Farmers’ Perceptions of the Efficacy of Current Climate Risk Adaptation and Mitigation Strategies on Agriculture in The Gambia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling and Data Collection
2.3. Methods
2.3.1. Effectiveness Score (ES)
- PHI = percentage of highly ineffective;
- PI = percentage of ineffective;
- PNU = percentage of not understanding;
- PE = percentage of effective;
- PHE = percentage of highly effective.
2.3.2. Perception Index (PI)
- is the frequency of a strategy used by farmer ;
- is the total number of farmers surveyed.
- intercepts;
- coefficients of the explanatory variable;
- error terms.
2.3.3. Importance–Performance Analysis (IPA)
3. Results
3.1. Descriptive Statistics
3.2. Farmers’ Perceptions of Different Adaptation and Mitigation Strategies
3.3. Analysis of the Perception Index
- High-perceived-efficacy strategies
- Moderate- and low-perceived-efficacy strategies
3.4. Importance–Performance Analysis Matrix
3.5. Perceived Economic, Social, and Environmental Outcomes of These Strategies
3.6. Challenges of Adaptation and Mitigation Strategies
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AGN | assistance from government/NGOs |
CCL | changing crop to livestock |
CCT | changing crop type |
CCV | changing crop variety |
CD | crop diversification |
CLC | changing livestock to crop |
CPD | changing planting date |
CR | crop rotation |
CSQ | changing seed quality |
IPA | importance–performance analysis |
Ir | irrigation |
Mg | migration |
NS | normalized score |
PA | pesticide application |
PB | petty business |
PE | percentage of effective |
PHE | percentage of highly effective |
PHI | percentage of highly ineffective |
PI | percentage of ineffective |
PI | perception index |
PNU | percentage of not understanding |
Pr | praying |
PST | planting shaded trees |
SC | soil conservation |
SCT | stopping cutting trees |
UI | use of insurance |
UIF | use of inorganic fertilizers |
W | wages |
1 | CCL = changing crop to livestock, CCT = changing crop type, CCV = changing crop variety, CLC = changing livestock to crop, CPD = changing planting date, CSQ = changing seed quality, UIF = use of inorganic fertilizers, CD = crop diversification, CR = crop rotation, SC = soil conservation, SCT = stopping cutting trees, PA = pesticide application, PST = planting shaded trees, Ir = irrigation, Pr = praying, UI = use of insurance, W = wages, Mg = migration, PB = petty business, AGN = assistance from government/NGOs. |
2 | 1 = totally ineffective, 3 = lack of understanding, 5 = highly effective. |
3 | 2 = ineffective. |
References
- Lambarraa-Lehnhardt, F.; Ceesay, S.; Ndiaye, M.B.O.; Thiaw, D.; Sawaneh, M. Climate risk perception and adaptation strategies of smallholder farmers in The Gambia. Discov. Sustain. 2024, 5, 506. [Google Scholar] [CrossRef]
- Abbass, K.; Qasim, M.Z.; Song, H.; Murshed, M.; Mahmood, H.; Younis, I. A Review of the Global Climate Change Impacts, Adaptation, and Sustainable Mitigation Measures. Environ. Sci. Pollut. Res. 2022, 29, 42539–42559. [Google Scholar] [CrossRef]
- Verma, K.K.; Song, X.P.; Kumari, A.; Jagadesh, M.; Singh, S.K.; Bhatt, R.; Singh, M.; Seth, C.S.; Li, Y.R. Climate Change Adaptation: Challenges for Agricultural Sustainability; John Wiley and Sons Inc.: Hoboken, NJ, USA, 2024. [Google Scholar] [CrossRef]
- Kopeć, P. Climate Change—The Rise of Climate-Resilient Crops. Plants 2024, 13, 490. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, R.; Masud, M.M. Dynamic linkages between climatic variables and agriculture production in Malaysia: A generalized method of moments approach. Environ. Sci. Pollut. Res. 2022, 29, 41557–41566. [Google Scholar] [CrossRef] [PubMed]
- Climate change adaptation and mitigation in the food and agriculture sector. In Proceedings of the Technical Background Document from the Expert Consultation, Rome, Italy, 5–7 March 2008.
- Sinore, T.; Wang, F. Impact of Climate Change on Agriculture and Adaptation Strategies in Ethiopia: A Meta-Analysis; Elsevier Ltd.: Amsterdam, The Netherlands, 2024. [Google Scholar] [CrossRef]
- Braimoh, A.; Roncoli, C.; Segnon, A.C. Climate Change Adaptation Options to Inform Planning of Agriculture and Food Systems in The Gambia: A Systematic Approach for Stocktaking. Available online: https://era.ccafs.cgiar.org/ (accessed on 8 September 2024).
- Bayo, B.; Mahmood, S. Geo-spatial analysis of drought in The Gambia using multiple models. Nat. Hazards 2023, 117, 2751–2770. [Google Scholar] [CrossRef]
- Amuzu, J.; Jallow, B.P.; Kabo-Bah, A.T.; Yaffa, S. The climate change vulnerability and risk management matrix for the coastal zone of The Gambia. Hydrology 2018, 5, 14. [Google Scholar] [CrossRef]
- Sanneh, E.S.; Hu, A.H.; Hsu, C.W.; Njie, M. Prioritization of climate change adaptation approaches in the Gambia. Mitig. Adapt. Strat. Glob. Change 2014, 19, 1163–1178. [Google Scholar] [CrossRef]
- Carr, T.W.; Addo, F.; Palazzo, A.; Havlik, P.; Pérez-Guzmán, K.; Ali, Z.; Green, R.; Hadida, G.; Segnon, A.C.; Zougmoré, R. Addressing future food demand in The Gambia: Can increased crop productivity and climate change adaptation close the supply–demand gap? Food Secur. 2024, 16, 691–704. [Google Scholar] [CrossRef]
- Belford, C.; Huang, D.; Ahmed, Y.N.; Ceesay, E.; Sanyang, L. An economic assessment of the impact of climate change on the Gambia’s agriculture sector: A CGE approach. Int. J. Clim. Change Strat. Manag. 2023, 15, 322–352. [Google Scholar] [CrossRef]
- Berrang-Ford, L.; Biesbroek, R.; Ford, J.D.; Lesnikowski, A.; Tanabe, A.; Wang, F.M.; Chen, C.; Hsu, A.; Hellmann, J.J.; Pringle, P.; et al. Tracking Global Climate Change Adaptation Among Governments; Nature Publishing Group: Berlin, Germany, 2019. [Google Scholar] [CrossRef]
- Singh, C.; Iyer, S.; New, M.G.; Few, R.; Kuchimanchi, B.; Segnon, A.C.; Morchain, D. Interrogating ‘Effectiveness’ in Climate Change Adaptation: 11 Guiding Principles for Adaptation Research and Practice; Taylor and Francis Ltd.: Abingdon, UK, 2022. [Google Scholar] [CrossRef]
- Roy, R.; Monju, M.H.; Tan, M.L.; Rahman, S.; Kundu, S.; Rahman, S.; Talukder, B.; Bhuyan, S. Determining synergies and trade-offs between adaptation, mitigation and development in coastal socio-ecological systems in Bangladesh. Environ. Dev. 2023, 48, 100936. [Google Scholar] [CrossRef]
- Hoegh-Guldberg, O.; Jacob, D.; Taylor, M.; Bolaños, T.G.; Bindi, M.; Brown, S.; Camilloni, I.A.; Diedhiou, A.; Djalante, R.; Ebi, K.; et al. The human imperative of stabilizing global climate change at 1.5 °C. Am. Assoc. Adv. Sci. 2019, 365, eaaw6974. [Google Scholar] [CrossRef] [PubMed]
- Simpson, N.P.; Williams, P.A.; Mach, K.J.; Berrang-Ford, L.; Biesbroek, R.; Haasnoot, M.; Segnon, A.C.; Campbell, D.; Musah-Surugu, J.I.; Joe, E.T.; et al. Adaptation to compound climate risks: A systematic global stocktake. iScience 2023, 26, 105926. [Google Scholar] [CrossRef] [PubMed]
- Camara, G.; Simoes, R.; Ruivo, H.M.; Andrade, P.R.; Soterroni, A.C.; Ramos, F.M.; Ramos, R.G.; Scarabello, M.; Almeida, C.; Sanches, I.; et al. Impact of land tenure on deforestation control and forest restoration in Brazilian Amazonia. Environ. Res. Lett. 2023, 18, 065005. [Google Scholar] [CrossRef]
- Sorvali, J.; Liu, X.; Kaseva, J. Climate change opportunities reduce farmers’ risk perception: Extension of the value-belief-norm theory in the context of Finnish agriculture. Front. Psychol. 2022, 13, 939201. [Google Scholar] [CrossRef]
- Ikehi, M.E.; Ifeanyieze, F.O.; Onu, F.M.; Ejiofor, T.E.; Nwankwo, C.U. Assessing climate change mitigation and adaptation strategies and agricultural innovation systems in the Niger Delta. GeoJournal 2023, 88, 209–224. [Google Scholar] [CrossRef]
- Carr, T.W.; Mkuhlani, S.; Segnon, A.C.; Ali, Z.; Zougmoré, R.; Dangour, A.D.; Green, R.; Scheelbeek, P. Climate change impacts and adaptation strategies for crops in West Africa: A systematic review. Environ. Res. Lett. 2022, 17, 053001. [Google Scholar] [CrossRef]
- Atteridge, A.; Remling, E. Is adaptation reducing vulnerability or redistributing it? Wiley Interdiscip. Rev. Clim. Change 2018, 9, e500. [Google Scholar] [CrossRef]
- Moser, S.C.; Boykoff, M.T. Climate Change and Adaptation Success: The Scope of the Challenge. In Successful Adaptation to Climate Change; Routledge: London, UK, 2013. [Google Scholar]
- Palutikof, J.P.; Boulter, S.L.; Barnett, J.; Rissik, D. Applied Studies in Climate Adaptation; John Wiley & Sons: London, UK, 2015. [Google Scholar]
- Preliminary Report the Gambia 2024 Population and Housing Census. 2024. Available online: https://www.gbosdata.org/downloads/142-2024-population-and-housing-census-reports (accessed on 8 September 2024).
- The Gambia Bureau of Statistics. 2023. Available online: https://www.gbosdata.org/ (accessed on 11 December 2024).
- Bah, O.A. Land Use and Land Cover Dynamics in Central River Region of the Gambia, West Africa from 1984 to 2017. Am. J. Mod. Energy 2019, 5, 5. [Google Scholar] [CrossRef]
- Lambarraa-Lehnhardt, F.; Uthes, S.; Zander, P.; Benhammou, A. How improving the technical efficiency of Moroccan saffron farms can contribute to sustainable agriculture in the Anti-Atlas region. Stud. Agric. Econ. 2022, 124, 96–103. [Google Scholar] [CrossRef]
- Islam, M.S.; Hossain, M.Z.; Sikder, M.B. Drought adaptation measures and their effectiveness at Barind Tract in northwest Bangladesh: A perception study. Nat. Hazards 2019, 97, 1253–1276. [Google Scholar] [CrossRef]
- Martilla, J.A.; James, J.C. Importance-performance analysis. J. Mark. 1977, 41, 77–79. [Google Scholar] [CrossRef]
- Azzopardi, E.; Nash, R. A critical evaluation of importance-performance analysis. Tour. Manag. 2013, 35, 222–233. [Google Scholar] [CrossRef]
- Sörensson, A.; von Friedrichs, Y. An importance-performance analysis of sustainable tourism: A comparison between international and national tourists. J. Destin. Mark. Manag. 2013, 2, 14–21. [Google Scholar] [CrossRef]
- Warner, L.A.; Kumar, A.; Lamm, A.J. Using importance-performance analysis to guide extension needs assessment. J. Ext. 2016, 54, 21. [Google Scholar] [CrossRef]
- Bacon, D.R. A comparison of approaches to Importance-Performance Analysis. Int. J. Mark. Res. 2003, 45, 1–15. [Google Scholar] [CrossRef]
- Bagagnan, A.R.; Ouedraogo, I.; Fonta, W.M. Perceived climate variability and farm level adaptation in the Central River Region of The Gambia. Atmosphere 2019, 10, 423. [Google Scholar] [CrossRef]
- Boliko, M.C. FAO and the Situation of Food Security and Nutrition in the World. J. Nutr. Sci. Vitaminol. 2019, 65, S4–S8. [Google Scholar] [CrossRef] [PubMed]
- Piya, L.; Maharjan, K.L.; Joshi, N.P. Determinants of adaptation practices to climate change by Chepang households in the rural Mid-Hills of Nepal. Reg. Environ. Change 2013, 13, 437–447. [Google Scholar] [CrossRef]
- Below, T.B.; Mutabazi, K.D.; Kirschke, D.; Franke, C.; Sieber, S.; Siebert, R.; Tscherning, K. Can farmers’ adaptation to climate change be explained by socio-economic household-level variables? Glob. Environ. Change 2012, 22, 223–235. [Google Scholar] [CrossRef]
- Tessema, Y.A.; Aweke, C.S. Understanding the Process of Adaptation to Climate Change by Small-Holder Farmers: The Case of East Hararghe Zone, Ethiopia. Available online: http://www.agrifoodecon.com/content/1/1/13 (accessed on 8 September 2024).
- Ibe, G.O.; Ezenwa, L.I.; Uwaga, M.A.; Ngwuli, C.P. Assessment of Challenges Faced by Non-Timber Forest Products (Ntfps) Dependents’communities in a Changing Climate: A Case Ofadaptation Measures Inohafia Lga, Abia State, Nigeria. 2018. Available online: http://www.ajol.info/index.php/jrfwe (accessed on 8 September 2024).
- Feliciano, D.; Recha, J.; Ambaw, G.; MacSween, K.; Solomon, D.; Wollenberg, E. Assessment of agricultural emissions, climate change mitigation and adaptation practices in Ethiopia. Clim. Policy 2022, 22, 427–444. [Google Scholar] [CrossRef]
- Fahad, S.; Wang, J. Farmers’ risk perception, vulnerability, and adaptation to climate change in rural Pakistan. Land. Use Policy 2018, 79, 301–309. [Google Scholar] [CrossRef]
- Deng, J.; Mcgill, D.; Arbogast, D. Perceptions of challenges facing rural communities: An importance-performance analysis. Tour. Anal. 2017, 22, 219–236. [Google Scholar] [CrossRef]
- Esmailpour, J.; Aghabayk, K.; Vajari, M.A.; De Gruyter, C. Importance—Performance Analysis (IPA) of bus service attributes: A case study in a developing country. Transp. Res. Part A Policy Pract. 2020, 142, 129–150. [Google Scholar] [CrossRef]
- Phadermrod, B.; Crowder, R.M.; Wills, G.B. Importance-Performance Analysis based SWOT analysis. Int. J. Inf. Manag. 2016, 44, 194–203. [Google Scholar] [CrossRef]
- Taplin, R.H. Competitive importance-performance analysis of an Australian wildlife park. Tour. Manag. 2012, 33, 29–37. [Google Scholar] [CrossRef]
- Wong, M.S.; Hideki, N.; George, P. The use of importance-performance analysis (IPA) in evaluating Japan’s e-government services. J. Theor. Appl. Electron. Commer. Res. 2011, 6, 17–30. [Google Scholar] [CrossRef]
- Shieh, J.I.; Wu, H.H. Applying importance-performance analysis to compare the changes of a convenient store. Qual. Quant. 2009, 43, 391–400. [Google Scholar] [CrossRef]
- Hosseini, S.Y.; Bideh, A.Z. A data mining approach for segmentation-based importance-performance analysis (SOM-BPNN-IPA): A new framework for developing customer retention strategies. Serv. Bus. 2014, 8, 295–312. [Google Scholar] [CrossRef]
- Kanyangale, B.I.; Lee, C.H. Integrating Locals’ Importance-Performance Perception of Adaptation Behaviour into Invasive Alien Plant Species Management Surrounding Nyika National Park, Malawi. Forests 2023, 14, 1728. [Google Scholar] [CrossRef]
- Rohit, J.; Bal, S.K.; Beevi, C.N.A.; Nagasree, K.; Shankar, K.R.; Nirmala, G.; Pushpanjali; Samuel, J.; Veni, V.G.; Kumar, R.N.; et al. Exploring farmers’ communication pattern and satisfaction regarding the adoption of Agromet advisory services in semi-arid regions of southern India. Front. Sustain. Food Syst. 2023, 7, 1284880. [Google Scholar] [CrossRef]
- Etana, D.; Snelder, D.J.R.M.; van Wesenbeeck, C.F.A.; de Cock Buning, T. Review of the Effectiveness of Smallholder Farmers’ Adaptation to Climate Change and Variability in Developing Countries; Routledge: London, UK, 2022. [Google Scholar] [CrossRef]
- Roudier, P.; Sultan, B.; Quirion, P.; Berg, A. The impact of future climate change on West African crop yields: What does the recent literature say? Glob. Environ. Change 2011, 21, 1073–1083. [Google Scholar] [CrossRef]
- Jalloh, A.; Nelson, G.C.; Thomas, T.S.; Zougmoré, R.; Roy-Macauley, H. West African Agriculture and Climate Change: A Comprehensive Analysis Issue Brief; International Food Policy Research Institute: Washington, DC, USA, 2013. [Google Scholar]
- Knox, J.; Hess, T.; Daccache, A.; Wheeler, T. Climate change impacts on crop productivity in Africa and South Asia. Environ. Res. Lett. 2012, 7, 034032. [Google Scholar] [CrossRef]
- Dibba, L.; Diagne, A.; Fialor, S.C. Diffusion and adoption of new rice varieties for Africa (Nerica) in the Gambia. Afr. Crop Sci. J. 2012, 20, 141–153. [Google Scholar]
- Diagne, A.; Amovin-Assagba, E.; Futakuchi, K.; Wopereis, M.C.S. Estimation of cultivated area, number of farming households and yield for major rice-growing environments in Africa. In Realizing Africa’s Rice Promise; CABI: Wallingford, UK, 2013; pp. 35–45. [Google Scholar] [CrossRef]
- Arouna, A.; Lokossou, J.C.; Wopereis, M.C.S.; Bruce-Oliver, S.; Roy-Macauley, H. Contribution of improved rice varieties to poverty reduction and food security in sub-Saharan Africa. Glob. Food Sec. 2017, 14, 54–60. [Google Scholar] [CrossRef]
- Brooks, N.; Anderson, S.; Ayers, J.; Burton, I.; Tellam, I. Tracking Adaptation and Measuring Development; International Institute for Environment and Development (IIED): London, UK, 2011. [Google Scholar]
- Van Der Geest, K.; Warner, K. Editorial: Loss and damage from climate change: Emerging perspectives. Int. J. Glob. Warm. 2015, 8, 133–140. [Google Scholar]
- Bayala, J.; Sanou, J.; Teklehaimanot, Z.; Kalinganire, A.; Ouédraogo, S.J. Parklands for buffering climate risk and sustaining agricultural production in the Sahel of West Africa. Curr. Opin. Environ. Sustain. 2014, 6, 28–34. [Google Scholar] [CrossRef]
- Mbow, C.; Smith, P.; Skole, D.; Duguma, L.; Bustamante, M. Achieving mitigation and adaptation to climate change through sustainable agroforestry practices in Africa. Curr. Opin. Environ. Sustain. 2014, 6, 8–14. [Google Scholar] [CrossRef]
- Partey, S.T.; Zougmoré, R.B.; Ouédraogo, M.; Campbell, B.M. Developing climate-smart agriculture to face climate variability in West Africa: Challenges and lessons learnt. J. Clean.Prod. 2018, 187, 285–295. [Google Scholar] [CrossRef]
- Araya, S.N.; Mitchell, J.P.; Hopmans, J.W.; Ghezzehei, T.A. Long-term impact of cover crop and reduced disturbance tillage on soil pore size distribution and soil water storage. SOIL 2022, 8, 177–198. [Google Scholar] [CrossRef]
- Awuni, S.; Adarkwah, F.; Ofori, B.D.; Purwestri, R.C.; Bernal, D.C.H.; Hajek, M. Managing the Challenges of Climate Change Mitigation and Adaptation Strategies in Ghana; Elsevier Ltd.: Amsterdam, The Netherlands, 2023. [Google Scholar] [CrossRef]
- Bamidele, J.; Olaitan, M.; Sennuga, O.S.; Eleke, U.P. Smallholder Farmers’ Perception on Climate Change and Adaptation Strategies in Kuje Area Council. J. Nutr. Food Process. 2025, 8, 1–7. [Google Scholar]
Quadrant | Importance (Frequency) | Performance (Effectiveness) |
---|---|---|
Q1: Keep Up the Good Work | High (≥58.55) | High (<3.56, mostly scored 1–3) |
Q2: Possible Overkill | High (≥58.55) | Low (≥3.56, score 4–5) |
Q3: Low Priority | Low (<58.55) | Low (<3.56, mostly score 1–2) |
Q4: Concentrate Here | Low (<58.55) | High (≥3.56, score 4–5) |
Variable | Category | Freq. | Percent |
---|---|---|---|
Gender | Male | 299 | 71 |
Female | 121 | 29 | |
Region | NBR | 175 | 42 |
CRS | 105 | 25 | |
URR | 140 | 33 | |
Age Category | Young farmers | 80 | 19 |
Middle age farmers | 209 | 50 | |
Old farmers | 131 | 31 | |
Education | None/No formal | 338 | 80 |
Primary | 35 | 8 | |
Secondary | 37 | 9 | |
Tertiary | 10 | 2 | |
Average annual farming income | Very Low Income | 255 | 61 |
Low Income | 114 | 27 | |
High Income | 51 | 12 | |
100 |
Strategies | Frequency of Respondents Against Each Likert Option | Percentage of Respondents Against Each Likert Options | Effectiveness | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 | ||
Adaptation | |||||||||||
Change crop to livestock (CCL) | 0 | 0 | 20 | 16 | 0 | 0 | 0 | 56 | 44 | 0 | Not understanding |
Change crop type (CCT) | 0 | 0 | 63 | 21 | 0 | 0 | 0 | 75 | 25 | 0 | Not understanding |
Change crop variety (CCV) | 0 | 2 | 111 | 77 | 0 | 0 | 1 | 58 | 41 | 0 | Not understanding |
Change livestock to crop (CLC) | 0 | 0 | 8 | 17 | 0 | 0 | 0 | 32 | 68 | 0 | Effective |
Change planting date (CPD) | 0 | 0 | 91 | 71 | 0 | 0 | 0 | 56 | 44 | 0 | Not understanding |
Pesticide application (PA) | 0 | 0 | 3 | 9 | 0 | 0 | 0 | 25 | 75 | 0 | Effective |
Use of inorganic fertilizers (UIF) | 0 | 0 | 48 | 97 | 0 | 0 | 0 | 33 | 67 | 0 | Effective |
Praying (Pr) | 0 | 0 | 20 | 36 | 0 | 0 | 0 | 33 | 67 | 0 | Effective |
Use insurance (UI) | 0 | 0 | 1 | 2 | 0 | 0 | 0 | 33 | 67 | 0 | Effective |
Wage (W) | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 100 | 0 | Effective |
Migration (Mg) | 0 | 0 | 3 | 10 | 0 | 0 | 0 | 23 | 77 | 0 | Effective |
Petty business (PB) | 0 | 0 | 14 | 10 | 0 | 0 | 0 | 58 | 42 | 0 | Not understanding |
Irrigation (Ir) | 0 | 0 | 1 | 3 | 0 | 0 | 0 | 36 | 64 | 0 | Effective |
Assistant from gov’t/NGOs (AGN) | 0 | 0 | 1 | 3 | 0 | 0 | 0 | 25 | 75 | 0 | Effective |
Mitigation | |||||||||||
Crop diversification (CD) | 0 | 0 | 11 | 8 | 0 | 0 | 0 | 58 | 42 | 0 | Not understanding |
Crop rotation (CR) | 0 | 1 | 103 | 102 | 0 | 0 | 0 | 51 | 49 | 0 | Not understanding |
Soil conservation (SC) | 0 | 0 | 17 | 9 | 0 | 0 | 0 | 65 | 35 | 0 | Not understanding |
Planting shaded trees (PST) | 0 | 1 | 23 | 20 | 0 | 0 | 2 | 52 | 45 | 0 | Not understanding |
Stop cutting trees (SCT) | 2 | 0 | 18 | 27 | 0 | 4 | 0 | 38 | 57 | 0 | Effective |
Change seed quality CSQ) | 0 | 0 | 23 | 48 | 0 | 0 | 0 | 32 | 68 | 0 | Effective |
Strategies | Frequency of Strategies % | Mean Value of Perceived Efficacy | Normalized Score |
---|---|---|---|
CCL | 9 | 3.44 | 0.44 |
CCT | 20 | 3.25 | 0.25 |
CCV | 45 | 3.38 | 0.79 |
CLC | 6 | 3.68 | 0.68 |
CPD | 39 | 3.44 | 0.43 |
CSQ | 17 | 3.68 | 0.68 |
UIF | 35 | 3.67 | 0.67 |
CD | 5 | 3.42 | 0.42 |
CR | 49 | 3.49 | 0.75 |
SC | 6 | 3.35 | 0.45 |
SCT | 11 | 3.49 | 0.83 |
PA | 3 | 3.75 | 0.75 |
PST | 10 | 3.43 | 0.72 |
Ir | 1 | 3.75 | 0.75 |
Pr | 13 | 3.64 | 0.64 |
UI | 1 | 3.67 | 0.67 |
W | 0 | 4 | 0.77 |
PB | 6 | 3.42 | 0.42 |
AGN | 1 | 3.75 | 0.75 |
Region | Score 1 | Score 2 | Score 3 | Score 4 | Total |
---|---|---|---|---|---|
NBR | 1 | 0 | 325 | 283 | 609 |
CRS | 1 | 0 | 189 | 100 | 290 |
URR | 3 | 2 | 62 | 206 | 273 |
Total | 5 | 2 | 576 | 589 | 1172 |
Gender | Score 1 | Score 2 | Score 3 | Score 4 | Total |
---|---|---|---|---|---|
Male | 3 | 1 | 393 | 433 | 830 |
Female | 2 | 1 | 183 | 156 | 342 |
Total | 5 | 2 | 576 | 589 | 1172 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ceesay, S.; Lambarraa-Lehnhardt, F.; Ndiaye, M.B.O.; Thiaw, D.; Sawaneh, M.; Schuler, J. Farmers’ Perceptions of the Efficacy of Current Climate Risk Adaptation and Mitigation Strategies on Agriculture in The Gambia. Land 2025, 14, 622. https://doi.org/10.3390/land14030622
Ceesay S, Lambarraa-Lehnhardt F, Ndiaye MBO, Thiaw D, Sawaneh M, Schuler J. Farmers’ Perceptions of the Efficacy of Current Climate Risk Adaptation and Mitigation Strategies on Agriculture in The Gambia. Land. 2025; 14(3):622. https://doi.org/10.3390/land14030622
Chicago/Turabian StyleCeesay, Sheriff, Fatima Lambarraa-Lehnhardt, Mohamed Ben Omar Ndiaye, Diatou Thiaw, Mamma Sawaneh, and Johannes Schuler. 2025. "Farmers’ Perceptions of the Efficacy of Current Climate Risk Adaptation and Mitigation Strategies on Agriculture in The Gambia" Land 14, no. 3: 622. https://doi.org/10.3390/land14030622
APA StyleCeesay, S., Lambarraa-Lehnhardt, F., Ndiaye, M. B. O., Thiaw, D., Sawaneh, M., & Schuler, J. (2025). Farmers’ Perceptions of the Efficacy of Current Climate Risk Adaptation and Mitigation Strategies on Agriculture in The Gambia. Land, 14(3), 622. https://doi.org/10.3390/land14030622