Land Resource Allocation and Green Economic Development: Threshold Effect on Local Government Functional Performance in China
Abstract
:1. Introduction
2. Theoretical Analysis and Research Hypotheses
2.1. The Impact of LRM on GEE
2.2. Hypotheses of Mediating Effects
2.3. Hypotheses of Threshold Effects
3. Research Design
3.1. Variable Selection
3.1.1. Dependent Variable
3.1.2. Independent Variable
3.1.3. Mediation Variables
3.1.4. Threshold Variables
3.1.5. Control Variables
- Transportation convenience, measured by per capita road area.
- Population agglomeration, reflected by population density.
- Degree of openness, quantified by the value of foreign direct investment (converted into RMB).
- Government fiscal level, measured by the difference between fiscal expenditure and revenue.
- Local financial development, represented by the ratio of the sum of deposit and loan balances in urban districts to the GDP of these districts.
3.2. Model Setting
3.3. Sample and Data
4. Results
4.1. Descriptive Statistical Analysis
4.2. Baseline Regression Results
4.3. Endogeneity Test
4.4. Robustness Tests
4.5. Mediating Effects Tests
4.6. Threshold Effect Test
4.7. Heterogeneity Analysis
4.7.1. Economic Environment
4.7.2. Social Governance
4.7.3. Administrative Intervention
5. Conclusions and Policy Implications
5.1. Conclusions
5.2. Policy Implications
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chang, R.-D.; Soebarto, V.; Zhao, Z.-Y.; Zillante, G. Facilitating the transition to sustainable construction: China’s policies. J. Clean. Prod 2016, 30, 534–544. [Google Scholar] [CrossRef]
- Kaiwen, Z.; Tan, R. Land policy making in a complex system: The innovation and diffusion logic of China’s retained land policy reform. Land Use Pol. 2024, 144, 107263. [Google Scholar] [CrossRef]
- He, D.H.; Wang, X.M.; Liu, Y.T. Reflection on Land Use Institutional System towards Spatial Justice: Discussion on Role of Local Government in Land Redevelopment. Urban Stud. 2023, 30, 1–7+17. [Google Scholar]
- North, D.C.; Calvert, R.; Eggertsson, T. Institutions Institutional Change and Economic Performance; Cambridge University Press: Cambridge, UK, 1990; p. 164. [Google Scholar]
- Jiang, Y.; Tang, Y.T.; Long, H.; Deng, W. Land consolidation: A comparative research between Europe and China. Land Use Pol. 2022, 112, 105790. [Google Scholar] [CrossRef]
- Jiang, R.; Lin, G.C.S. Placing China’s land marketization: The state, market, and the changing geography of land use in Chinese cities. Land Use Pol. 2021, 103, 105293. [Google Scholar] [CrossRef]
- Fan, X.; Qiu, S.; Sun, Y. Land finance dependence and urban land marketization in China: The perspective of strategic choice of local governments on land transfer. Land Use Pol. 2020, 99, 105023. [Google Scholar] [CrossRef]
- Wang, J.; Wu, Q.; Yan, S.; Guo, G.; Peng, S. China’s local governments breaking the land use planning quota: A strategic interaction perspective. Land Use Pol. 2019, 92, 104434. [Google Scholar] [CrossRef]
- Zhou, Y.; Chang, J.; Feng, S. Effects of urban growth boundaries on urban spatial structural and ecological functional optimization in the Jining Metropolitan Area, China. Land Use Pol. 2022, 117, 106113. [Google Scholar] [CrossRef]
- Zhou, D.; Huang, Q.; Chong, Z. Analysis on the effect and mechanism of land misallocation on carbon emissions efficiency: Evidence from China. Land Use Pol. 2022, 121, 106336. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, H. Effects land finance on carbon emissions: A panel data analysis for Chinese provinces. Land Use Pol. 2017, 63, 493–500. [Google Scholar] [CrossRef]
- Xie, R.; Yao, S.; Han, F.; Zhang, Q. Does misallocation of land resources reduce urban green total factor productivity? An analysis of city-level panel data in China. Land Use Pol. 2022, 122, 106353. [Google Scholar] [CrossRef]
- Restuccia, D.; Rogerson, R. Policy Distortions and Aggregate Productivity with Heterogeneous Establishments. Rev. Econ. Dyn. 2008, 11, 707–720. [Google Scholar] [CrossRef]
- Hsieh, C.-T.; Moretti, E. Housing constraints and spatial misallocation. Am. Econ. J.-Macroecon. 2019, 11, 1–39. Available online: https://www.aeaweb.org/articles?id=10.1257/mac.20170388 (accessed on 16 May 2020). [CrossRef]
- Murphy, K.M.; Shleifer, A.; Vishny, R.W. Why is rent-seeking so costly to growth? Am. Econ. Rev. 1993, 83, 409–414. [Google Scholar]
- Grisorio, M.J.; Prota, F. The impact of fiscal decentralization on the composition of public expenditure: Panel data evidence from Italy. Reg. Stud. 2015, 49, 1949–1956. [Google Scholar] [CrossRef]
- Athanasouli, D.; Goujard, A. Corruption and management practices: Firm level evidence. J. Comp. Econ. 2015, 43, 1014–1034. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, X. Rent-seeking in bank credit and firm R&D innovation: The role of industrial agglomeration. J. Bus. Res. 2023, 159, 113454. [Google Scholar] [CrossRef]
- Du, J.; Peiser, R.B. Land supply, pricing and local governments’ land hoarding in China. Reg. Sci. Urban Econ. 2014, 48, 180–189. [Google Scholar] [CrossRef]
- Chang, Z.; Diao, M.; Jing, K.; Li, W. High-speed rail and industrial movement: Evidence from China’s Greater Bay Area. Transp. Policy 2021, 112, 22–31. [Google Scholar] [CrossRef]
- Gebresilasse, M. Rural roads, Agricultural extension and Productivity. J. Dev. Econ. 2023, 162, 103048. [Google Scholar] [CrossRef]
- Chen, P.; Hao, Y. Digital transformation and corporate environmental performance: The moderating role of board characteristics. Corp. Soc. Responsib. Environ. Manag. 2022, 29, 1757–1767. [Google Scholar] [CrossRef]
- Huang, Z.; Du, X. How does high-speed rail affect land value? Evidence from China. Land Use Pol. 2021, 10, 105068. [Google Scholar] [CrossRef]
- Chang, Z.; Zheng, L.; Yang, T.; Long, F. High-speed rail, new town development, and the spatial mismatch of land leases in China. Land Use Pol. 2022, 115, 106014. [Google Scholar] [CrossRef]
- Li, L.X.; Huang, P.Y.; Ma, G.R. Land resource mismatch and productivity differences in industrial enterprises in China. Manag. World 2016, 8, 86–96. [Google Scholar] [CrossRef]
- Camisón, C.; Villar-López, A. Organizational innovation as an enabler of technological innovation capabilities and firm performance. J. Bus. Res. 2014, 67, 2891–2902. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, X. Industrial agglomeration, technological innovation and carbon productivity: Evidence from China. Resour. Conserv. Recycl. 2021, 166, 105330. [Google Scholar] [CrossRef]
- Zou, T. Technological innovation promotes industrial upgrading: An analytical framework. Struct. Chang. Econ. Dyn. 2024, 70, 150–167. [Google Scholar] [CrossRef]
- Jordà, Ò.; Knoll, K.; Kuvshinov, D.; Schularick, M.; Taylor, A.M. The rate of return on everything, 1870–2015. Q. J. Econ. 2019, 134, 1225–1298. [Google Scholar] [CrossRef]
- Fike, R.; Gwartney, J. Public choice, market failure, and government failure in principles textbooks. J. Econ. Educ. 2015, 46, 207–218. [Google Scholar] [CrossRef]
- Lin, B.; Zhu, J. Fiscal spending and green economic growth evidence from China. Energy Econ. 2019, 83, 264–271. [Google Scholar] [CrossRef]
- Sedgley, N.; Elmslie, B. Agglomeration and congestion in the economics of ideas and technological change. Am. J. Econ. Sociol. 2008, 60, 101–121. [Google Scholar] [CrossRef]
- Chen, L.; Wang, X.; Hao, Y.; Yin, J.; Chen, D. Population agglomeration, borrowed size and urban economic growth in China. Cities 2024, 155, 105491. [Google Scholar] [CrossRef]
- Fan, Q.; Yang, S.; Liu, S. Asymmetrically spatial effects of urban scale and agglomeration on haze pollution in China. Int. J. Environ. Res. Public Health 2019, 16, 4936. [Google Scholar] [CrossRef]
- Zhang, N.; Choi, Y. Total-factor carbon emission performance of fossil fuel power plants in China: A metafrontier non-radial Malmquist index analysis. Energy Econ. 2013, 40, 549–559. [Google Scholar] [CrossRef]
- Shi, K.; Xu, T.; Li, Y.; Chen, Z.; Gong, W.; Wu, J.; Yu, B. Effects of urban forms on CO2 emissions in China from a multi-perspective analysis. J. Environ. Manag. 2020, 262, 110300. [Google Scholar] [CrossRef]
- Han, S.; Sun, B.; Zhang, T. Mono- and polycentric urban spatial structure and PM2.5 concentrations: Regarding the dependence on population density. Habitat Int. 2020, 104, 102257. [Google Scholar] [CrossRef]
- Safirova, E. Telecommuting, traffic congestion, and agglomeration: A general equilibrium model. J. Urban Econ. 2002, 52, 26–52. [Google Scholar] [CrossRef]
- Sun, B.; He, Z.; Zhang, T.; Wang, R. Urban spatial structure and commute duration: An empirical study of China. Int. J. Sustain. Transp. 2016, 10, 638–644. [Google Scholar] [CrossRef]
- Rao, Y.; Yang, J.; Dai, D.; Wu, K.; He, Q. Urban growth pattern and commuting efficiency: Empirical evidence from 100 Chinese cities. J. Clean. Prod. 2021, 302, 126994. [Google Scholar] [CrossRef]
- Harari, M. Cities in bad shape: Urban geometry in India. Am. Econ. Rev. 2020, 110, 2377–2421. Available online: https://www.aeaweb.org/articles?id=10.1257/aer.20171673 (accessed on 6 April 2021). [CrossRef]
- Du, L.; Wei, M.; Zhang, S.; Pan, J. Unveiling the policy intervention effects of natural resource regulation on firm-level pollution emissions: Evidence from China’s restrained land supply. Resour. Policy. 2023, 86, 104081. [Google Scholar] [CrossRef]
- Pan, W.; Pan, W.; Hu, C.; Tu, H.; Zhao, C.; Yu, D.; Xiong, J.; Zheng, G. Assessing the green economy in China: An improved framework. J. Clean. Prod 2019, 209, 680–691. [Google Scholar] [CrossRef]
- Sharp, J.A.; Meng, W.; Liu, W. A modified slacks-based measure model for data envelopment analysis with ’natural’ negative outputs and inputs. J. Oper. Res. Soc. 2007, 58, 1672–1677. [Google Scholar] [CrossRef]
- Young, A. Gold into base metals: Productivity growth in the People’s Republic of China during the reform period. J. Polit. Econ. 2003, 110, 1220–1261. Available online: https://www.journals.uchicago.edu/doi/full/10.1086/378532 (accessed on 22 November 2019). [CrossRef]
- Li, J.L.; Xu, B. Curse or Blessing: How Does Natural Resource Abundance Affect Green Economic Growth in China? Econ. Res. J. 2018, 53, 151–167. [Google Scholar]
- Hou, S.; Song, L.; Wang, J.; Ali, S. How land finance affects green economic growth in Chinese cities. Land 2021, 10, 819. [Google Scholar] [CrossRef]
- Baron, R.M.; Kenny, D.A. The moderator—mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. J. Pers. Soc. Psychol. 1986, 51, 1173–1182. [Google Scholar] [CrossRef]
- Mao, W.F.; Lu, J. How mismatch of land factors affects the quality of urban innovation and entrepreneurship in China-Empirical evidence from prefecture-level cities. Ind. Econ. Res. 2020, 3, 17–29+126. [Google Scholar] [CrossRef]
- Jin, G.; Shen, K.; Li, J. Interjurisdiction political competition and green total factor productivity in China: An inverted-U relationship. China Econ. Rev. 2020, 61, 101224. [Google Scholar] [CrossRef]
- Hsieh, C.-T.; Klenow, P.J. Misallocation and manufacturing TFP in China and India. Q. J. Econ. 2009, 124, 1403–1448. [Google Scholar] [CrossRef]
- Deng, Q.; Zhou, S.; Peng, F. Measuring green innovation efficiency for China’s high-tech manufacturing industry: A network DEA approach. Math. Probl. Eng. 2020, 2020, 8902416. [Google Scholar] [CrossRef]
- Yang, Y.; Wu, D.; Xu, M.; Yang, M.; Zou, W. Capital misallocation, technological innovation and green development efficiency: Empirical analysis based on China provincial panel data. Environ. Sci. Pollut. Res. 2022, 29, 65535–65548. [Google Scholar] [CrossRef] [PubMed]
Variable Type | Variable Name | Variable Description |
---|---|---|
Dependent variable | Green economic efficiency | |
Independent variable | Mismatch of land resources | |
Intermediate variables | Human capital investment | |
Science and technology output | ||
Threshold variable | Gross Domestic Product of prefecture-level cities | |
Scale of prefecture-level cities | ||
Administrative intervention by local governments | ||
Control variables | transportation infrastructure | |
Degree of population agglomeration | ||
Degree of opening to the outside world | ||
Fiscal level of local governments | ||
Local financial development level |
Variables | Mean | Std | Min | Max | Obs |
---|---|---|---|---|---|
0.602 | 0.128 | 0.231 | 1.261 | 3705 | |
0.291 | 0.168 | 0.000 | 0.940 | 3705 | |
12.809 | 0.916 | 0.000 | 16.246 | 3705 | |
609.493 | 2427.061 | 1.000 | 52,917.000 | 3705 | |
2140 | 3120 | 61.8352 | 38,200 | 3705 | |
149.136 | 194.404 | 15.1 | 2479 | 3705 | |
2.930 | 1.786 | 0.916 | 9.605 | 3705 | |
6.913 | 0.657 | 1.735 | 9.309 | 3705 | |
5.716 | 0.947 | 0.446 | 7.882 | 3705 | |
537,825.3 | 1,289,287 | 20.3 | 20,500,000 | 3705 | |
16.941 | 10.736 | 28.064 | 270.239 | 3705 | |
3.040 | 1.761 | 0.213 | 62.894 | 3705 |
Variables | (1) | (2) | (3) |
---|---|---|---|
LRM | −0.083 *** (0.013) | −0.053 *** (0.010) | −0.057 *** (0.014) |
0.098 *** (0.006) | 0.022 *** (0.005) | 0.110 *** (0.007) | |
0.259 ** (0.012) | 0.011 *** (0.009) | 0.032 *** (0.012) | |
−0.009 *** (0.003) | −0.002 *** (0.002) | −0.013 *** (0.003) | |
0.002 *** (0.002) | 0.000 *** (0.000) | 0.002 *** (0.000) | |
−0.005 ** (0.002) | −0.007 ** (0.001) | −0.001 *** (0.002) | |
Constant | −0.253 ** (0.081) | 0.435 *** (0.063) | −0.039 *** (0.086) |
City FE | Y | Y | Y |
Year FE | Y | Y | Y |
Number of observations | 3705 | 3705 | 3705 |
R-squared | 0.119 | 0.024 | 0.143 |
Variables | (1) SYS-GMM | (2)-2SLS First-Stage | (3)-2SLS Second-Stage |
---|---|---|---|
L.GEE | 0.602 *** (0.056) | ||
LRM | −0.037 * (0.015) | −0.354 * (0.168) | |
iv | 0.006 *** (0.001) | ||
Constant | 0.418 ** (0.126) | 0.261 *** (0.004) | −0.770 *** (0.028) |
Wald | 215.19 *** | ||
AR (1) | −7.16 *** | ||
AR (2) | −1.62 | ||
Sargan test | 40.61 | ||
p-value | 0.000 | ||
Underidentification test (Kleibergen–Paap rk LM statistic) | - | 24.557 | |
p-value | - | 0.000 | |
Weak identification test (Cragg–Donald Wald F statistic) | - | 24.595 | |
Weak identification test (Kleibergen–Paap rk Wald F statistic) | 16.38 | ||
City FE | Y | Y | Y |
Year FE | Y | Y | Y |
Number of observations | 3420 | 3705 | 3705 |
R-squared | 0.025 | 0.128 |
Variables | (1) SFA | (2) Land Transaction Methods | (3) Exclude Municipalities | (4) Exclude First and Last Years |
---|---|---|---|---|
LRM | −0.953 *** (0.055) | −0.091 *** (0.008) | −0.051 *** (0.010) | −0.027 ** (0.010) |
Constant | −7.673 *** (0.341) | 0.552 *** (0.063) | 0.461 *** (0.062) | 0.247 * (0.119) |
City FE | Y | Y | Y | |
Year FE | Y | Y | Y | |
Number of observations | 3705 | 3705 | 3653 | 3135 |
R-squared | 0.258 | 0.035 | 0.024 | 0.034 |
Variables | (1) | (2) | (3) | (4) | (5) |
---|---|---|---|---|---|
LRM | −0.053 *** (0.010) | −0.868 *** (0.057) | −0.026 * (0.010) | −1.618 *** (0.099) | −0.025 * (0.010) |
edu | 0.034 *** (0.003) | ||||
patent | 0.017 *** (0.002) | ||||
Constant | 0.435 *** (0.063) | 5.030 *** (0.351) | 0.394 *** (0.044) | −10.794 *** (0.610) | 0.620 *** (0.065) |
City FE | Y | Y | Y | Y | Y |
Year FE | Y | Y | Y | Y | Y |
Number of observations | 3705 | 3705 | 3705 | 3705 | 3705 |
R-squared | 0.024 | 0.384 | 0.028 | 0.327 | 0.037 |
Threshold | Fstat | Crit 10 | Crit 5 | Crit 1 | Threshold Value | 95% Confidence Interval | ||
---|---|---|---|---|---|---|---|---|
(1) | Single-threshold test | 82.5 ** | 52.790 | 56.902 | 71.075 | 187.652 | [153.409, 213.224] | |
Double-threshold test | 69.51 * | 53.201 | 63.254 | 83.107 | 5915.714 | [5001.227, 6476.000] | ||
Three-threshold test | 32.24 | 78.546 | 90.316 | 115.815 | - | - | ||
(2) | Single-threshold test | 44.36 *** | 23.154 | 25.873 | 32.395 | 77.6 | [77, 79.66] | |
Double-threshold test | 18.3 | 24.604 | 30.097 | 41.612 | - | - | ||
(3) | Single-threshold test | 55.71 *** | 24.479 | 31.522 | 40.613 | 21 | [17, 22] | |
Double-threshold test | 19.88 * | 15.297 | 17.249 | 22.103 | 53 | [45, 58] | ||
Three-threshold test | 11.61 | 26.611 | 31.777 | 40.785 | - | - |
Variables | (1) | (2) | (3) |
---|---|---|---|
0.203 ** (0.064) | |||
−0.091 *** (0.014) | |||
−0.026 (0.021) | |||
−0.007 (0.016) | |||
−0.103 *** (0.016) | |||
0.015 (0.018) | |||
−0.038 ** (0.014) | |||
−0.085 *** (0.017) | |||
Constant | 0.497 *** (0.102) | 0.458 *** (0.101) | 0.451 *** (0.103) |
Number of observations | 3705 | 3705 | 3705 |
R-squared | 0.071 | 0.043 | 0.046 |
Threshold | Fstat | Crit 10 | Crit 5 | Crit 1 | Threshold Value | 95% Confidence Interval | ||
---|---|---|---|---|---|---|---|---|
(1) | Single-threshold test | 61.33 ** | 36.942 | 41.212 | 55.066 | 2714 | [2390.2, 2856] | |
old industrial bases | Double-threshold test | 33.78 | 55.259 | 73.218 | 96.849 | - | - | |
(2) | Single-threshold test | 61.75 ** | 31.318 | 34.605 | 48.051 | 9224.5 | [8011.8, 10,488] | |
non-old industrial bases | Double-threshold test | 35.16 | 71.690 | 84.663 | 108.510 | - | - | |
(3) | Single-threshold test | 37.05 ** | 19.869 | 25.771 | 35.219 | 23.100 | [20.870, 37.900] | |
old industrial bases | Double-threshold test | −12.26 | 22.971 | 27.894 | 38.426 | - | - | |
(4) | Single-threshold test | 41.2 ** | 23.709 | 26.453 | 38.344 | 101.9 | [97.91, 103.23] | |
non-old industrial bases | Double-threshold test | 11.3 | 20.907 | 25.599 | 33.438 | - | - | |
(5) | Single-threshold test | 22.35 * | 14.918 | 18.185 | 24.675 | 7 | [6, 8] | |
old industrial bases | Double-threshold test | 9.8 | 12.160 | 14.144 | 18.070 | - | - | |
(6) | Single-threshold test | 37.05 * | 26.111 | 29.710 | 39.983 | 20 | [14.5, 21] | |
non-old industrial bases | Double-threshold test | 17 | 17.092 | 20.929 | 27.611 | - | - |
Variables | Old Industrial Bases | Non-Old Industrial Bases | ||||
---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | |
−0.026 (0.023) | −0.073 *** (0.018) | |||||
0.195 ** (0.061) | 0.280 (0.177) | |||||
0.287 ** (0.090) | −0.025 (0.015) | |||||
−0.045 * (0.018) | −0.147 *** (0.026) | |||||
0.025 (0.030) | −0.020 (0.016) | |||||
−0.052 * (0.021) | −0.117 *** (0.022) | |||||
Constant | 0.284 * (0.143) | 0.231 (0.143) | 0.231 (0.141) | 0.125 (0.342) | 0.120 (0.374) | 0.137 (0.366) |
Number of observations | 1235 | 1235 | 1235 | 2470 | 2470 | 2470 |
R-squared | 0.012 | 0.0107 | 0.007 | 0.003 | 0.005 | 0.002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, Y.; Li, F.; Wang, Z. Land Resource Allocation and Green Economic Development: Threshold Effect on Local Government Functional Performance in China. Land 2025, 14, 508. https://doi.org/10.3390/land14030508
Wen Y, Li F, Wang Z. Land Resource Allocation and Green Economic Development: Threshold Effect on Local Government Functional Performance in China. Land. 2025; 14(3):508. https://doi.org/10.3390/land14030508
Chicago/Turabian StyleWen, Yuyuan, Fangfang Li, and Zhiqing Wang. 2025. "Land Resource Allocation and Green Economic Development: Threshold Effect on Local Government Functional Performance in China" Land 14, no. 3: 508. https://doi.org/10.3390/land14030508
APA StyleWen, Y., Li, F., & Wang, Z. (2025). Land Resource Allocation and Green Economic Development: Threshold Effect on Local Government Functional Performance in China. Land, 14(3), 508. https://doi.org/10.3390/land14030508