 6.253 | 0.108 | 15.018 | |
GWRK | 0.303 | 7.141 | 0.159 | 18.334 | 0.448 | 3.891 | 0.503 | 7.366 | |
SI | 0.213 | 9.425 | 0.184 | 26.582 | 0.158 | 6.698 | 0.568 | 8.680 | |
RBF | 0.277 | 7.308 | 0.218 | 19.028 | 0.412 | 4.092 | 0.733 | 5.278 | |
EBK | 0.256 | 7.299 | 0.208 | 18.628 | 0.434 | 3.994 | 0.716 | 5.398 | |
EBKRP | 0.352 | 6.949 | 0.336 | 17.376 | 0.500 | 3.801 | 0.761 | 5.360 | |
EBC | 0.128 | 7.379 | 0.245 | 17.881 | 0.484 | 3.835 | 0.271 | 10.244 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miletić, S.; Beloica, J.; Miljković, P. Integrating Environmental Variables into Geostatistical Interpolation: Enhancing Soil Mapping for the MEDALUS Model in Montenegro. Land 2025, 14, 702. https://doi.org/10.3390/land14040702
Miletić S, Beloica J, Miljković P. Integrating Environmental Variables into Geostatistical Interpolation: Enhancing Soil Mapping for the MEDALUS Model in Montenegro. Land. 2025; 14(4):702. https://doi.org/10.3390/land14040702
Chicago/Turabian StyleMiletić, Stefan, Jelena Beloica, and Predrag Miljković. 2025. "Integrating Environmental Variables into Geostatistical Interpolation: Enhancing Soil Mapping for the MEDALUS Model in Montenegro" Land 14, no. 4: 702. https://doi.org/10.3390/land14040702
APA StyleMiletić, S., Beloica, J., & Miljković, P. (2025). Integrating Environmental Variables into Geostatistical Interpolation: Enhancing Soil Mapping for the MEDALUS Model in Montenegro. Land, 14(4), 702. https://doi.org/10.3390/land14040702