Research on the Inversion Method of Dust Retention in Grassland Plant Canopies Based on UAV-Borne Hyperspectral Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Dust Retention Content Measurement
2.3. UAV-Borne Hyperspectral Data Acquisition and Preprocessing
2.4. Optimized Spectral Indices
2.5. Model Construction and Evaluation
3. Results
3.1. Descriptive Analysis of Canopy Dust Retention Content
3.2. Spectral Response Characteristics of Canopy Dust Retention
3.3. Construction of Optimized Spectral Index
3.4. Construction of the Canopy Dust Retention Inversion Model
4. Discussion
4.1. Rationality Analysis of Spectral Indices
4.2. Spatial Distribution Characteristics of Canopy Dust Retention
4.3. Limitation and Future Work
5. Conclusions
- (1)
- As the canopy dust retention increases, the spectral reflectance in the 400–700 nm wavelength initially increases and then decreases, while the spectral reflectance in the 700–1000 nm wavelength gradually decreases. One-way ANOVA indicates that there are significant differences in the spectral reflectance at different dust retention levels in the 400–420 nm, 579–698 nm, and 714–1000 nm ranges.
- (2)
- The four spectral indices (DI, RI, NDI, and IDI) constructed in this study exhibit high correlations with the canopy dust retention content, and the spectral index has the largest absolute correlation coefficient formed by near-infrared band combinations.
- (3)
- Using the spectral index (i.e., DI, RI, NDI, and IDI) with the largest absolute correlation coefficient with the canopy dust retention as a feature variable, the dust retention inversion model constructed using the RF method yielded an R2 value of 0.899 and RMSE of 2.949 for the calibration set, an R2 value of 0.756, and RMSE of 4.837 for the validation set, and an RPD of 2.023, demonstrating that it has a strong predictive ability. Its accuracy is superior to those of the PLSR and SVM models.
- (4)
- The dust retention content range obtained via inversion using UAV-borne hyperspectral data is 4.365–50.762 g/m2, and the high dust retention areas are primarily distributed within 900 m of the mining area. As the distance from the mining area increases, the canopy dust retention gradually decreases. The increase in the dust retention content is accompanied by a decrease in the vegetation cover, indicating that dust retention has a negative influence on plant growth.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Huang, L.; Li, J.; Zhang, H.; Li, Y.; Wang, S.; Fan, J. Accounting and assessment of grassland ecological values. Acta Prataculturae Sin. 2024, 33, 47–63. [Google Scholar]
- Tang, F.; Yang, Z.; Wang, Z.; Sun, N.; Han, F.; Zhao, J. Research on the Establishment of Grassland Governance Systems from the Perspective of Ecological Civilization. Acta Agrestia Sin. 2021, 29, 2381–2390. [Google Scholar]
- Wang, H.; Wang, J.; Cao, Y.; Lu, Y.; Qin, Q.; Wang, Y. Effect of soil and topography on vegetation restoration in an opencast coal mine dump in a loess area. Acta Ecol. Sin. 2016, 36, 5098–5108. [Google Scholar]
- Guo, J.; He, J.; Li, J.; Xing, E.; Wen, A.; Liu, Y.; Yang, G. Effects of different measures on water erosion control of dump slope at opencast coal mine in typical steppe. Trans. Chin. Soc. Agric. Eng. 2015, 31, 296–303. [Google Scholar]
- Hirano, T.; Kiyota, M.; Aiga, I. Physical effects of dust on leaf physiology of cucumber and kidney bean plants. Environ. Pollut. 1995, 89, 255–261. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Lei, S. Research Overview of Effect of Dust on Environment and Its Diffusion Laws in Open-pit Coal Mine. Saf. Coal Mines 2017, 48, 231–234. [Google Scholar]
- Naidoo, G.; Chirkoot, D. The effects of coal dust on photosynthetic performance of the mangrove, Avicennia marina in Richards Bay, South Africa. Environ. Pollut. 2004, 127, 359–366. [Google Scholar] [CrossRef]
- Xu, J.; Yu, J. Air dustfall impact on spectrum of Ficus microcarpa’s leaf. Adv. Mater. Res. 2013, 655, 813–815. [Google Scholar] [CrossRef]
- Chudnovsky, A.; Ben-Dor, E. Application of visible, near-infrared, and short-wave infrared (400–2500 nm) reflectance spectroscopy in quantitatively assessing settled dust in the indoor environment. Case study in dwellings and office environments. Sci. Total Environ. 2008, 393, 198–213. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Xu, R.; Ma, Y.; Miao, L.; Cai, R.; Chen, Y. The research of air pollution based on spectral features in leaf surface of Ficus microcarpa in Guangzhou, China. Environ. Monit. Assess. 2008, 142, 73–83. [Google Scholar] [CrossRef]
- Zhang, P.; YAO, F. Using hyperspectral indices to measure the effect of mine dust on the growth of three typical desert plants. Spectrosc. Spectr. Anal. 2014, 34, 2162–2168. [Google Scholar]
- Kayet, N.; Pathak, K.; Singh, C.P.; Chaturvedi, R.K.; Brahmandam, A.S.; Mandal, C. Assessment and estimation of coal dust impact on vegetation using VIs difference model and PRISMA hyperspectral data in mining sites. J. Environ. Manag. 2024, 367, 121935. [Google Scholar] [CrossRef] [PubMed]
- Jing, W.; Zhou, X.; Zhang, C.; Wang, C.; Jiang, H. Machine learning for estimating leaf dust retention based on hyperspectral measurements. J. Sens. 2018, 2018, 6026259. [Google Scholar] [CrossRef]
- Yan, X.; Shi, W.; Zhao, W.; Luo, N. Mapping dustfall distribution in urban areas using remote sensing and ground spectral data. Sci. Total Environ. 2015, 506, 604–612. [Google Scholar] [CrossRef]
- Peng, J.; Xiang, H.; Wang, J.; Ji, W.; Liu, W.; Chi, C.; Zuo, T. Quantitative model of foliar dustfall content using hyperspectral remote sensing. J. Infrared Millim. Waves 2013, 32, 313–318. [Google Scholar] [CrossRef]
- Wang, G.; Yu, Q.; Yang, D.; Niu, T.; Long, Q. Retrieval of Dust Retention Distribution in Beijing Urban Green Space Based on Spectral Characteristics. Spectrosc. Spectr. Anal. 2022, 42, 2572–2578. [Google Scholar]
- Su, K.; Yu, Q.; Hu, Y.; Liu, Z.; Wang, P.; Zhang, Q.; Zhu, J.; Niu, T.; Pei, Y.; Yue, D. Inversion Research on Dust Distribution of Urban Forests in Beijing in Winter Based on Spectral Characteristics. Spectrosc. Spectr. Anal. 2020, 40, 1696–1702. [Google Scholar]
- Saaroni, H.; Chudnovsky, A.; Ben-Dor, E. Reflectance spectroscopy is an effective tool for monitoring soot pollution in an urban suburb. Sci. Total Environ. 2010, 408, 1102–1110. [Google Scholar] [CrossRef] [PubMed]
- Xiao, H.; Chen, X.; Ling, Q.; Zhou, Z. Analysis of dust detention capability of landscape plants and the hyperspectral remote sensing quantitative models construction of foliagedust detention. Resour. Environ. Yangtze Basin 2015, 24, 229–236. [Google Scholar]
- Su, K.; Yu, Q.; Sun, X.; Yue, D. Effects of leaf dust retention on spectral characteristics of Euonymus japonicus. J. Beijing For. Univ. 2021, 43, 40–49. [Google Scholar]
- Kayet, N.; Pathak, K.; Chakrabarty, A.; Kumar, S.; Chowdary, V.M.; Singh, C.P.; Sahoo, S.; Basumatary, S. Assessment of foliar dust using Hyperion and Landsat satellite imagery for mine environmental monitoring in an open cast iron ore mining areas. J. Clean. Prod. 2019, 218, 993–1006. [Google Scholar] [CrossRef]
- Li, W.; Wu, J.; Chen, T.; Peng, D. Hyperspectral estimation model of dust deposition content on plant leaves. Trans. Chin. Soc. Agric. Eng. 2016, 32, 180–185. [Google Scholar]
- Zhu, J.; Yu, Q.; Liu, X.; Yu, Y.; Yao, J.; Su, K.; Niu, T.; Zhu, H.; Zhu, Q. Effect of Leaf Dust Retention on Spectral Characteristics of Euonymus japonicus and Its Dust Retention Prediction. Spectrosc. Spectr. Anal. 2020, 40, 517–522. [Google Scholar]
- Luo, N.; Zhao, W.; Yan, X. Impact of Dust-Fall on Spectral Features of Plant Leaves. Spectrosc. Spectr. Anal. 2013, 33, 2715–2720. [Google Scholar]
- Peng, J.; Wang, J.; Xiang, H.; Niu, J.; Chi, C.; Liu, W. Effect of Foliar Dustfall Content (FDC) on High Spectral Characteristics of Pear Leaves and Remote Sensing Quantitative Inversion of FDC. Spectrosc. Spectr. Anal. 2015, 35, 1365–1369. [Google Scholar]
- Wang, H.; Fang, N.; Yan, X.; Chen, F.; Xiong, Q.; Zhao, W. Retrieving Dustfall Distribution in Beijing City Based on Ground Spectral Data and Remote Sensing. Spectrosc. Spectr. Anal. 2016, 36, 2911–2918. [Google Scholar]
- Jia, W.; Pang, Y.; Yue, C.; Li, Z.; Che, T.; Ma, M. The Processing of Airborne AISA Eagle Ⅱ Data in Ejina Banner Study Area. Remote Sens. Technol. Appl. 2016, 31, 504–510. [Google Scholar]
- Zhou, Y.; Cheng, Y.; Wang, D.; Zhang, Z.; Zeng, D.; Li, X.; Mao, C. Hyperspectral inversion of soil arsenic content in polymetallic mining areas based on optimized spectral index combined with PLSR. Chin. J. Nonferrous Met. 2024, 34, 653–667. [Google Scholar]
- Ning, J.; Zou, B.; Tu, Y.; Zhang, X.; Wang, Y.; Tian, R. Evaluation of Soil as Concentration Estimation Method Based on Spectral Indices. Spectrosc. Spectr. Anal. 2024, 44, 1472–1481. [Google Scholar]
- Han, C.; Lu, J.; Chen, S.; Xu, X.; Wang, Z.; Pei, Z.; Zhang, Y.; Li, F. Estimation of heavy metal (loid) contents in agricultural soil of the suzi river basin using optimal spectral indices. Sustainability 2021, 13, 12088. [Google Scholar] [CrossRef]
- Lin, N.; Liu, Y.; Liu, Q.; Jiang, R.; Ma, X. Inversion method of organic matter content of different types of soils in black soil area based on hyperspectral indices. Open Geosci. 2024, 16, 20220739. [Google Scholar] [CrossRef]
- Sun, H.; Feng, M.; Xiao, L.; Yang, W.; Wang, C.; Jia, X.; Zhao, Y.; Zhao, C.; Muhammad, S.K.; Li, D. Assessment of plant water status in winter wheat (Triticum aestivum L.) based on canopy spectral indices. PLoS ONE 2019, 14, e0216890. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Wu, T.; Wang, S.; Li, Z.; Tian, Y.; Fei, X.; Liu, Y.; Lei, Y.; Li, G. Hyperspectral Indices for Identification of Red Pigments Used in Cultural Relic. Spectrosc. Spectr. Anal. 2022, 42, 1588–1594. [Google Scholar]
- Zhao, Y.; Yan, C.; Lu, S.; Wang, P.; Qiu, G.Y.; Li, R. Estimation of chlorophyll content in intertidal mangrove leaves with different thicknesses using hyperspectral data. Ecol. Indic. 2019, 106, 105511. [Google Scholar] [CrossRef]
- Li, Z.; Tian, A. Quantitative Prediction and Spatial Distribution of Soil Heavy Metal Zn Based on Spectral Indices. Spectrosc. Spectr. Anal. 2024, 44, 3287–3293. [Google Scholar]
- Hou, L.; Li, X.; Li, F. Hyperspectral-based Inversion of Heavy Metal Content in the Soil of Coal Mining Areas. J. Environ. Qual. 2019, 48, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Tan, K.; Wang, H.; Zhang, Q.; Jia, X. An improved estimation model for soil heavy metal (loid) concentration retrieval in mining areas using reflectance spectroscopy. J. Soils Sediments 2018, 18, 2008–2022. [Google Scholar] [CrossRef]
- Li, J.; Zhang, H.; Ma, W.; Chen, C.; Zhu, Y.; Zhou, Y.; Zhan, Y. Spaceborne GNSS-R soil moisture inversion method based on support vector machine. Prog. Geophys. 2023, 38, 1960–1966. [Google Scholar]
- Liang, L.; Di, L.; Zhang, L.; Deng, M.; Qin, Z.; Zhao, S.; Lin, H. Estimation of crop LAI using hyperspectral vegetation indices and a hybrid inversion method. Remote Sens. Environ. 2015, 165, 123–134. [Google Scholar] [CrossRef]
- Dai, L.; Ge, J.; Wang, L.; Zhang, Q.; Liang, T.; Bolan, N.; Lischeid, G.; Rinklebe, J. Influence of soil properties, topography, and land cover on soil organic carbon and total nitrogen concentration: A case study in Qinghai-Tibet plateau based on random forest regression and structural equation modeling. Sci. Total Environ. 2022, 821, 153440. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Ma, Z.; Li, M.; Zhou, Y. Selection of a calibration sample subset by a semi-supervised method. J. Near Infrared Spectrosc. 2018, 26, 87–94. [Google Scholar] [CrossRef]
- Wang, X.; Gong, Z.; Jing, R.; Zhang, L.; Jin, D. Extraction of aquatic plants based on continuous removal method and analysis of its temporal and spatial changes—A case study of Guanting Reservoir. Chin. J. Plant Ecol. 2018, 42, 640–652. [Google Scholar]
- Lin, C.; Gong, Z.; Zhao, W.; Fan, L. Identifying typical plant ecological types based on spectral characteristic variables: A case study in Wild Duck Lake wetland, Beijing. Acta Ecol. Sin. 2013, 33, 1172–1185. [Google Scholar]
- Krajíčková, A.; Mejstřik, V. The effect of fly ash particles on the plugging of stomata. Environ. Pollut. Ser. A Ecol. Biol. 1984, 36, 83–93. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, N.; Cao, Y.; Yang, J. Effects of coal dust deposition on the physiological properties of plants in an open-pit coal mine. Acta Ecol. Sin. 2018, 38, 8129–8138. [Google Scholar]
- Tezara, W.; Habash, D.; Paul, M.J.; Lawlor, D.W. Effects of water stress on the biochemistry and physiology of photosynthesis in sunflower. Photosynth. Res. 1995, 205, 625–628. [Google Scholar]
- Yang, H.; Wei, L.; Ye, X.; Liu, G.; Yang, X.; Huang, Z. Effects of coal dust deposition on seedling growth of Hedysarum laeve Maxim: A dominant plant species on Ordos Plateau. Acta Ecol. Sin. 2016, 36, 2858–2865. [Google Scholar]
- Prusty, B.; Mishra, P.C.; Azeez, P.A. Dust accumulation and leaf pigment content in vegetation near the national highway at Sambalpur, Orissa, India. Ecotoxicol. Environ. Saf. 2005, 60, 228–235. [Google Scholar] [CrossRef] [PubMed]
- Rai, P.K.; Panda, L.L. Dust capturing potential and air pollution tolerance index (APTI) of some road side tree vegetation in Aizawl, Mizoram, India: An Indo-Burma hot spot region. Air Qual. Atmos. Health 2014, 7, 93–101. [Google Scholar] [CrossRef]
- Zhou, X.; Huang, W.; Kong, W.; Ye, H.; Dong, Y.; Casa, R. Assessment of leaf carotenoids content with a new carotenoid index: Development and validation on experimental and model data. Int. J. Appl. Earth Obs. Geoinf. 2017, 57, 24–35. [Google Scholar] [CrossRef]
- Darvishzadeh, R.; Skidmore, A.; Schlerf, M.; Atzberger, C.; Corsi, F.; Cho, M. LAI and chlorophyll estimation for a heterogeneous grassland using hyperspectral measurements. ISPRS J. Photogramm. Remote Sens. 2008, 63, 409–426. [Google Scholar] [CrossRef]
- Chappelle, E.W.; Kim, M.S.; McMurtrey, J.E., III. Ratio analysis of reflectance spectra (RARS): An algorithm for the remote estimation of the concentrations of chlorophyll a, chlorophyll b, and carotenoids in soybean leaves. Remote Sens. Environ. 1992, 39, 239–247. [Google Scholar] [CrossRef]
- Sims, D.A.; Gamon, J.A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens. Environ. 2002, 81, 337–354. [Google Scholar] [CrossRef]
- Liu, L.; Huang, W.; Pu, R.; Wang, J. Detection of internal leaf structure deterioration using a new spectral ratio index in the near-infrared shoulder region. J. Integr. Agric. 2014, 13, 760–769. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, S.; Zhang, B. Evaluation of hyperspectral indices for retrieval of canopy equivalent water thickness and gravimetric water content. Int. J. Remote Sens. 2016, 37, 3384–3399. [Google Scholar] [CrossRef]
- Peñuelas, J.; Filella, I.; Biel, C.; Serrano, L.; Save, R. The reflectance at the 950–970 nm region as an indicator of plant water status. Int. J. Remote Sens. 1993, 14, 1887–1905. [Google Scholar] [CrossRef]
- Zia-Khan, S.; Spreer, W.; Pengnian, Y.; Zhao, X.; Othmanli, H.; He, X.; Müller, J. Effect of dust deposition on stomatal conductance and leaf temperature of cotton in northwest China. Water 2014, 7, 116–131. [Google Scholar] [CrossRef]
- Chaston, K.; Doley, D. Mineral particulates and vegetation: Effects of coal dust, overburden and flyash on light interception and leaf temperature. Clean. Air Environ. Qual. 2006, 40, 40–44. [Google Scholar]
- Popek, R.; Gawrońska, H.; Wrochna, M.; Gawroński, S.W.; Sæbø, A. Particulate matter on foliage of 13 woody species: Deposition on surfaces and phytostabilisation in waxes–a 3-year study. Int. J. Phytoremediation 2013, 15, 245–256. [Google Scholar] [CrossRef] [PubMed]
- Paoli, L.; Guttová, A.; Grassi, A.; Lackovičová, A.; Senko, D.; Sorbo, S.; Basile, A.; Loppi, S. Ecophysiological and ultrastructural effects of dust pollution in lichens exposed around a cement plant (SW Slovakia). Environ. Sci. Pollut. Res. 2015, 22, 15891–15902. [Google Scholar] [CrossRef] [PubMed]
- Mo, Z.; Zhang, J.; Wang, J.; Liu, W.; Wang, J. Effect of Dustfall on Photosynthetic Characteristics and Chlorophyll Content of Pyrus bretschneideri cv.Fragrant Pear Leaf in Tarim Basin. Hubei Agric. Sci. 2013, 52, 3845–3848. [Google Scholar]
- Hou, J.; Wang, Z.; Wu, D. Effect of coal dust deposition on the root system and leaf growth of Agropyron cristatum as an important plant in Inner Mongolia grassland. Heilongjiang Anim. Sci. Vet. Med. 2017, 1, 144–147. [Google Scholar]
- Zhang, Y.; Sun, X.; Bo, M.; Chang, S.; Han, Y.; Li, X.; Lu, J. Effect of Mining Dust on Photosynthetic and Physiological Characteristics of Picea schrenkiana Needles. J. West. China For. Sci. 2016, 45, 1–7. [Google Scholar]
- Pan, R. Migration of heavy metals in dust from smelters in the environment and its countermeasures. Chin. J. Ecol. 1990, 4, 31–36. [Google Scholar]
Sample Type | Min (g/m2) | Max (g/m2) | Mean (g/m2) | S.D (g/m2) | CV (%) |
---|---|---|---|---|---|
Calibration | 1.486 | 54.688 | 17.396 | 9.522 | 54.737 |
Validation | 2.336 | 51.552 | 16.542 | 8.586 | 51.904 |
Total | 1.486 | 54.688 | 16.969 | 8.996 | 53.014 |
DI | RI | NDI | IDI |
---|---|---|---|
R band combination | R band combination | R band combination | R band combination |
0.609 (747 nm, 774 nm) | 0.608 (720 nm, 924 nm) | 0.604 (720 nm, 924 nm) | 0.546 (758 nm, 752 nm) |
Models | Calibration | Validation | |||
---|---|---|---|---|---|
RMSEC (g/m2) | RMSEP (g/m2) | RPD | |||
PLSR | 0.425 | 7.066 | 0.429 | 7.394 | 1.323 |
SVM | 0.513 | 6.503 | 0.493 | 6.964 | 1.405 |
RF | 0.899 | 2.949 | 0.756 | 4.837 | 2.023 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Lei, S. Research on the Inversion Method of Dust Retention in Grassland Plant Canopies Based on UAV-Borne Hyperspectral Data. Land 2025, 14, 458. https://doi.org/10.3390/land14030458
Zhao Y, Lei S. Research on the Inversion Method of Dust Retention in Grassland Plant Canopies Based on UAV-Borne Hyperspectral Data. Land. 2025; 14(3):458. https://doi.org/10.3390/land14030458
Chicago/Turabian StyleZhao, Yibo, and Shaogang Lei. 2025. "Research on the Inversion Method of Dust Retention in Grassland Plant Canopies Based on UAV-Borne Hyperspectral Data" Land 14, no. 3: 458. https://doi.org/10.3390/land14030458
APA StyleZhao, Y., & Lei, S. (2025). Research on the Inversion Method of Dust Retention in Grassland Plant Canopies Based on UAV-Borne Hyperspectral Data. Land, 14(3), 458. https://doi.org/10.3390/land14030458