Integrating Ecological Footprint into Regional Ecological Well-Being Evaluation: A Case Study of the Guanzhong Plain Urban Agglomeration, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data Sources
2.2. Methods
2.2.1. Ecosystem Service Value
2.2.2. EF Supply and Demand
2.2.3. Measurement of Regional Ecological Safety Factor and Ecological Well-Being
3. Results
3.1. Land Use Change Analysis
3.2. Multidimensional Analysis of ESV
3.3. EF and EC Accounting and Spatial and Temporal Pattern Release Analyses
3.4. Formatting of Mathematical Components
4. Discussion
4.1. Spatial and Temporal Heterogeneity in the Amount of the ESV
4.2. Rationality and Necessity of Calculating Ecological Well-Being Based on Ecological Footprint Depletion
4.3. Research Limitations and Prospects
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GPUA | Guanzhong Plain urban agglomeration |
EF | ecological footprint |
ESV | Ecosystem service value |
EC | ecological carrying capacity |
References
- Nie, X.; Li, X.J.; Lyu, C.; Su, Y.L.; Wang, H. Can Ecological Compensation Based on the Transfer of Development Rights (Tdr) Improve Ecosystem Service Value? A Multi-Scenario Simulation. Land Use Policy 2024, 138, 107024. [Google Scholar] [CrossRef]
- Cao, Y.; Kong, L.; Zhang, L.; Ouyang, Z. The Balance between Economic Development and Ecosystem Service Value in the Process of Land Urbanization: A Case Study of China’s Land Urbanization from 2000 to 2015. Land Use Policy 2021, 108, 105536. [Google Scholar]
- Leemans, R.; De Groot, R. Millennium Ecosystem Assessment: Ecosystems and Human Well-Being: A Framework for Assessment; World Resources Institute: Washington, DC, USA, 2003. [Google Scholar]
- Yatzkan, O.; Cohen, R.; Yaniv, E.; Rotem-Mindali, O. Urban Energy Transitions: A Systematic Review. Land 2025, 14, 566. [Google Scholar] [CrossRef]
- Frota de Albuquerque Landi, F.; Di Giuseppe, A.; Gambelli, A.M.; Palliotti, A.; Nicolini, A.; Pisello, A.L.; Rossi, F. Life Cycle Assessment of an Innovative Technology against Late Frosts in Vineyard. Sustainability 2021, 13, 5562. [Google Scholar] [CrossRef]
- Straffelini, E.; Pijl, A.; Otto, S.; Marchesini, E.; Pitacco, A.; Tarolli, P. A High-Resolution Physical Modelling Approach to Assess Runoff and Soil Erosion in Vineyards under Different Soil Managements. Soil Tillage Res. 2022, 222, 105418. [Google Scholar] [CrossRef]
- Yang, S.; Zheng, X.; Zhao, G. Study on the Spatial Ecological Environment Effect and Influencing Factors of Ecological-Production-Living Spaces in the Guanzhong Plain Urban Agglomeration. Arid Land Resour. Environ. 2023, 37, 26–35. [Google Scholar] [CrossRef]
- Liu, Q.; Lu, B.; Lin, W.; Li, J.; Lu, Y.; Duan, Y. An Improved Quantitative Analysis Method for the Unequal Supply and Demand of Ecosystem Services and Hierarchical Governance Suggestions. Land 2025, 14, 528. [Google Scholar] [CrossRef]
- Zang, Z.; Zou, X.; Wu, L.; Song, Q.; Wu, X.; Yu, W. Evaluation of Ecological Well-Being and Ecological-Economic Efficiency in Mainland China Based on Equity and Efficiency Perspectives. Acta Ecol. Sin. 2017, 37, 2403–2414. [Google Scholar]
- Xie, G.-d.; Chun-xia, L.; Yun-fa, L.; Du, Z.; Shuang-cheng, L. Ecosystem Assets Valuation of the Tibetan Plateau. J. Nat. Resour. 2003, 18, 189–196. [Google Scholar]
- Costanza, R.; De Groot, R.; Sutton, P.; Van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the Global Value of Ecosystem Services. Glob. Environ. Change 2014, 26, 152–158. [Google Scholar]
- Deng, H.; Zhou, X.; Liao, Z. Ecological Redline Delineation Based on the Supply and Demand of Ecosystem Services. Land Use Policy 2024, 140, 107109. [Google Scholar]
- Pascual, U.; Palomo, I.; Adams, W.M.; Chan, K.M.; Daw, T.M.; Garmendia, E.; Gómez-Baggethun, E.; De Groot, R.S.; Mace, G.M.; Martín-López, B. Off-Stage Ecosystem Service Burdens: A Blind Spot for Global Sustainability. Environ. Res. Lett. 2017, 12, 075001. [Google Scholar]
- Rees, W.E. Ecological Footprints and Appropriated Carrying Capacity: What Urban Economics Leaves Out. In The Earthscan Reader in Rural–Urban Linkages; Routledge: London, UK, 2018; pp. 285–297. [Google Scholar]
- Acuña, C.; Rodríguez, R.; Acuña, E. Revitalizing Transformed Landscapes: Economic Valuation of Artificial Lake Shorelines for Hydropower Generation. Environ. Dev. 2025, 54, 101163. [Google Scholar] [CrossRef]
- Dam, M.M.; Durmaz, A.; Bekun, F.V.; Tiwari, A.K. The Role of Green Growth and Institutional Quality on Environmental Sustainability: A Comparison of Co2 Emissions, Ecological Footprint and Inverted Load Capacity Factor for Oecd Countries. J. Environ. Manag. 2024, 365, 121551. [Google Scholar]
- Cheng, B.; Li, H.E.; Cheng, W.J.; Li, J.K. Fund Allocation Modeling of Compensation Subjects for Various Protection Levels of the Ecological Flow in Rivers under Runoff Variations. J. Environ. Manag. 2024, 370, 122690. [Google Scholar] [CrossRef]
- Chen, Y.H.; Wu, Q.L.; Guo, L. Ecological Compensation Based on the Ecosystem Service Value: A Case Study of the Xin’an River Basin in China. Water 2024, 16, 2923. [Google Scholar] [CrossRef]
- Xu, H.; Chen, L.X.; Li, Q.F. Research on Two-Way Ecological Compensation Strategy for Transboundary Watershed Based on Differential Game. J. Environ. Manag. 2024, 371, 123314. [Google Scholar] [CrossRef]
- Guo, H.; Cai, Y.; Li, B.; Wan, H.; Yang, Z. An Improved Approach for Evaluating Landscape Ecological Risks and Exploring Its Coupling Coordination with Ecosystem Services. J. Environ. Manag. 2023, 348, 119277. [Google Scholar]
- Shi, G. Ideas for the Construction of Ecological Compensation Mechanism in the Yellow River Basin in the Context of High-Quality Development. Econ. Manag. Rev. 2023, 39, 49–58. [Google Scholar] [CrossRef]
- Chi, C.; Shen, J.Q.; Gao, X.; Hu, P.; Yi, P. Horizontal Ecological Compensation Standards Based on Ecosystem Services Flow. Ecol. Indic. 2024, 163, 112081. [Google Scholar] [CrossRef]
- Niu, J.J.; Mao, C.M.; Xiang, J. Based on Ecological Footprint and Ecosystem Service Value, Research on Ecological Compensation in Anhui Province, China. Ecol. Indic. 2024, 158, 111341. [Google Scholar] [CrossRef]
- Rega, C. Ecological Compensation in Spatial Planning in Italy. Impact Assess. Proj. Apprais. 2013, 31, 45–51. [Google Scholar] [CrossRef]
- Fu, Y.Y.; Xiong, K.N.; Zhang, Z.Z. Ecosystem Services and Ecological Compensation of World Heritage: A Literature Review. J. Nat. Conserv. 2021, 60, 125968. [Google Scholar] [CrossRef]
- Yang, S.; Zheng, X.Z. Spatio-Temporal Relationship between Carbon Emission and Ecosystem Service Value under Land Use Change: A Case Study of the Guanzhong Plain Urban Agglomeration, China. Front. Environ. Sci. 2023, 11, 1241781. [Google Scholar] [CrossRef]
- Xie, G.; Zhang, C.; Zhang, L.; Chen, W.; Li, S. Improvement of Ecosystem Service Valorization Method Based on Unit Area Value Equivalent Factor. J. Nat. Resour. 2015, 30, 1243–1254. [Google Scholar]
- Wang, Y.; Sun, X. Spatial and Temporal Evolution of Ecosystem Service Value and Influencing Factors in the Yellow River Basin. Environ. Sci. 2024, 45, 2767–2779. [Google Scholar] [CrossRef]
- Niccolucci, V.; Bastianoni, S.; Tiezzi, E.; Wackernagel, M.; Marchettini, N. How Deep Is the Footprint? A 3d Representation. Ecol. Model. 2009, 220, 2819–2823. [Google Scholar]
- Xiang, J.; Niu, J. Ecological Compensation and Comprehensive Zoning of Cultivated Land Based on Ecosystem Service Value and Extended Three-Dimensional Ecological Footprint Model: A Case Study of Shandong Province. Land 2025, 14, 316. [Google Scholar] [CrossRef]
- Li, L.; Li, X.; Fan, H.; Lu, J.; Wang, X.; Zhai, T. Quantifying and Zoning Ecological Compensation for Cultivated Land in Intensive Agricultural Areas: A Case Study in Henan Province, China. Land 2024, 13, 1720. [Google Scholar] [CrossRef]
- Ma, Y.H.; Chen, H.; Yang, M.M.; Aihemaiti, G.; Lu, W.J.; Zhao, R.J. Ecological Compensation Based on Multiscale Ecosystem Carbon Sequestration Service Flow. J. Environ. Manag. 2024, 372, 123396. [Google Scholar] [CrossRef]
- Siche, R.; Pereira, L.; Agostinho, F.; Ortega, E. Convergence of Ecological Footprint and Emergy Analysis as a Sustainability Indicator of Countries: Peru as Case Study. Commun. Nonlinear Sci. Numer. Simul. 2010, 15, 3182–3192. [Google Scholar]
- Wackernagel, M.; Rees, W. Our Ecological Footprint: Reducing Human Impact on the Earth; New Society Publishers: Gabriola Island, BC, Canada, 1998; Volume 9. [Google Scholar]
- Report of the World Commission on Environment and Development: Our Common Future. 1987. Available online: http://www.un-documents.net/wced-ocf.htm (accessed on 15 January 2023).
- Rees, W.E. Revisiting Carrying Capacity: Area-Based Indicators of Sustainability. Popul. Environ. 1996, 17, 195–215. [Google Scholar]
- Bryan, B.A.; Gao, L.; Ye, Y.Q.; Sun, X.F.; Connor, J.D.; Crossman, N.D.; Stafford-Smith, M.; Wu, J.G.; He, C.Y.; Yu, D.Y.; et al. China’s Response to a National Land-System Sustainability Emergency. Nature 2018, 559, 193–204. [Google Scholar] [CrossRef]
- Zhang, X.R.; Wang, Y.S.; Yuan, X.F.; Shao, Y.J.; Bai, Y. Identifying Ecosystem Service Supply-Demand Imbalance for Sustainable Land Management in China?S Loess Plateau. Land Use Policy 2022, 123, 106423. [Google Scholar] [CrossRef]
- Yang, S.; Su, H. Multi-Scenario Simulation of Ecosystem Service Values in the Guanzhong Plain Urban Agglomeration, China. Sustainability 2022, 14, 8812. [Google Scholar] [CrossRef]
- Jia, Z.X.; Wang, X.F.; Feng, X.M.; Ma, J.H.; Wang, X.X.; Zhang, X.R.; Zhou, J.T.; Sun, Z.C.; Yao, W.J.; Tu, Y. Exploring the Spatial Heterogeneity of Ecosystem Services and Influencing Factors on the Qinghai Tibet Plateau. Ecol. Indic. 2023, 154, 110521. [Google Scholar] [CrossRef]
- Bryan, B.A.; Ye, Y.Q.; Zhang, J.E.; Connor, J.D. Land-Use Change Impacts on Ecosystem Services Value: Incorporating the Scarcity Effects of Supply and Demand Dynamics. Ecosyst. Serv. 2018, 32, 144–157. [Google Scholar] [CrossRef]
- Ouyang, Z.; Zheng, H.; Xiao, Y.; Polasky, S.; Liu, J.; Xu, W.; Wang, Q.; Zhang, L.; Xiao, Y.; Rao, E.M.; et al. Improvements in Ecosystem Services from Investments in Natural Capital. Science 2016, 352, 1455–1459. [Google Scholar] [CrossRef]
- Zhang, L.F.; Fang, C.L.; Zhu, C.; Gao, Q. Ecosystem Service Trade-Offs and Identification of Eco-Optimal Regions in Urban Agglomerations in Arid Regions of China. J. Clean. Prod. 2022, 373, 133823. [Google Scholar] [CrossRef]
- Hansen, R.; Frantzeskaki, N.; McPhearson, T.; Rall, E.; Kabisch, N.; Kaczorowska, A.; Kain, J.H.; Artmann, M.; Pauleit, S. The Uptake of the Ecosystem Services Concept in Planning Discourses of European and American Cities. Ecosyst. Serv. 2015, 12, 228–246. [Google Scholar] [CrossRef]
- Zhao, Y.H.; Zhang, L.; Jia, X.; Mu, Q.; Han, L.; Liu, Z.; Zhang, P.; Zhao, M. Pattern and Trend of Ecosystem Service Value in the Loess Plateau of Northern Shaanxi. Land 2023, 12, 607. [Google Scholar] [CrossRef]
- Deng, Y.J.; Yan, X.H.; Hou, M.Y.; Yao, S.B. Reassessing the Ecological Effectiveness of Ecological Restoration Programs: Evidence from a Quasi-Natural Experiment in China. Ecol. Eng. 2025, 212, 107506. [Google Scholar] [CrossRef]
- Goodell, J.W.; Gurdgiev, C.; Karim, S.; Palma, A. Carbon Emissions and Liquidity Management. Int. Rev. Financ. Anal. 2024, 95, 103367. [Google Scholar] [CrossRef]
- Siyiti, M.; Yao, X. Natural Resource Assets Management and Urban Carbon Emission Efficiency: Evidence from Quasi-Natural Experiment in China. Energy Econ. 2024, 140, 107963. [Google Scholar] [CrossRef]
- Guo, X.M.; Fang, C.L.; Mu, X.F.; Chen, D. Coupling and Coordination Analysis of Urbanization and Ecosystem Service Value in Beijing-Tianjin-Hebei Urban Agglomeration. Ecol. Indic. 2022, 137, 108782. [Google Scholar] [CrossRef]
- Zhao, C.; Liu, Y.; Yan, Z. Effects of Land-Use Change on Carbon Emission and Its Driving Factors in Shaanxi Province from 2000 to 2020. Environ. Sci. Pollut. Res. 2023, 30, 68313–68326. [Google Scholar] [CrossRef]
- Ding, T.H.; Chen, J.F.; Fang, Z.; Wang, Y. Exploring the Differences of Ecosystem Service Values in Different Functional Areas of Metropolitan Areas. Sustain. Prod. Consum. 2023, 38, 341–355. [Google Scholar] [CrossRef]
- Huang, C.B.; Zhao, D.Y.; Liu, C.; Liao, Q.P. Integrating Territorial Pattern and Socioeconomic Development into Ecosystem Service Value Assessment. Environ. Impact Assess. Rev. 2023, 100, 107088. [Google Scholar] [CrossRef]
- Schmidt, S.; Hamidov, A.; Kasymov, U. Analysing Groundwater Governance in Uzbekistan through the Lenses of Social-Ecological Systems and Informational Governance. Int. J. Commons 2024, 18, 203–217. [Google Scholar] [CrossRef]
- Wiedmann, T.; Lenzen, M.; Keysser, L.T.; Steinberger, J.K. Scientists’ Warning on Affluence. Nat. Commun. 2020, 11, 31–107. [Google Scholar] [CrossRef]
- Wan, R.X.; Qian, S.Y.; Ruan, J.H.; Zhang, L.; Zhang, Z.; Zhu, S.Y.; Jia, M.; Cai, B.F.; Li, L.; Wu, J.; et al. Modelling Monthly-Gridded Carbon Emissions Based on Nighttime Light Data. J. Environ. Manag. 2024, 354, 120391. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.Z.; Zhang, S.S.; Yang, L.Z.; Zhang, X.C.; Yu, K.R.; Li, J. Ecological Footprint in Beijing-Tianjin-Hebei Urban Agglomeration: Evolution Characteristics, Driving Mechanism, and Compensation Standard. Environ. Impact Assess. Rev. 2024, 109, 107649. [Google Scholar] [CrossRef]
- Liu, Z.; Guan, D.B.; Wei, W.; Davis, S.J.; Ciais, P.; Bai, J.; Peng, S.S.; Zhang, Q.; Hubacek, K.; Marland, G.; et al. Reduced Carbon Emission Estimates from Fossil Fuel Combustion and Cement Production in China. Nature 2015, 524, 335–338. [Google Scholar] [CrossRef] [PubMed]
- Salzman, J.; Bennett, G.; Carroll, N.; Goldstein, A.; Jenkins, M. The Global Status and Trends of Payments for Ecosystem Services. Nat. Sustain. 2018, 1, 136–144. [Google Scholar] [CrossRef]
- Wang, F.; Gu, N.; Dang, Y.T. Measuring Ecological Effects and Policy Mechanisms of Urban Land Use Transition—A Case Study of Xi’an, China. Int. J. Urban Sci. 2024. [Google Scholar] [CrossRef]
- Wang, Z.X.; Li, F.H.; Xie, Z.H.; Li, Q.Y.; Zhang, Y.L.; Dai, M.L. Decoupling CO2 Emissions from Economic Growth in China’s Cities from 2000 to 2020: A Case Study of the Pearl River Delta Agglomeration. Land 2023, 12, 1804. [Google Scholar] [CrossRef]
Primary Type | Secondary Type | Farmland | Woodland | Grassland | Water Body | Construction Land | Unused Land |
---|---|---|---|---|---|---|---|
Supply service | Food production | 1433.982 | 354.710 | 207.635 | 850.007 | 0.000 | 12.977 |
Raw material production | 317.942 | 817.564 | 304.964 | 473.668 | 0.000 | 38.932 | |
Water supply | 25.954 | 423.922 | 168.704 | 7059.601 | 0.000 | 25.954 | |
Reconciliation service | Gas regulation | 1154.972 | 2690.608 | 1070.620 | 1732.457 | 0.000 | 142.749 |
Climate regulation | 603.440 | 8045.869 | 2829.031 | 3821.788 | 0.000 | 129.772 | |
Environmental purification | 175.192 | 2340.223 | 934.359 | 5937.073 | 0.000 | 402.293 | |
Hydrological regulation | 1940.093 | 5013.528 | 2069.865 | 82,061.376 | 0.000 | 272.521 | |
Support service | Soil conservation | 674.815 | 3274.582 | 1304.209 | 2102.308 | 0.000 | 168.704 |
Nutrient maintenance | 201.147 | 250.893 | 103.818 | 162.215 | 0.000 | 12.977 | |
Biodiversity | 220.613 | 2980.432 | 1187.415 | 6761.125 | 0.000 | 155.726 | |
Cultural service | Aesthetic landscape | 97.329 | 1306.372 | 525.577 | 4295.456 | 0.000 | 64.886 |
Resource Account | Account Name | Productive Land-Use Type | Selected Indicators |
---|---|---|---|
Biological Resources Accounts | Agricultural Products Account | Farmland | Grain, Cotton, Oilseeds, Tobacco, Vegetables, Pork |
Forest Products Account | Woodland | Apple, Pear, Grape, Peach, Apricot | |
Grassland Products Account | Grassland | Beef, Lamb, Goat’s wool, Poultry eggs, Honey | |
Water Products Account | Water body | Aquatic product | |
Energy Consumption Accounts | Energy Consumption Account | Construction Land | Raw coal, Coke, Petrol, Paraffin, Diesel, Fuel oil, Natural gas, Electricity |
Periods | Types | 2020 | ||||||
---|---|---|---|---|---|---|---|---|
Farmland | Woodland | Grassland | Water Body | Construction Land | Unused Land | Total (km2) | ||
2000 | Farmland | 61,607.137 | 805.749 | 3724.272 | 231.531 | 2212.084 | 24.307 | 68,605.081 |
Woodland | 369.481 | 33,318.434 | 662.822 | 14.221 | 55.792 | 10.318 | 34,431.068 | |
Grassland | 2206.467 | 1166.475 | 48,937.062 | 51.787 | 139.740 | 21.090 | 52,522.622 | |
Water body | 146.864 | 10.015 | 46.891 | 1232.455 | 36.638 | 13.987 | 1486.850 | |
Construction land | 389.774 | 16.014 | 31.058 | 8.593 | 4387.668 | 0.537 | 4833.644 | |
Unused land | 12.811 | 5.150 | 13.498 | 15.614 | 4.164 | 120.052 | 171.289 | |
Total | 64,732.535 | 35,321.838 | 53,415.602 | 1554.201 | 6836.086 | 190.292 | 162,050.554 |
Land-Use Type | ESV (Billion·hm2) | 2000–2010 Amount of Change/Rate of Change | 2010–2020 Amount of Change/Rate of Change | 2000–2020 Amount of Change/Rate of Change | ||||
---|---|---|---|---|---|---|---|---|
2000 | 2005 | 2010 | 2015 | 2020 | ||||
Farmland | 352.406 | 352.314 | 383.827 | 349.791 | 342.349 | 31.421 /8.92% | −41.479 /−10.81% | −10.057 /−2.85% |
Woodland | 784.878 | 798.818 | 828.715 | 803.878 | 790.139 | 43.837 /5.59% | −38.577 /−4.65% | 5.260 /0.67% |
Grassland | 424.903 | 438.309 | 452.894 | 436.554 | 402.059 | 27.991 /6.59% | −50.835 /−11.22% | −22.844 /−5.38% |
Water body | 132.299 | 144.038 | 139.121 | 128.923 | 138.231 | 6.821 /5.16% | −0.890 /−0.64% | 5.932 /4.48% |
Construction land | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0 | 0 | 0 |
Unused land | 0.186 | 0.175 | 0.168 | 0.146 | 0.206 | −0.019 /−9.96% | 0.038 /22.65% | 0.019 /10.43% |
Total | 1694.672 | 1733.654 | 1804.725 | 1719.292 | 1672.983 | 110.052 /6.49% | −131.742 /7.30% | −21.690 /−1.28% |
Year | Baoji | Linfen | Pingliang | Qingyang | Shangluo | Tian Shui | Tong Chuan | Weinan | Xi’an | Xianyang | Yuncheng |
---|---|---|---|---|---|---|---|---|---|---|---|
2000 | 261.182 | 298.029 | 163.145 | 373.304 | 268.804 | 207.708 | 57.717 | 161.656 | 209.254 | 166.026 | 235.697 |
2005 | 271.106 | 309.606 | 169.176 | 388.532 | 278.608 | 215.178 | 59.931 | 169.192 | 218.312 | 173.188 | 245.308 |
2010 | 273.300 | 313.426 | 166.902 | 388.697 | 280.102 | 216.046 | 60.246 | 172.566 | 220.230 | 175.237 | 246.612 |
2015 | 281.372 | 322.623 | 171.821 | 399.625 | 288.107 | 222.474 | 62.023 | 178.932 | 227.581 | 180.802 | 254.167 |
2020 | 280.404 | 323.809 | 171.697 | 398.668 | 286.958 | 223.078 | 61.821 | 179.218 | 229.303 | 181.983 | 256.529 |
Year | Baoji | Linfen | Pingliang | Qingyang | Shangluo | Tian Shui | Tong Chuan | Weinan | Xi’an | Xianyang | Yuncheng |
---|---|---|---|---|---|---|---|---|---|---|---|
2000 | 1.408 | 1.510 | 0.238 | 0.110 | 1.596 | 0.220 | 0.905 | 1.260 | 1.910 | 1.647 | 0.950 |
deficit | deficit | surplus | surplus | deficit | surplus | surplus | deficit | deficit | deficit | surplus | |
2005 | 1.489 | 1.760 | 0.289 | 0.140 | 1.620 | 0.250 | 0.975 | 1.388 | 2.436 | 1.856 | 1.082 |
deficit | deficit | surplus | surplus | deficit | surplus | surplus | deficit | deficit | deficit | deficit | |
2010 | 1.564 | 1.786 | 1.807 | 1.966 | 1.645 | 1.655 | 1.148 | 1.636 | 2.656 | 2.045 | 1.257 |
deficit | deficit | deficit | deficit | deficit | deficit | deficit | deficit | deficit | deficit | deficit | |
2015 | 1.836 | 1.838 | 1.813 | 2.123 | 1.654 | 1.653 | 1.441 | 1.573 | 2.918 | 2.076 | 1.418 |
deficit | deficit | deficit | deficit | deficit | deficit | deficit | deficit | deficit | deficit | deficit | |
2020 | 2.095 | 2.316 | 1.822 | 2.170 | 1.646 | 1.644 | 1.861 | 1.914 | 4.318 | 2.741 | 2.124 |
deficit | deficit | deficit | deficit | deficit | deficit | deficit | deficit | deficit | deficit | deficit |
Year | Baoji | Linfen | Pingliang | Qingyang | Shangluo | Tian Shui | Tong Chuan | Weinan | Xi’an | Xianyan | Yuncheng |
---|---|---|---|---|---|---|---|---|---|---|---|
2000 | −0.763 | −0.830 | 0.438 | 0.927 | −0.333 | 0.749 | 0.007 | −0.280 | −3.277 | −0.798 | 0.061 |
2005 | −0.879 | −1.685 | 0.429 | 1.327 | −0.325 | 0.765 | 0.002 | −0.382 | −4.980 | −0.879 | −0.123 |
2010 | −0.891 | −1.427 | −0.480 | −1.762 | −0.332 | −0.649 | −0.009 | −0.586 | −5.487 | −1.011 | −0.325 |
2015 | −1.378 | −1.518 | −0.436 | −2.127 | −0.413 | −0.727 | −0.026 | −0.546 | −6.950 | −1.166 | −0.579 |
2020 | −1.763 | −2.061 | −0.435 | −1.967 | −0.362 | −0.619 | −0.050 | −0.814 | −13.789 | −1.479 | −1.452 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, X.; Yang, S.; Huai, J. Integrating Ecological Footprint into Regional Ecological Well-Being Evaluation: A Case Study of the Guanzhong Plain Urban Agglomeration, China. Land 2025, 14, 688. https://doi.org/10.3390/land14040688
Zheng X, Yang S, Huai J. Integrating Ecological Footprint into Regional Ecological Well-Being Evaluation: A Case Study of the Guanzhong Plain Urban Agglomeration, China. Land. 2025; 14(4):688. https://doi.org/10.3390/land14040688
Chicago/Turabian StyleZheng, Xiaozheng, Shuo Yang, and Jianjun Huai. 2025. "Integrating Ecological Footprint into Regional Ecological Well-Being Evaluation: A Case Study of the Guanzhong Plain Urban Agglomeration, China" Land 14, no. 4: 688. https://doi.org/10.3390/land14040688
APA StyleZheng, X., Yang, S., & Huai, J. (2025). Integrating Ecological Footprint into Regional Ecological Well-Being Evaluation: A Case Study of the Guanzhong Plain Urban Agglomeration, China. Land, 14(4), 688. https://doi.org/10.3390/land14040688